
Query: An Affine Linear Model for the Relation between Two Sets of Frequency
Counts

Joel E. Cohen; Peter D'eustachio

Biometrics, Vol. 34, No. 3. (Sep., 1978), pp. 514-521.

Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28197809%2934%3A3%3C514%3AQAALMF%3E2.0.CO%3B2-M

Biometrics is currently published by International Biometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ibs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue Mar 13 18:03:16 2007

http://links.jstor.org/sici?sici=0006-341X%28197809%2934%3A3%3C514%3AQAALMF%3E2.0.CO%3B2-M
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ibs.html


BIOMETRICS 34, 514-521 
September, 1978 

BIOMETRICS, SEPTEMBER 1978 

QUERY: An Affine Linear Mode! for the Relation Between 
Two Sets of Frequency Counts 

In fetal development, different functional cell populations arise at different times and 
proliferate at different rates to give rise to the relative numbers and distributions of cell types 
ultimately observed in the adult. We recorded the numbers of nucleated cells (X-cells) and 
the numbers of cells (Y-cells) which formed rosettes with trinitrophenyl-derivatized sheep red 
blood cells, in the spleens of individual fetal mice 18 days after conception (Cohen, 
D'Eustachio and Edelman 1977). For example, in a litter of BALB/c X CBA/J fetuses, the 
numbers of X-cells and of Y-cells, presented as (X, Y) pairs, in 5 individuals were (337, 52), 
(141, 6), (177, 14), (116, 5), (88, 5). In this case, 3 aliquots of the cell suspension were sampled 
for all individuals. In other cases, the number of aliquots sampled varied from one individual 
to another. The number of aliquots was always the same for the X-cells and Y-cells of a given 
individual. 

When these data are plotted within individual litters, the points fall roughly along a 
straight line with a positive X-intercept. This positive X-intercept, or threshold, may indicate 
a delayed start in the expansion of the Y-cell compartment of the spleen relative to the X-cell 
compartment. We would like to evaluate the hypothesis of linearity in detail, in order to 
determine whether the observed deviations from an exact linear relationship could be 
accounted for by Poisson sampling fluctuation. 

RESPONSE: 

JOEL E. COHEN and PETER D'EUSTACHI0 1 

The Rockefeller University, 1230 York Avenue, New York, New York, 10021, U.S.A. 

Suppose that fit, ~to i = 1, ... , k are the total numbers of X-cells and Y-cells in each of k 
individuals. The experimental design determines the number at of aliquots of cells sampled 
from each individual. We assume at is chosen so that the observed numbers Xt and Yt of each 
kind of cell are "large" and are subject to Poisson variation. We wish to fit the model 

E(Xt) = Ato 4 E(Yt) = f.Lt = c(At - atd), 4 At ;:;::: atd (1) 

where only at is known. Model (l) is a so-called "structural" regression for Poisson variates 
because the observed abscissae Xt include sampling variation. 

Other models for regression of Poisson variates or for analysis of the usual hypothesis of 
proportionality have been described by Fleiss (1973, p. 97), El-Sayyad (1973) and Simon 
(1974). An alternative to the present approach would be to stabilize variances by an 
appropriate square root transformation and then carry out a structural regression (Dolby 
1976). 

1 Current address: Department of Biology, Yale University, New Haven, Connecticut 06520, 
U.S.A. 

514 



CONSULTANT'S FORUM 515 

When d = 0, model (1) is the usual hypothesis of proportionality of rows and columns in 
a 2 X k contingency table with Xt in the first row and Yt in the second. When d f. 0, model (1) 
may be interpreted as supposing that the average number J.Lt of Y-cells in at aliquots from an 
individual i is proportional (with constant c) to the excess in the average number At of X-cells 
over some threshold atd where d is the threshold per aliquot. 

If Xtlat is plotted on the abscissa of a graph and Ytlat on the ordinate, then the points 
should approximate a straight line with slope c according to the model ( 1 ). Assuming c f. 0, 
the line should pass through the X-axis at X = d. Preparing such a graph is recommended as a 
preliminary test of the reasonableness of the model and a rough way of estimating c and d. 

Point estimates of the parameters, which can be obtained from the maximum likelihood 
(ML) equations, are solutions of 

and 

(2) 

(3) 

(4) 

When d = 0, (2) and (4) give the conventional estimators for the 2 X k table, c = 2:Yti2:Xt 
and At = (Xt + Yt)2:1X/2:;(X1 + Y1). 

A suggested procedure for solving (2) to (4) numerically is to estimate an initial value for 
d graphically or by ordinary least squares, using Xt as an initial value for At and using (2) to 
obtain an initial c. Then (i) find a value of d which satisfies (3) by the Newton-Raphson 
procedure, (ii) find an improved value of each At from (4), which is an explicitly soluble 
quadratic equation, (iii) improve c via (2), and go to step (i). Stop when all parameter values 
quasi-converge. When a visual inspection of the data warrants using the model in the first 
place, the procedure gives reasonable results, e.g., Cohen, D'Eustachio and Edelman (1977, 
Tables IV and V). 

