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INTRODUCTION 

·:·4123 

Human schistosomiasis (or synonymously, bilharzia) is a family of diseases caused 
primarily by three species of the genus Schistosoma of flatworms. The adult worms 
inhabit the blood vessels lining either the bladder or intestine, depending on the 
species of worm. The worms are also known as blood flukes. 

The worldwide prevalence of schistosoma! infections has not been measured 
credibly. A figure conventionally cited is 200 million people, or one of every 20 
people on the planet. Except for imported cases, the disease is virtually unknown 
in the rich countries of the world. 

"There is little doubt that all three schistosomes can cause considerable patholog­
ical change, sometimes in a comparatively large proportion of the population, but 
the evidence suggests that only a proportion of those so affected die of the disease" 
(29, p. I 68). The absence of quantitative information from this assessment of the 
impact of the infection on health fairly reflects the information available. 

Jordan & Webbe (29) review human schistosomiasis. Malek (40) and Hairston 
(24) emphasize the ecological point of view. Warren & Newill (59) cite 10,286 
references. Some material here is drawn from Cohen (11) and Fine (18). 

After sketching the life cycle of Schistosoma mansoni, this chapter reviews mathe­
matical models of schistosomiasis. The bibliography of published works aspires to 
completeness through 1976. 

LIFE CYCLE OF SCHISTOSOMIASIS 

The life cycle of the three major human schistosome species (Figure 1) consists of 
an obligatory alternation of sexual and asexual generations. The sexual generation 
occurs in man (and sometimes other mammals). The asexual generation must pass 
through specific snails. The quantitative estimates in the following refer chiefly to 
S. mansoni. 
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Figure I The life cycle. [From (29), p. 7. Courtesy of the authors and Charles C Thomas, 
publisher.] 
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Eggs produced by the sexual stage leave people via urine (in the case of S. 
haematobium) or feces (S. mansoni and S. japonicum ). Eggs that reach water shed 
their shells and hatch a ciliated free-swimming stage called a miracidium. 

A miracidium that locates a snail within approximately one day penetrates it. If 
the snail is of the appropriate species and genotype, the miracidium multiplies 
asexually through two larval stages into thousands of cercariae. 

Each cercaria that escapes from the snail, starting 4-5 weeks after the initial 
infection (6 weeks in S. japonicum), lives approximately 2 days. It swims until it 
encounters a skin of suitable warmth and smell. When one of the human schistoso­
ma! cercariae enters human skin, it becomes a wormlike "schistosomule." 

A schistosomule of S. mansoni migrates to the lung, sometimes producing a 
cough, then appears in the portal system of the liver where it reaches sexual maturity 
and mates. Worm pairs then migrate to the blood vessels lining the lower small 
intestine and the large intestine. 

At this point the couple of worms resemble a hot dog in a roll. The female, 7-17 
mm long, lies in the gynecophoric canal of the male, who is 6-13 mm long and 
cylindrically shaped to correspond to the walls of their home, a blood vessel. The 
forward third of the female's body is devoted to the uterus, which contains one to 
two eggs at a time. The female is estimated to lay from 100 to 300 eggs a day. 

Some of these eggs work through the wall of the blood vessel into the lumen of 
the intestine. Carried by feces, these eggs again begin the life cycle. The interval from 
the entry of cercariae into human skin to the first detectable passage of eggs in the 
feces can vary from 4 weeks for S. japonicum to 5 or 6 weeks for S. mansoni and 
13 weeks for S. haematobium. 

Apart from an occasional aberrant worm that wanders into the wrong organ, such 
as the brain or eye, most of the disease caused by the infection results from the eggs 
that do not escape with feces. Some of these get stuck immediately in the tissue near 
where they are laid, causing fibrosis and granuloma as the host tries to protect itself. 
Other eggs get washed to the liver and spleen where they may cause similar damage. 

The medicines available to kill the schistosomes in people have so many danger­
ous side effects that they must be administered under medical supervision. They are 
costly. They do not protect a person in an endemic area against reinfection. Even 
if enough medical personnel were available to treat all the infected population in a 
single month, the snail (and sometimes nonhuman mammalian) reservoirs of infec­
tion would persist. The control or eradication of schistosomiasis is a truly ecological, 
as opposed to a purely medical or technological, problem. 

PROPORTION EVER INFECTED AS A FUNCTION OF AGE 

The mathematical models in this section and the next use cross-sectional data about 
a population presumed to be in steady state in order to make inferences about the 
dynamics of infection in a cohort. 

Suppose a cohort is entirely susceptible to infection at some initial time, usually 
taken to be birth. Suppose that this cohort is exposed to a constant force of infection 
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per unit time. "This force is to be measured in effective contacts per unit time, no 
matter how complex may be the events leading up to these contacts" (42, p. 16). 
The force of infection a summarizes the contact between cercariae and people and 
the establishment of a detectable infection. 

Let N be the number of individuals in the cohort. Let x(t) be the fraction of the 
cohort that has never been infected, andy( t) the fraction that has ever been infected, 
by time t. By definition x(t) + y(t) = 1. Assume x(O) = 1 and y(O) = 0. Then 
Nx(t) is the number of individuals never infected at time t. These individuals are 
constantly exposed to a force a of infection. So the change per unit time in the 
number Nx(t) of people never infected is d[Nx(t)]!dt = -aNx(t), or, cancelling 
N, assumed constant, dx/dt = -ax, x(O) = 1. Similarly, for the number ever 
infected, dy!dt = ax = a(1-y), y(O) = 0. The solution is 

y(t) = 1 - e-at. 1. 

Death or emigration will have no effect on the fraction y(t), so long as the loss 
rate (including death and emigration) is identical for both previously infected and 
never infected individuals (7). 

If past conditions were constant, and all previous infections were detected, then 
(22) a cross-sectional survey should give a graph of the fraction of people ever 
infected as a function of age that looks like equation 1. 

Figure 2 takes t = 0 as 5 years of age. Infections before that age are neglected. 
The data are the fractions of people in each age group judged ever to have been 
infected with schistosomes on the basis of a skin test. Particularly for the younger 
age groups, the fit of equation 1 to the data is reasonable. The discrepancy at the 
upper ages is explained as due to an insensitivity of the skin test to previous infection 
if the person has not recently been exposed to female cercariae or has no living 
female worms. 

