Conference on Spatial Processes
Newcastle upon Tyne, 20-21 May 1974

Conference on Stochastic Models in Space and Time
Edinburgh, 19-20 December 1974

Reprinted from the
ADVANCES IN APPLIED PROBABILITY
Vol. 7, No. 3, pp. 449-467
September 1975
JOEL E. COHEN, Kings College Research Centre, Cambridge

This paper (Cohen (1975)) establishes a new class of ergodicity theorems for the age structure of populations, and proposes applications.

Let $S = \{A_1, A_2, \cdots\}$ be a denumerable set of Leslie matrices A_i satisfying the assumptions of the Coale-Lopez theorem of weak ergodicity for populations, and let $m(0)$, $n(0)$ be any two initial population age structures (column vectors) satisfying the assumptions of the Coale-Lopez theorem. Suppose $m(t)$ is the population age structure obtained at time t by premultiplying $m(0)$ sequentially by t elements of S, A_1, \cdots, where the sequence of matrices following A_1 is determined by a homogeneous irreducible aperiodic positive recurrent geometrically convergent Markov chain on the state space S; and suppose that $n(t)$ is independently determined by the same Markov chain in the same way, starting from A_2. Then (strong stochastic ergodicity) all moments of the two random variables $m_i(t)/m_i(t)$ and $n_i(t)$ and $n_i(t)/n_i(t)$ converge and they converge in distribution as $t \to \infty$. The same conclusion holds if (weak stochastic ergodicity) the Markov chain is finite and weakly ergodic (in the sense of Hajnal), but not necessarily homogeneous.