The variance-covariance matrix of the parameter estimates is, asymptotically, i.e. for 
large counts Xt and Y~o the inverse of ( -1) times the expected value of the matrix of second 
partial derivatives of In L. We estimate this matrix by replacing the parameters by theM L 
estimates. We enumerate the parameters as before in the order c, d, A1o ... , A.,.. Hence the 
first two rows of the estimated inverse variance-covariance matrix are 

+1 +1 
(5) 

-a,.c/(A,. - a,.d). 

The lower right k X k submatrix of the inverse variance-covariance matrix has 

1 /At + c/(At - atd), (6) 

as the ith diagonal element and off-diagonal elements zero. 
When model (1) is fitted to the data with at = 3, we estimate c = 0.17818 and d = 26.5853. 

Goodness of fit to the expected values can be assessed using the conventional chi-squared, x2 

= 5.13, or -2 log likelihood rati0 measure, G2 = 5.21, with 3 degrees of freedom. The fit is 
quite acceptable. The estimated variance-covariance matrix (the inverse of the matrix from 
(5) and (6)) of the parameter estimates can be obtained (Table 1 ). The 99% confidence 
intervals for c and dare respectively from 0.0993 to 0.257 and from 16.3 to 36.9. 

Since each aliquot of nucleated cells (X-cells) represented 1 o-4 of the total nucleated cells 
in a fetal spleen, we infer that there were 1Q4d = 265,853 or approximately a quarter million 
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TABLE 1 
Variance-Covariance Matrix of the Estimated Parameters 

c d A, A2 As A4 A• 

0.0009 0.0835 -0.2152 -0.0087 -0.0595 0.0285 0.0767 
16.1467 -14.1500 7.3373 1.2540 12.4308 19.7132 

330.7938 6.5683 17.2873 -0.9163 -10.2331 
99.1315 6.6060 8.9243 11.2699 

138.1067 5.5987 4.8013 
82.3421 16.9512 

74.9106 

nucleated cells in the fetal spleen before rosette-forming cells (Y-cells) began to appear in this 
litter. Since each aliquot of Y-cells represented 0.05 of the total Y-cells in a fetal spleen, each 
additional X-cell above the threshold of a quarter million was accompanied by 20c/l04 = 3.56 
X I0- 4 additional Y-cells. More biologically, for each additional million nucleated cells over 
the threshold, there were roughly 350 additional rosette-forming cells. 
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RESPONSE: 

WAYNE A. FULLER 

Department of Statistics, Iowa State University, Ames, Iowa 50011, U.S.A. 

The query on the relationship between the counts of two kinds of cell raises interesting 
problems because the measures of both kinds of cells for the ith individual are subject to 
sampling variation. Cohen and D'Eustachio present the maximum likelihood (ML) solution 
under the assumption of Poisson variation. We present analyses based upon the square roots 
of the original data. The square root transformation for the Poisson distribution has a 
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considerable history. See Bartlett (1936), Cochran ( 1940), and Thoni (1967). The square root 
transformation typically has the advantage that it simplifies the computation of tests and 
estimators. In the present situation the square root transformation permits us to use existing 
computer software. 

Let 1/t be the total number of cells of X-type and ~t the total number of cells of Y-type in 
the ith individual. Let Xt be the observed number of cells of X-type in at aliquots and Yt the 
observed number of cells of Y-type in at aliquots selected from the ith individual. The query 
postulated a Poisson distribution for the observed counts and a linear relation between the 
means of the two types of counts. To obtain such a model one might assume that the ~t satisfy 
the regression equation 

where E{Vt \11tl = 0. 
If a small fraction of the fetal spleen is sampled it is reasonable to consider the sampling 

variation in the cell counts to be Poisson. Under the Poisson model the conditional mean 
(conditional on 1/t) of the counts Xt is E{Xt \11tl = fxt1/t, and the conditional variance is 
Var{Xt \11tl = fxt11to where fxt is the fraction of the spleen sampled for X-cells. 

The conditional mean of Yt given ~~ is E{ Yt \ ~t} = fyt~t. where fyt is the fraction of the 
spleen sampled for Y-cells. The conditional mean of Yt given 1/t is 

E{ Yt \1/t} = Xyt(ao + a111t) 

and the conditional variance given 1/t is 

Var{Yt\1/t} = Xut(ao + al1Jt) + fut 2 Var{vt}. 