The numerical value of the parameter a = 0.12 used in Figure 2 was not obtained 
by fitting that curve to those data. The parameter was estimated by fitting another 
equation (number 5 below) to different data, from stool examinations, on the same 
population. This finding suggests that an incredibly simple mathematical model can 
usefully interpret the age distribution of previous infection and provide information 
about the dynamics of infection which would otherwise be unavailable. 

PROPORTION CURRENTLY INFECTED 

Female S. mansoni worms in human beings live an average of 3-4 years; other 
species of human schistosomes are comparable (21, p. 52; 29, p. 152). A negative 
exponential distribution of length of life for female worms is widely assumed. A 
person in whom all female worms have died no longer discharges eggs. (A person 
may also no longer discharge eggs because tissue traps the eggs or because living 
females are unmated. We ignore these complications.) Hence some individuals 
previously infected may pass from currently discharging eggs to no longer doing so. 
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Figure 2 The proportions observed positive in response to S. japonicum antigen skin tests 
as a function of age in the coastal division, Palo, Philippines. Open circles, 1954; solid circles, 
1962. Solid line, prediction from equation I. [Adapted from (22), p. 172. Courtesy of Nelson 
G. Hairston and the World Health Organization.] 

Irreversible Loss of Infection 

Let us assume that a previously infected person who is no longer discharging eggs 
has no risk of reinfection. Let y(t) (not the same as in the previous section) be the 
proportion of a cohort which is currently giving evidence of infection by excreting 
eggs. Let z(t) be the proportion that has been previously infected, but is no longer 
passing eggs and has no risk of reinfection. As before, let x(t) be the proportion 
which has never been infected. Assuming no death or emigration, x(t) + y(t) + 
z(t) = 1. 

If the cohort is subject to a constant force of infection a, and those individuals 
currently giving evidence of infection are now further subject to a constant risk of 
loss of infection b, here assumed to be independent of the number of worms or worm 
pairs in the host, then under constant conditions the proportions x, y, and z are 
described (42) by: 

dx/dt =-ax, 

dyldt =+ax - by, 

dz/dt =+by, 

x(O) = 1, 

y(O) = 0, 

z(O) = 0. 

2. 

3. 

4. 

All individuals are uninfected initially. The sum of the derivatives is zero, as it must 
be since the cohort does not change size. Then: 

y(t) = a( e-bt-e-a')l( a-b), if a -;r. b; 

5. 

y(t) = atr', if a= b. 

If death and emigration occur at equal rates in all three fractions of the cohort, the 
same equations hold. 
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Figure 3 plots y(t) and the observed proportions with S. japonicum eggs in their 
feces by age in the same Philippine population pictured in Figure 2. Hairston (22) 
fits equation 5 by the method of moments (42). The annual rate b = 0.02 of 
becoming negative is not the annual death rate of individual female worms because 
(assuming the eggs are not blocked in the person's tissues) all the females in the 
person have to die, without replacement, for the person to stop passing eggs. Lewis 
(33) refits the same data by maximum likelihood, with similar results. 

The model's assumption that an individual's probability per unit time of losing 
infection is independent of the individual's age, immune status, duration of infec­
tion, and worm burden means that the effects of varying other ecological parameters 
cannot be calculated. A micro-theory which interprets the model's parameters 
would be useful. 

Snails too pass through the stages of being never infected, being infected and 
shedding (cercariae, instead of eggs), and (possibly) being no longer infected (53, 
55). 

Reversible Loss of Infection 

Reinfection of previously but no longer infected individuals is observed. At the 
opposite extreme from the assumption just made· that a loss of infection is irrevers­
ible is the assumption that a person no longer infected is exposed to a risk of infection 
identical to that of a person never previously infected. 

If, as in the previous model, it is assumed that the instantaneous rates of infection 
a and of loss of infection b are constant, then the model is identical to one widely 
used for malaria and other diseases (17). All else being constant, this model predicts 

100.----------------------, 

90 

80 

w 70 
~ 

::;; 60 
0 
(l_ 

t5 50 
..: 
1--

:::s 40 
<.> 

"' w 
"- 30 

10 

10 

10 15 10 15 30 35 
YEARS OF AGE 

45 55 

Figure 3 Observed age-specific prevalence rates (solid line) and theoretical age-specific preva­
lence rates (dashed line) from equation 5 of human infection with S. japonicum in the coastal 
division, Palo, Philippines, neglecting transmission before 5 years of age. [From (22), p. I 71. 
Courtesy of Nelson G. Hairston and the World Health Organization.] 
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a prevalence rate which increases monotonically to an asymptote, contrary to obser­
vation (Figure 3). The assumption of reversible loss of infection is retained in a 
modified form of this model used for economic evaluation (50, 51). 

The assumption of completely reversible loss of infection has appeared in models 
which view the number of worms in each human host as an immigration-death 
process (25, 34, 43-47). A risk of infection which is constant in time, or independent 
of age in a cohort, implies a monotonically increasing prevalence rate of humans 
who carry at least one mated pair of worms (26). Assuming that the risk of infection 
decays negative exponentially with increasing time (or age) to some positive lower 
asymptote predicts an age prevalence curve that fits observations of S. mansoni and 
S. haematobium reasonably and gives estimates of the life expectancy of the worms 
compatible with other findings. 

Neither completely irreversible nor completely reversible loss of infections seems 
likely. Intermediate possibilities are discussed in the section below on immunity. 

Differential Mortality Due to Infection 

For people, the increment, if it exists, in the probability of death at any age due to 
infecting schistosomes has never been measured credibly (8, 9). Snails shedding 
cercariae of S. mansoni show an increase in death rate compared with uninfected 
snails. 

If J.L is the mortality or emigration rate of individuals not currently shedding eggs 
(in the case of humans) or cercariae (snails), and J.L + E is the increased mortality 
or emigration rate of individuals currently shedding, then suppose, assuming irre­
versible loss of infection, 

(l!N)d(Nx)!dt =-ax- J.LX, 

(II N)d(Ny)!dt =+ax- by - (J.L + E)y, 

(1/ N)d(Nz)/dt = by- J.LZ. 

x(O) = 1, 

y(O) = 0, 

z(O) = 0. 

When E = 0, putting N(t) = N(O)e-P. 1 leads back to equation 5. 

6. 

7. 

8. 

If y(t) obtained from equations 6-8 is a better approximation to reality than 
equation 5, but a curve of the form of equation 5 is fitted to data in ignorance of 
E, then the resulting estimates of the parameters a and b may be biased (8). For 
humans, the differences are small among the age prevalence curves predicted by 
assuming that all the bias is absorbed either by a or by b, although the possible bias 
in the parameter estimates is not. For snails, even the possible bias in the parameter 
estimates is small (53). 

This example illustrates a sensitivity analysis which can profitably accompany the 
study of ecological models. The model with differential mortality is more realistic 
than the model without it because differential mortality does occur. The more 
complicated model is more complicated to study mathematically. It does not cause 
major alterations in how the age prevalence data are understood. Hence, for rough 
purposes, one can be more assured of the adequacy of equations 2-4; for finer 

_ purposes, one has a more refined tool, equations 6-8. 
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Latency 

The lag or latency of several weeks between the infection of a person with cercariae 
and the appearance of eggs in feces or excreta is short compared to the 1-5 year 
age groups used in collecting human prevalence data, and very short compared to 
the human life span. Hence the assumption of an instantaneous transition from 
uninfected status to detectably infected status may serve adequately for humans. 

With snails, however, the lag of 4--5 weeks exceeds the one week age grouping 
ordinarily used for age prevalence curves and is a substantial fraction of the snail 
life span. Nasell (45) distinguishes "exposed" snails infected by miracidia from those 
shedding cercariae, and derives the age prevalence curve of infective snails. Suscepti­
ble, exposed, infective (or shedding), and recovered (or no longer shedding) snails 
each have a characteristic death rate: 

dx/dt =-ax - ~J- 1 X, x(O) = 1, (susceptible); 9. 

du!dt = +ax -Au - !J-2U, u(O) = 0, (exposed but latent); 10. 

dy!dt = +Au - by - /-'-3Y· y(O) = 0, (infective, shedding); 11. 

dz!dt = +by - !J-4Z, z(O) = 0, . (no longer shedding). 12. 

The fraction of the cohort infected, y!(x + u + y + z), need not vanish with 
increasing time if the mortality IJ-4 of recovered individuals is large enough. 

This model implies that the distribution of the interval from successful infection 
of a snail by a miracidium to the first shedding of cercariae should be negative 
exponentially distributed, with the parameter A which appears in equations 10 and 
11. The mode of such a distribution is at intervals of length zero, contrary to 
observation. 

In a model which incorporates real latent periods between infection and infec­
tivity, Lee & Lewis (32) estimate the latent period in humans to be 2 months. In 
snails, the latent period is taken to vary from 5 months in the cool season to 1 month 
in the warm. The implied age prevalence distribution in humans or snails is not 
shown. 

Immunity 

In trying to explain why observed human age prevalence distributions of schis­
tosomiasis initially peak and then decline with increasing age, some medical author­
ities (3) emphasize the importance of human immunity. Others (58) emphasize 
declining human contact, for cultural and behavioral reasons, with cercariae-laden 
water. The fitting of models to age prevalence distributions cannot decide the 
relative importance of these two explanations. An immigration rate of worms to 
humans which declines with age may result either from immunity to new infections 
or from declining water contact (26). 

The same qualitative effect is obtained (33) by assuming a constant immigration 
rate and a temporary immunity following loss of infection in a modified two-stage 
catalytic model. The modified model yields a substantial and statistically significant 
improvement in fit to Hairston's (22) data on S. haematobium and S. mansoni, but 
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describes the S. japonicum data no better than equations 2--4. Let x(t) and y(t) be 
interpreted as in equations 2--4. Let z(t) be the proportion of a cohort that was 
previously infected, which now no longer shows patent infection, and which is now 
temporarily immune. Assume that immune individuals are subject to a constant risk 
c ofloss of immunity, after which they are as susceptible to reinfection as individuals 
never previously infected. Thus: 

dx/dt = +cz - ax, 

dy/dt = +ax - by, 

dz/dt = +by - CZ, 

x(O) = 1, 

y(O) = 0, 

z(O) = 0. 

13. 

14. 

15. 

For certain parameter values the proportion y(t) of infective individuals initial­
ly increases with age, peaks, and then decays exponentially to a positive limit 
ac/(ab + ac +be). For other parameter values, y(t) performs damped oscillations 
in approaching this limit. When c = 0, immunity is permanent and this model 
reverts to equations 2--4. 

Lewis (33) extends the model of equations 13-15 by recognizing that an individual 
never previously infected can shed eggs only if it has been infected by at least one 
male and at least one female worm. Male and female cercariae are assumed equally 
likely to enter a host never previously infected, in a Poisson stream with constant 
parameter. Assuming that worms of the opposite sex survive from a previous 
infection, previously infected individuals who have lost their immunity require 
infection only by one more cercaria in order to reestablish infectivity. In this model, 
permanent immunity can again be represented by taking c = 0. 

This model describes Hairston's (22) S. japonicum data better than equations 
13-15, primarily owing to the representation of sexual pairing of worms. 

Linhart's (37) predicted age prevalence curves have not been tested against obser­
vations, except where they coincide with the two-stage catalytic model. 

At each time t in Linhart's three models, every individual is either manifest 
(showing proof of current worms according to some test) or not. An individual not 
manifest at t but manifest before tis called cured at t. Every individual is also either 
immune or not immune at each tim.e t. Immunity is permanent, once achieved. An 
infection is defined as the attempted entry of cercariae into the individual. An 
infection is ineffective if the individual is immune at the time, effective otherwise. 

Infections arrive as a Poisson stream with parameter a. Let tl> t 2, • .. denote the 
times at which the first, second, ... infections occur. 

The first model assumes that an individual becomes manifest at t 1• The assump­
tion would be reasonable if the definition of "manifest" were based on a serological 
or other assay of the metabolic products of a single schistosomule (30). 

The model assumes that the individual becomes immune and cured at t 1 + c + 
b, where c is a nonnegative constant delay and b is a random variable with negative 
exponential distribution and parameter /3. The expected fraction manifest at time 
t in a cohort not subject to differential mortality or emigration, is 
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y(t) = I - e-at, t ~ c, 

16. 

= e-at(ea'-J) + a[e-/.l(t-c) _ e-a(t-<l]!(a-JJ), a,C./3, c ~ t. 