The model of the query can be obtained by postulating fy/ Var{vt} to be small relative to 
fyt(a 0 + a111t) so that Yto conditional on 1/to is approximately Poisson with mean fy 1(a0 +a11]1). 

The query specifies no distribution for 1/t, so we treat 1/t as fixed unknown, parameters in our 
analysis. If the total number of aliquots of X-cells is Tx and the total number of aliquots of Y­
cells is Ty, the model for the observed counts becomes 

(1) 

If we set E{Xt} = Ato c1 = Ty - 1Txa1 and d0 = -a0a 1- 1Tx -1, we obtain the parameterization 
used by Cohen and D'Eustachio in their response, where we have added subscripts to c and d 
for later identification. 

Let Zt denote the square root of the count of X-cells and Wt the square root of the count 
of Y-cells for the ith individual. By Taylor's theorem we have 

Zt = At' 5 + !A.t-· 6(Xt- A.t)- s- 1A.t- 1' 5(Xt- A.t)2 + Rt, 

where R1 is the remainder. Thus, to a first order of approximation, E{Zt} = At' 5 and to a 
second order of approximation, E{Zt} = At' 5 - 8 - 1A.1 -.s, where we have used the fact that the 
variance of a Poisson random variable is equal to the mean. 

It follows that the first order approximation to the model linear in the original variables 
postulated in the query is 

(2) 

(3) 

and 

(4) 
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where Zt = E{Zt}, Wt = E{Wt} and it is assumed that (e1, Ut)' are independently distributed 
with mean zero and diagonal covariance matrix, diag(0.25,0.25). The second order approxi­
mation to the model linear in the original observations is 

(5) 

Zt = A( 6 - 8- 1At-' 6 , Zt = Zt + Ut, and Wt = Wt + et. 

As alternative models for the relationship between w1 and Zt we consider 

(6) 

(7) 

and 

(8) 

A method of constructing estimators suitable for small sample sizes can be obtained by 
considering the model in a nonlinear least squares framework. This approach is particularly 
suitable if the model is nonlinear, e.g. models (2) and (8). The data arrangement associated 
with the use of nonlinear least squares is given in Table 1. Note that the five (Z, W) pairs 
obtained from the five (X, Y) pairs of the query have been arranged in a column of ten 
observations. In terms of Table 1 the five models (2), (5), (6), (7), and (8) become 

t/lt = ~IPttZt + c1·6 (~1PHt,t z/ - doat.,.otl' 5 + Et, (9) 

t/lt = ~ 1Ptt(At' 6 - 8- 1 At -·5) + C1' 5 [~ IPS+t,t At - doOtiPotP 

- 8- 1 c1-· 5 [~ IPHt,t At - doOtiPotl-· 6 + Et, (10) 

t/lt = ~IPttZt + P1~IP5+t,6Zt + Et, ( 11) 

t/lt = ~IPtt Zt + Po0t' 51Pot + P1~1PHt,tZt + Et, (12) 

TABLE 1 
Data Tableau for Nonlinear Least Squares Estimation 

Index Original 
t obs. t/1 <Po <Pl <1'2 <Pa "'' <1'5 <Ps <1'7 <Ps <Ps <Pto 

1 Xtt/2 18.358 0 1 0 0 0 0 0 0 0 0 0 
2 X2tt2 11.874 0 0 1 0 0 0 0 0 0 0 0 
3 Xl 12 13.304 0 0 0 1 0 0 0 0 0 0 0 
4 x,112 10.770 0 0 0 0 1 0 0 0 0 0 0 
5 X/12 9.381 0 0 0 0 0 1 0 0 0 0 0 
6 Y/12 7.211 1 0 0 0 0 0 1 0 0 0 0 
7 y21/2 2.449 1 0 0 0 0 0 0 1 0 0 0 
8 Yal/2 3.742 1 0 0 0 0 0 0 0 1 0 0 
9 Y/12 2.236 1 0 0 0 0 0 0 0 0 1 0 

10 y6t/2 2.236 1 0 0 0 0 0 0 0 0 0 1 
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TABLE 2 

Nonlinear Least Squares Estimates 

Residual 
Parameter index mean 

Model 0 square 

(9) 0.178 26.8 0.44 
(0.040) (5.2) 

(10) 0.178 26.5 0.44 
(0.040) (5.2) 

(11) 0.300 1.27 
(0.040) 

(12) 0.608 -2.41 0.23 
(0.082) (0.62) 

(13) 0.528 0.206 0.10 
(0.166) (0.029) 

and 

1/lt = LfPttZt + Ot' 5~o[exp{~lat-.5 L l"&+t,t Zt} - 1] + Et. (13) 

where each summation is from i = I to 5 and the Et are independent (0,0.25) random 
variables. The parameters of the nonlinear regression models (9)-(13) can be estimated using 
a nonlinear regression program, for example NLIN of SAS 76. 