If c = 0, this equation becomes identical to equation 5 when the stochastic rates 
a and /3 are replaced by their corresponding deterministic equivalents a and b. 

The second model assumes that an individual becomes manifest at t 1 and immune 
to any further infections at t 1 + c, where c is a positive constant. Between t 1 and 
t 1 + c, further effective infections may occur. If the last of these occurs at tk> then 
the individual becomes cured at tk + d, where d ~cis a constant. Under these 
assumptions, 

y(t) = I - e-at, 

= 1 _ e-at_ (!!2)e-a<[ea<t-dJ _ e-a<t-dl], 

= e-at![ea(c+d) + e-a(c-d)j!2 - ll, 

O~t~d, 

d ~ t ~ c+d, 

c+d ~ t. 

17. 

The third model (37) assumes (again) that an individual becomes manifest at 
t 1• The individual becomes immune and cured when his "infection time" mounts 
up to a positive constant threshold w. If an individual has received k effective 
infections by t, then his infection time /(t) at tis /(t) = L:j=1 (t- t1), where t1 
is the time of the jth effective infection. Every infection is assumed to be effective 
as long as /(t) ~ w. The probability that an individual is manifest is just the 
probability that 0 < l(t) ~ w. Hence, for given t, if s is the integer satisfying 
st ~ w < (s+!)t, 

18. 

+[ L:k'=s+l akfk!] L:j=O [-!]i[w-jt]k![j!(k-j)!]j. 

Biological Aspects 
An important task in the modeling of schistosomiasis is to translate the burgeoning 
biological information about the immunology of schistosomiasis into mathemati­
cally explicit, empirically testable, and epidemiologically useful form. 

It would seem useful to develop, and to test against data, a model incorporating: 
(a) a risk of exposure to cercariae which is variable with age, season, and infection 
status; (b) sexual pairing of worms (see below); (c) true latency between infection 
and the first shedding of eggs; (d) a risk of loss of apparent infection dependent on 
worm load, age of worms (since older worms may lay fewer eggs), and age of host 
(since long-term pathology may interfere with the escape of eggs); (e) concomitant 
immunity, in which the host's response to established infections inhibits superinfec­
tion; (j) subsequent immunity, in which the host's response to previous infections 
inhibits reinfection; (g) a decay of immunity. Quantitative tests against varied age 
prevalence data and against direct observations of the component processes assumed 
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in the model might lead more rapidly than the present piecemeal approach to a focus 
on the features important for a control of prevalence. 

SNAIL POPULATION DYNAMICS 

The models considered so far are implicitly conditional on the in variance of the half 
of the schistosome life cycle which is not being modeled. For example, the studies 
of human prevalence assume the supply of cercariae from snails is steady in time. 

Food and Crowding 

Biomphalaria glabrata is the snail principally responsible for the transmission of 
S. mansoni in the New World. Jobin & Michelson (28) raised laboratory populations 
of these snails with varying amounts F of food (measured in grams of watercress), 
numbers N of snails (each 15 mm in diameter), and volumes V of water (4.5 and 
7.6 liters), at 25°C. For each such population they measured the fecundity (E) by 
the numbers of eggs laid per snail per day (Figure 4): 

E = kF!NV. 19. 

It is plausible that, over a certain range at least, fecundity should increase with food 
and decrease with the number of snails competing for that food. What is counterin­
tuitive about equation 19 is that a larger volume of water decreases fecundity. The 
reason is that in larger volumes of water the snails have a harder time finding the 
food. 

In very large volumes of water, such as lakes, which are not crowded with snails, 
the addition of one more snail has no effect on the fecundity of the other snails 
present. So Jobin & Michelson (28) assume that the inverse dependence on N in 
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Figure 4 Fecundity of Biomphalaria glabrata snails as a function of food F. number N of 
snails, and water volume V. [From (28), p. 659. Courtesy of E. H. Michelson and the World 
Health Organization.] 
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equation 19 disappears whenever the volume of water per snail exceeds some thresh­
old. 

Since, moreover, equation 19 predicts that snails in a vanishingly small volume 
of water have an infinite fecundity, equation 19 should be regarded as a linear 
approximation to a nonlinear function over the range of variables used in one set 
of experiments. 

In a simulation, the proportionality constant k becomes a function of the species 
and age of the snails, the nutritional value of food, and water temperature. Mortality 
is assumed to depend on demographic and ecological factors. The parameters are 
estimated from observations by another investigator of Bulinus globosus, a Rhode­
sian snail carrying S. haematobium. The predicted snail populations agree roughly 
with censuses. Sensitivity analysis with respect to both parameter values and the 
form of entire components of the model would be desirable. 

Infection and Age Structure 

Coutinho & Coutinho [(12); see (13) for errata] explain two generalizations from 
previous empirical work. The first generalization is that D = A!(B + p), where 
D is an index of the size of B. glabrata snails in a lake and p is the prevalence rate 
among those snails of infection with S. mansoni. A and B are constants. 

The explanation offered is that higher prevalence is associated with a higher force 
of mortality due to infection. A higher force of mortality results in a younger age 
structure in the population, or a smaller probability that any egg will survive to any 
given age. Since younger snails are smaller than older snails, a higher prevalence 
is associated with a smaller snail population. By suitable quantitative assumptions, 
D = A !(B + p) follows. 

The prevalence rates in the 12 lakes reported (12) vary from 0.6% to 8.3%. It 
would be desirable to represent the life table in these lakes as a mixture of two 
negative exponential life tables, one with low mortality for the uninfected majority 
and one with high mortality for the infected minority, rather than assuming a single 
negative exponential life table as at present. 

The explanation offered (12) overlooks the direct inhibitory effect (54) of being 
infected on snail growth. The inverse relation between snail size and prevalence of 
infection in different populations very probably results from the effect of infection 
on both snail growth and mortality. 

The second generalization is that "when the infection rate [prevalence rate p] was 
small, the snails, even though they attained a large size, were less abundant, whereas 
in sites of greater infection rate which caused smaller shell sizes the abundance per 
unit area was considerably higher." 

The explanation offered assumes that the quantity of food consumed by the snails 
per unit time and per unit area is constant, and therefore that the supportable 
biomass of snails is constant from one lake to another. When the mortality due to 
infection is small, a higher proportion of snails survives to older ages. Being bigger 
at older ages, those snails consume more food, leaving less for the many small snails. 
Hence the total number, or abundance, of snails is less than when mortality due to 
infection is large. 
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Direct evidence for the constancy of the food supply or the biomass density is not 
offered. If F is constant, and if the variation in V in equation 19 from one lake to 
another is negligible, then according to equation 19, the fecundity E is inversely 
proportional to the abundance N of individuals without regard to their size. Thus 
lower abundance N should be associated with a higher fecundity E which, all else 
being equal, should (by standard demographic arguments) be associated with a 
younger age structure, that is, typically smaller snails. Evidently not all else is equal, 
because the size index is larger where the snails are less abundant (12). It would be 
desirable in future work to reconcile the generalization, equation 19, from labora­
tory work, with the second generalization, based on field work. Measurement of 
N in terms of biomass, rather than numbers, might suffice. 

Coutinho & Coutinho (13) adduce a similar explanation for observations that the 
maximum diameter of snail shells in a uniform, swiftly flowing channel increases 
from the input to the outlet of the channel. Along the same axis the number of snails 
per unit of channel length decreases progressively. Subsequently, Coutinho & Cou­
tinho (14) study the age structure of a snail population resulting from a time­
varying, age-independent cause of mortality. 

Other Treatments 

Nasell & Hirsch (45-47) take the population of snails to be constant, either always 
or asymptotically. Lewis (34) models the snail population as a stochastic immigra­
tion-birth-death process. The linear birth and death rates for susceptible snails are 
not assumed to be the same as those for infected snails. These models are compo­
nents of life cycle models (below). 

SEX AMONG THE SCHISTOSOMES 

Only mated adult worms produce the eggs which are believed to be the primary 
cause of schistosoma) pathology when they do not escape from the human host (36), 
and which sustain the transmission cycle when they do escape. Mathematical mod­
els of mating quantify possibilities within the range of present ignorance. 

Monogamy 

Assuming monogamous pairing, if a person is infected with an even number n of 
worms, each of which is male or female with probability 1/2, then (38) the probabil­
ity that a given larva is matched by one of opposite sex, or the expected proportion 
of worms that are matched, is 1- n!l![(n/2)!]22"l = 1- 0.7979n-112• When n is odd, 
the probability that a larva is matched is the same as that for the preceding even 
number. This probability of matching is not necessarily identical to the probability 
of mating heterosexual pairs, because the members of each pair have to find each 
other in the dark, but Hairston (personal communication) knows of no record of 
mature worms of opposite sexes remaining unmated. 

Suppose (16, 20, 21, 37, 38) that the number of larvae per person is Poisson­
distributed with a mean, say, of m larvae. Then the proportion of larvae matched 
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by one of the opposite sex, averaged over all people, is IJ!(m) = I - e-m[J0(m) + 
1 1(m)], where In is the modified Bessel function of the first kind of order n (Figure 
5). Nasell (43) corrects Macdonald's formula 7 (38, p. 503) and obtains the simple 
expression for IJ!(m) just given. It is assumed that pairs are strictly monogamous 
and that a worm that dies is immediately replaced by another worm of the same 
sex. 

The expected proportion of people with at least one potential heterosexual pair 
of worms (the prevalence, as usually assayed) is (1 - e-m 12)2, again assuming 
monogamy and a Poisson distribution of larvae. This expression, due to Hairston 
(unpublished) and, independently, Nasell (43), simplifies a result of Macdonald's 
[(38), p. 504, equation 10]. 

Suppose (47) that the male and female worms are subject to identical independent 
processes of immigration and death, where the risk of death is constant for all age 
and sex classes of worms and hosts. At equilibrium in a life cycle model, the 
immigration rate of larvae becomes constant, over time and over people. If p is the 
ratio of the equilibrium immigration rate of worms of either sex per host to the 
constant rate of death per worm, then m = 2p and the average number of mated 
pairs of worms per person in the population is ( m /2)1Jl( m) "' m 2 I 4 as m ~ 0, 
and "' m/2 as m ~ 00• 

Tallis & Leyton (56) study this immigration-linear-death model as well as conta­
gious arrivals and age dependent deaths. 

Assuming equilibrium in the input of cercariae, suppose that male and female 
larvae enter a person according to independent identical Poisson processes with 
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Figure 5 The proportion 'll(m) of adult worms that can be paired monogamously with an 
adult worm of opposite sex as a function of the mean worm load m per host, under various 
assumptions about the distribution of worms. Heavy solid line: Poisson distribution; light solid 
lines: negative binomial distribution, with both sexes together; light broken lines: negative 
binomial distribution, with both sexes separate. The coefficient of variation increases from a 
to b to c. (Courtesy of Robert M. May.) 
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constant parameter, and that when a mated worm dies, its former partner does not 
remate (16). Under the same definition of p, the expected number of paired worms 
per host then approximates p2 as p ~ 0, but p/2 as p ~ 00• For large p or m the 
assumption that a mated worm does not remate after the death of its partner leads 
to half as many expected worm pairs as Macdonald's assumption. 

Diversity 

Apparently independently of Macdonald (38), Leyton (35) studies several possible 
modes of reproduction in helminthic infections. He relates the distribution of the 
number of worms laying eggs to the bivariate distribution of the numbers of sexually 
mature male and female worms, allowing the worm population's size distribution 
to be general. 

Assuming parthenogenesis, any female can lay eggs. The distribution of egg-layers 
is the marginal distribution of female worms. 

Assuming hermaphroditism, every worm can fertilize itself, though cross fertili­
zation can occur. The distribution of egg-layers is the distribution of the total 
number of worms. 

Assuming monogamous heterosexual mating, .and the remating of widowed 
worms [the case considered by (47)], Leyton (35, p. 418) finds the probability 
distribution of the number of egg-layers. He also (35, p. 419) writes out explicitly 
the distribution of egg-layers assuming a (bivariate) negative binomial distribution 
of worms per host. 

Leyton (35) also obtains the general distribution of egg-layers under the assump­
tion that each male can mate up to k females (and that only mated females lay eggs). 
If a single male renders every female present an egg-layer, the distribution of 
egg-layers is a simple function of the numbers of males and females. 

Overdispersion 

Almost certainly in real human populations the variance in the number of infecting 
worms significantly exceeds the mean (2, 15), even within particular age and sex 
groups. As analytically tractable approximations to the distribution of adult worms, 
there are two overdispersed extreme alternatives to a Poisson distribution of worms 
(4, 41). 