The observed X-values can be used as start values for zt The ordinary least squares 
regression of Yon X will provide start values for (9) and (10) and the ordinary least squares 
regression of Won Z will provide start values for (11) and (12). Graphical methods can be 
used to obtain start values for (13 ). 

The nonlinear least squares estimates of the four models are given in Table 2. The sample 
standard errors in parentheses are those output by NLIN of SAS 76. They are computed 
using the regression residual mean square. To compute the standard errors under the Poisson 
model (u2 = 0.25), multiply the table standard errors by one half of the reciprocal of the 
square root of the regression residual mean square given in the last column of the table. The 
estimates obtained from the first and second order approximations to the linear model are 
nearly identical and very similar to the ML estimates presented by Cohen and D'Eustachio. 
However the estimated standard errors associated with nonlinear least squares are somewhat 
larger than the M L estimates. 

Under the assumption that the original (X, Y) random variables are independent Poisson 
random variables, the model linear in the original values (9) and (10), the model linear in the 
square roots (12) and the exponential model (13) would all be judged acceptable by the usual 
F-test constructed as the residual mean square divided by 0.25. Model (11 ), the proportional 
model, would be rejected at the 1% level by the lack of fit F"' 4-statistic of (1.27)/(0.25) = 5.08. 
The model linear in the square roots (7) and the exponential model (8) give somewhat better 
fits than the model linear in the original variables. Both of these models have a concave 
shape, as does the plot of the original data. Clearly additional observations and observations 
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from somewhat younger fetuses are required if one is to choose among the alternative 
models. 

Because this is a nonlinear problem all distributional statements are approximations. The 
problem is further complicated by the fact that the number of parameters is approximately 
proportional to the number of observations. The conditions under which such approxima­
tions are adequate is difficult to establish. Wolter (1974), studying the nonlinear errors in 
variables problems, obtained a limiting distribution for n· 5(d0 - d0 , c1 - c0 ) of models such as 
(9) by considering a sequence of samples wherein the variance oft/It decreased at the rate n-· 5 • 

He also suggested a modification of the estimator that had a limiting distribution under 
slightly weaker conditions. 

The model defined by the three equations (7), (3), (4) and the model defined by the three 
equations (6), (3 ), (4) are examples of the classical linear functional model. See, for example, 
Kendall and Stuart (1967, Ch. 29). The MLE of the parameter of model (7) for normally 
distributed (e1, u1) is 

( ~o) = [(2:a1 2:~( 5Z1) -f.. (0 0 )J-1 [2; W1 J 
~1 2:a( 5Zt 2:Z/ 0 0.25 11:zt Wt ' 

(14) 

where 'A is the smallest root of 

[
.2: Wt 2 2:at' 5 Wt 2: WtZt l [ 0.25 0.00 0.00] 
'1;at' 5 Wt 2:at 2:a<Zt -A. 0.00 0.00 0.00 = 0. 
2: WtZt 2:a( 5Zt 2:Zt 0.00 0.00 0.25 

(15) 

The smallest root X of (15) is equal to the regression residual sum of squares associated with 
model (12) divided by 0.25. 

A program has been develop~d at Iowa State University to construct the estimator (14) 
and estimators of other errors in variables models (Hidiroglou, Fuller and Hickman 1978). 
The program is called SUPER CARP and is designed for the linear regression problem with 
multiple explanatory variables. The algorithm in SUPER CARP replaces X in (14) with X(n­
p - 1 )(n - p)- 1, where pis the number of parameters estimated. The modification produces 
an estimator with smaller mean square error. Also the program uses a method of computing 
variances that is applicable, in large samples, to observations (e1, u1) selected from distribu­
tions possessing finite moments of order greater than four. The estimated variance matrix of 
the estimator is 

where 

~.25) 

It has been demonstrated under mild conditions that n· 5(/10 - {30 , /11 - (JI)' converges to a 
normal random variable as the sample size n increases and that n V{(/10 , /11 )} is a consistent 
estimator of the variance of n- 5(/10 - {30 , /11 - (31)'. The limiting distribution can be obtained 
for the linear model by assuming that the error variances are becoming small relative to the 
mean of the random variables or by assuming that the number of observations is becoming 
large. The estimated model (7) obtained using the program SUPER CARP is 

Wt = -2.38a(5 + 0.605z1. 

(0.63) (0.071) 
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The estimated parameters differ from those of Table 2 because 'A is replaced by (n - p )- 1(n 
- p - 1 )A. in the computation. The estimated standard errors differ because of the different 
methods of computation. 

Because the error variance in Z is small relative to the total variation, the estimates 
obtained by the errors in variables techniques are close to those obtained by ordinary least 
squares. However, the test for model fit requires the computation of 'A or an equivalent 
statistic. 
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