First, when worms of both sexes are distributed "together," assume that the total 
number n of worms in a human host is negative-binomially distributed and that each 
worm is equally likely to be male or female; that is, conditional on n, the number 
of male or female worms is binomially distributed with parameters n and 0.5. The 
negative binomial distribution may be parameterized in terms of its mean m (as for 
the Poisson distribution above) and an index k which is inversely related to overdis­
persion. When k is infinite, the negative binomial becomes the Poisson distribution; 
when k = 1, it becomes the geometric; and ask vanishes, the distribution becomes 
increasingly overdispersed. 

The second alternative to a Poisson distribution assumes worms of both sexes are 
distributed "separately": the number of males in a host is negative binomial with 
mean m/2, and similarly for the number of females, and males and females are 
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independent. The average number m of worms per host is therefore assumed to be 
the same, whether the males and females are distributed together or separately. 

Worms of both sexes are likely to be distributed together where people are 
exposed to infection from snails with a high prevalence of infection (4). If the 
prevalence of snail infection is low, however, a person is more likely to be exposed 
to cercariae of only one sex, and the model of separate infections may be more 
appropriate. 

The expected proportions of worms that are mated under the two assumptions 
differ from the Poisson expectations (Figure 5) in opposite directions. When both 
sexes are distributed together, the proportion mated always exceeds the proportion 
under the Poisson model. The difference is least when the mean worm load is high, 
which is when the assumption that the sexes are distributed together is most plausi­
ble. When the sexes are distributed separately, the proportion mated is always less 
than the proportion under the Poisson model. The difference is smallest at low worm 
loads where the model of independent distribution of the sexes is most plausible. 

Biological Aspects 

These studies point to several needs for addition~! biological information. 
Which of the several models of mating considered by Leyton (35) and others 

actually holds? Hairston reports (unpublished) that S. japonicum is certainly not 
monogamous. In animals experimentally infected with an excess of females, all the 
females become mated and carry the full complement of eggs in utero; the same 
appears to hold for S. mansom: 

The public health impact of the difference between monogamy of worm pairs (38, 
4 7) and faithfulness after death ( 16) depends on the causes of schistosoma! pathology. 
Pathology due to metabolic products or simply the presence of worms may be 
presumed proportional to the total number of worms [as in (37)]. If the pathology 
were primarily due to eggs laid, and if only currently mated females could lay eggs, 
then faithfulness after death would be important. If the pathology were primarily 
due to eggs laid, but any female once mated could continue to lay eggs, then the 
relevant variable, namely number of females ever mated, has not been investigated. 

Are the assumptions of Nasell & Hirsch (47) regarding the equality of male and 
female worm death rates close to true? Lewis (34) takes the death rate of worm pairs 
to be that of the female worms. Some evidence suggests this assumption may be 
preferable. 

Since a female worm must leave the male's gynecophoric canal to lay eggs in the 
person's small blood vessels, she is more exposed than the male to damage by the 
host's reactions and suffers a higher death rate (20, p. 51). Human autopsies consis­
tently show an excess of male worms at all levels of infection [(5, p. 45); his Table 
3] and in all human age groups [(5, p. 52); his Table 12]. There is no tendency for 
the fraction of worms that are female to change with host age, however. 

The death rate of worms may also be density dependent, rising due to crowding 
in people with a large number of worms. 

How overdispersed are adult schistosomes in human populations? Under what 
circumstances are the two sexes distributed jointly together or separately? If the 
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sexes are independently distributed at low average worm prevalence and together 
at high, then the sensitivity analysis of models of Bradley & May (4) offers assurance 
that deviations from a Poisson distribution are no cause for great concern. If the 
sexes are distributed otherwise, then it is important to know how before implement­
ing recommendations which presuppose a Poisson distribution of parasites. 

LIFE CYCLE MODELS 

Some models attempt to comprehend the entire schistosome life cycle (20, 21, 25, 
32, 34, 38, 43-47). 

A Life Table Model 

In Palo in the Philippines (20, 21 ), the proportion of people infected with S. japoni­
cum at each age changed very little from 1945 to 1959. Hence it is plausible that 
the per capita risk of infection also changed very little over that period. Barring large 
changes in the human population, the total worm population must have been 
stationary (constant in total numbers and age structure). The demographic model 
of a stationary population, a life table, therefore may describe the population of S. 
japonicum there. 

In this model, the net rate of reproduction NRR of the worm may be written as 
the product of four factors reflecting four major stages in the worm's life cycle. The 
worm's NRR is equal to the larval NRR in the snail, times the cercariae's probabil­
ity of infecting a mammal, times the adult worm's NRR in the mammal, times the 
egg's probability of infecting a snail. Each factor decomposes further. For example, 
the probability of an egg's infecting a snail is the product of the probability that an 
egg is able to hatch, times the probability that the egg is deposited near snails, times 
the probability of penetrating a snail, times the probability of establishing an infec­
tion in the snail after penetration (21). 

The estimate of S. japonicum 's NRR is 0.6. Based on less reliable data from Egypt, 
the estimate for S. mansoni is 1.9 and for S. haematobium is 2.8. If the model and 
observations were correct, these estimates should be I. That the estimates do not 
differ from I by orders of magnitude indicates the coherence of the observations and 
the approximate correctness of the model, under the given conditions. 

Still, some qualifications deserve note. First, the deviation of the worm's NRR 
from 1 which was necessary to maintain constant prevalence rates in the growing 
human population was probably much less than the uncertainty of the data. Second, 
the independence of the elementary events which make up the life cycle is so unlikely 
that Hairston (20, 21) avoids the assumption in practice by estimating from his data, 
not the elementary probabilities that appear as factors in some of his formulas, but 
clusters of these factors representing compound events. Third, since "the parasite 
population is able to come into equilibrium at different rates of transmission" in 
different ecological settings, "net reproduction in one or both of the hosts must be 
curtailed with increasing transmission and enhanced with decreasing transmission." 
Hence "there is a range of transmission rates over which compensatory mechanisms 
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operate to keep the parasite population in equilibrium" (21, pp. 46-47). This means 
that if an intervention program reduces one of the four factors that determine the 
worm's NRR, over at least some range, the product of the other factors will increase 
to keep the worm's NRR near I. Hairston (20, p. 52) estimates quantitatively the 
inhibiting effect of increasing the number of female worms of S. japonicum present 
in a person of specified age on the average daily number of eggs in feces per female 
worm. Similarly, in human autopsies, not based on a randomly sampled population, 
among so-called "asymptomatic" cases of S. mansoni, the mean number of eggs per 
gram of feces per worm pair may decline with increasing numbers of worm pairs 
[(5, p. 45); his Table 3, where worm pairs are defined as the lesser of the number 
of male and female worms recovered]. Animal experiments show that increasing 
parasite loads decrease reproductive output per parasite (31). 

As a result of such compensatory mechanisms (3), one cannot use Hairston's 
calculated values of the worm's NRR factors in a simpleminded way when evaluat­
ing a control program that affects the values of some of those factors. 

Hairston (21, p. 47) guesses that in schistosomiasis, "the most important cause 
of the failure of compensatory mechanisms at low transmission rates is the increas­
ing probability that single parasites which succeed in entering the definitive host 
[man] will remain unmated." 

Without belaboring the calculations, he explicitly [(20), his Figures 2, 3, 5] uses 
the chances of being mated, as well as the effects of crowding of worms within the 
human host, in estimating the mean number of hatchable female eggs per female 
worm per day as a function of mean worm load and in estimating the NRR of female 
worms in humans as a function of mean worm acquisition rate. 

These calculations were overlooked by Macdonald (38) who cited Hairston's (20) 
paper. Macdonald is generally, but inaccurately, credited with introducing the role 
of pair formation in schistosome models. 

Dynamic Models 

Dynamic models aim to describe what will happen when the life cycle is perturbed. 
To represent the compensatory mechanisms which regulate population numbers 
they must be nonlinear. One such model (38) emphasizes the nonlinearity intro­
duced by supposed monogamous· mating in the sexual stage of the worms, and 
borrows other nonlinear bits from existing models of malaria. Numerical analysis 
of this model suggests the existence of a threshold in m, the mean worm load in 
people. Once m is below this threshold, transmission of infection disappears in a 
few years; once above it, infection remains endemic indefinitely. 

Macdonald (38, p. 500) claims that a very high level of environmental sanitation, 
meaning a great reduction in the number of eggs reaching water, has a negligible 
effect on the mean worm load compared to the combined effects of treating infected 
people and keeping them out of infected water. This conclusion results from Mac­
donald's implicit assumption, not generally true, that the water in which snails live 
is saturated with miracidia and that nearly all snails are infected [(23) and N. G. 
Hairston, unpublished]. 
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Hybrid Dynamic Models 

Nasell & Hirsch (47) assume a fixed number N 1 of humans and fixed number N2 
of snails. The state of the model is specified by the number Mk (t) of male and the 
number Fk(t) of female worms at timet in each person, k = 1, 2, ... N 1, and by 
the number S(t) of infected snails. 

Individual people may differ in the number of worms they carry initially, but are 
otherwise subject to identical Markovian laws. Each worm in a person has a fixed 
probability intensity I-Ll per unit time of dying, identical to and independent of all 
other worms. (This I-Ll is not the same as in equation 9 above.) New worms enter 
a person at a rate v1E[S(t)], which is proportional to the expected number of 
infected snails at that time. Nasell's use here of the expected, rather than actual, 
number of infected snails makes this model a hybrid of stochastic and deterministic 
elements. 

Every infected snail has an identical and constant death rate !J-2; every snail that 
dies is replaced instantaneously by an uninfected snail. Each uninfected snail risks 
infection at a rate which is proportional to the expected number of mated worm 
pairs in all the human hosts put together, with proportionality constant v2• 

The model explicitly (47, p. 401) ignores the possible influence of human age and 
sex on human infection rates; the effect of worm and snail age and population 
density on worm and snail death rates, respectively; the effect of age on egg-laying 
by female worms and on cercaria) shedding by snails; as well as the development 
of resistance to infection and of latent periods. 

In a closed community, with no infection from without, let W(t) be the expected 
number of worms invading an individual person since time 0 and still alive at t, let 
X(t) be the expected number of monogamously mated worm pairs in all people 
added together, and let Y(t) = E[S(t)] be the expected number of infected snails 
at time t. Then 

dW/dt = -M- 1 W + v1Y, 
20. 

Since X(t) is a complicated but explicit function of W(t) and oft, X(t) may be 
eliminated to give a pair of differential equations in Wand Y To study the asym­
ptotic behavior of the solution(s) of these equations, introduce two "transmission 
factors" T 1 = v1N 21)-L 1 and T2 = V2N 1/J-L 2• T 1 measures the maximum ability of 
the snail population to deliver live schistosomes to a person, because it is the product 
of the ability v1/J-L 1 of the one infected snail to deliver schistosomes times the 
maximum number N2 of infected snails. T2 measures the ability of the human 
population to deliver live miracidia to an uninfected snail. 

Asymptotically equations 20 have one, two, or three critical points (points where 
the derivatives are zero), depending on a relation between the transmission factors. 
A human population will ultimately move to a level of infection corresponding to 
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one of these critical points. If the human population initially has a nonzero worm 
load, and if the transmission factors lie above a certain threshold function, then the 
critical point reached asymptotically depends on that initial level of infection. 

Control of infection is a practical problem only when, in addition to the stable 
critical point corresponding to the elimination of infection, there are two critical 
points with positive levels of infection in people and snails. One of these points is 
stable, the other not. Nasell (46) considers the possibility of controlling the initial 
conditions of infection in the human and snail populations. Nasell & Hirsch (47, pp. 
444 ff.) study changes in the transmission factors. 

If costs to diminish a transmission factor are proportional only to the percentage 
reduction obtained, but are otherwise the same for both transmission factors, then 
a strategy of reducing T1 is more efficient than a strategy of reducing T2. This 
conclusion has been interpreted as supporting Macdonald's (38) claim that control 
of human feces by sanitation is a worse strategy than snail control. The applicability 
of the conclusion depends on the parameter values and costs which must be evalu­
ated in each application (see below). 

Nasell observes (unpublished) that if Hairston's condition for stationarity is 
translated into the notation of his model it becqmes T 1Tz''J!(m) (I- Yoo!N2) = 
2m. This equation specifies a relation which must hold between the mean worm 
load m in people and the expected prevalence rate of infection among snails 
Yool N 2 at equilibrium in Nasell's model. 

The introduction oflatency in snails ( 45) does not alter the qualitative conclusions 
drawn from the model. 

Nasell (44) extends the model (47) by assuming that a source of infection external 
to the community adds to the infection rate per uninfected snail a constant E2 and 
adds to the rates of infection of people by male and by female cercariae each a 
constant E 1/2. Let 61 = E 1/(v 1N 2) be the increase in the proportion of infected 
snails that would be equivalent in the effect on people to the external source of 
cercariae. Let 62 = E2/(v2N 1) be the increase in the mean number of paired female 
worms per person that would be equivalent in the effect on snails to the external 
source of miracidia or eggs. T1 remains a more efficient control of mean worm load 
m than T2, assuming equal costs for equal proportional reductions. Further, T2 is 
a more efficient control than 62, which measures the external input of miracidia or 
eggs. The transmission factor T1 is similarly a more efficient control than 61• 

The asymptotic mean worm load m in humans as a function of the transmission 
capacity T2 of eggs from people to snails is shown in Figure 6. Each curve corre­
sponds to a different input 62 of eggs. All the curves correspond to the same 
transmission capacity T1 of cercariae from snails to people and the same external 
input 61 of cercariae. For the largest value 62.m of external input of eggs (the 
uppermost curve), the only way to reduce m is to lower T 2 (all else held constant), 
and m varies smoothly as T2 varies. 

For external egg inputs such as 62,1 and 62,11 which are smaller than a certain 
threshold, the initial levels of infection in people and snails determine whether m 
will fall on the lower curve or on the upper curve. If m falls on an upper curve, 
then one dramatic possibility of control is to shift the initial conditions by coordi-
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0 < 82, 1 < 82, rr < threshold < 82 , m 
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Figure 6 Asymptotic or equilibrium mean worm load m in humans as a function of the 
transmission capacity T2 of eggs from people to snails, for various external egg inputs lh and 
fixed cercaria! transmission capacity and fixed external input of cercariae. [Adapted from (44). 
Courtesy of Ingemar Nasell.] 

nated programs of human case finding and treatment so that m falls on the lower 
line. (When there is no external infection, the lower line is just the abscissa where 
m = 0.) This possibility leaves the community vulnerable to being transferred back 
to a higher value of m if an uncontrolled influx of infection effectively reverses the 
change in initial conditions. This possible mode of control arises discontinuously as 
a function of T2 and of 8z· 

The curves shift if the parasites are overdispersed rather than Poisson-distributed 
(4). When worms of both sexes are distributed together, the discontinuities are 
decreased and the disease becomes harder to control. When worms of each sex are 
distributed separately, the discontinuities are emphasized, the possibilities of push­
ing initial conditions below a breakpoint or threshold are enhanced, and the disease 
becomes easier to control. 

Now suppose (34) the human population varies as an immigration-death process, 
and immigrants are free from infection. Only worm pairs die (at the presumed death 
rate of females), instead of individuals independently. Instead of having a fixed 
number N 2 of snails, susceptible snails may immigrate; and both susceptible and 
infected snails may die and give birth at specific rates. The qualitative behavior of 
this more realistic hybrid model closely resembles that of the model of Nasell & 
Hirsch (47). 

For one set of parameters, Lewis (34) compares the solution of his hybrid model 
with the average of ten numerically computed solutions of a fully stochastic model 
that is identical except for the hybrid simplifications. Since hybrid and stochastic 
solutions are very close, the hybrid approximations, introduced for mathematical 
convenience, are quantitatively useful in the range of parameters examined. See 
(34a) for threshold results. 
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A Delay Time Model 

A deterministic model of Lee & Lewis (32), like that of (21), represents the human 
and snail populations implicitly through their effects on various stages of the para­
site life cycle. All relationships are linear (e.g. eggs produced are directly propor­
tional to the number of mated worm pairs) except for two: Only monogamously 
mated females are assumed fertile, following (38); and the proportion of miracidia 
that find snail hosts is assumed to decline nonlinearly with increasing numbers of 
miracidia per unit volume of water. 

Time lags between the infection of snails and the emergence of cercariae, and 
between the infection of humans and the emergence of eggs, and the two nonlineari­
ties, give the model a breakpoint, which varies seasonally because of the seasonality 
in the snail latent period. The relative timing of chemotherapy and the application 
of molluscicide is crucial in determining whether a combined attack using both can 
eventually eliminate infection. 

Caveat Lector 

Some models (19, 52; see 57) contain so many internal inconsistencies that they 
should be perused with extreme caution, if at a!( 

DECISION MAKING AND ECONOMICS 

Sound ecological models of schistosomiasis are a necessary, but not a sufficient, 
condition for sound public decision making concerning the disease. Many of the 
models described so far compare strategies for control or eradication. Without 
reference to the social and economic costs and benefits of these strategies, these 
comparisons provide no guide for action. Because models which evaluate costs and 
benefits in relation to schistosomiasis go beyond the scope of ecology, we cite such 
efforts only briefly. 

Using economic and demographic models and data from St. Lucia, a Caribbean 
island, Weisbrod eta! (60) ask: Does infection cause disease? They find it impossible 
to evaluate the impact of S. mansoni on birth and death rates, the achievement of 
school children, and the labor productivity of adults without considering four 
intestinal nematodes of man which are also very widespread there. 

Rosenfield (50, 51) evaluates the cost effectiveness of molluscicide use, environ­
mental alterations, and chemotherapy, singly and in combination, using detailed 
data from a S. haematobium control project in Iran. Muench's (42) reversible 
catalytic model is modified to a discrete-time difference equation. The force of 
infection is estimated by regression as a Cobb-Douglas function of two variables: the 
meters of snail habitats accessible to the human population, and the number of 
infected persons. The combined strategy actually used yields a lower prevalence at 
the end of the project than would any of the three strategies used singly, within the 
same budgetary constraints. 

Other quantitative approaches to evaluating the economic and demographic 
effects and costs of controlling schistosomiasis are available (1, 9, 10, 27, 39, 48, 49). 
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Though sound ecological understanding makes the task easier, a nation's ability to 
rid itself of schistosomiasis ultimately reflects social and political will (6). 
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