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Abstract-Based on parish registers, demographic histories of Crulai (France), 
Tourouvre-au-Perche (France), and Geneva (Switzerland) established 
the childhood mortality experienced by complete sibships during periods 
of at least half a century before the French revolution. These observations 
may be presented as frequencies in incomplete five-dimensional con­
tingency tables. The five dimensions are: survival (living or dead), 
completed sibship size, birth order, type of family (according to com­
pleteness of information about family), and epoch (period in which 
the family lived). 

This paper reanalyzes these published data, using hierarchical log-linear 
models to discern which interactions among the five variables can justifi­
ably be inferred from the data. The neonatal and infant mortality rates 
of firstborn are probably higher than those of later sibs (in Crulai 
and Tourouvre). But mortality by age 20 (in Geneva) is associated 
strongly with the epoch, type of family, and family size, and not sig­
nificantly with birth order. The increase in mortality with completed 
family size is insufficient to select, in an evolutionary sense, for limited 
family size. 

1. INTRODUCTION 

This paper reanalyzes published data 
which describe the survival or the fail­
ure to survive to given ages of children 
in human families in Europe between 
1550 and 1900. The purpose is to put 
inferences from the data about the rela­
tions among completed family size, birth 
order, childhood mortality, and parental 
cohort mortality on a more explicit sta­
tistical footing. The analysis is also 
intended to illustrate the power of log­
linear models of incomplete multidimen­
sional contingency tables and to empha­
size with concrete examples needs for 
further theoretical development. 

Many studies relating birth order to 
other variables are reviewed by Altus 
(1966) and Kammeyer (1967). Method­
ological problems are discussed by Mac-
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Mahon, Pugh, and Ipsen (1960), Mantel 
and Halperin (1963), Barker and Rec­
ord (1967), Haldane and Smith (1947), 
James (1969), and Veevers (1973). 

Eighteenth-century data from En­
gland (McKeown and Brown, 1955, p. 
133) demonstrate an apparent decrease 
in survival with increasing birth order. 
But completed sibship sizes were not 
included in the original observations, so 
either birth order or completed sibship 
size may control mortality. 

In modern Birmingham, England 
(Gibson and McKeown, 1952), children 
of birth orders 4 and later suffered more 
than twice the infant mortality of first­
born. Since this study included all and 
only births occurring in 1947, completed 
sibship size could not be considered. 

The need to observe completed sibship 



36 DEMOGRAPHY, volume 12, number 1, February 1975 

size in testing for the effect of birth order 
is clear from an example (Magaud and 
Henry, 1968): Suppose that, within a 
family of a given final size, survival is 
identical for all birth orders, but that 
the larger the family, the lower the sur­
vival. Then if individuals are sampled 
at random, there will be an apparent 
inverse relation between birth order and 
survival only because higher propor­
tions of the later birth orders will come 
from larger families. 

Magaud and Henry (1968, p. 890) cite 
a 1906 study of Statistique General de la 
France which found this hypothetical 
possibility to be real: "While they were 
living without either brothers or sisters, 
the firstborn incurred risks of death de­
pendent on the final future size of the 
family." Magaud and Henry conclude 
that there is no influence of birth order 
on infant mortality. But they use no sta­
tistical tests for the randomness of the 
observed fluctuations in death rates by 
birth order. 

Section 2 of this paper describes the 
sources and characteristics of the data 
used. Section 3 reviews briefly the 
method and models used. Section 4 pre­
sents the results of applying the methods 
of section 3 to the data described in 
section 2. Section 5 summarizes the con­
clusions drawn from the data in a way 
that is intended to be comprehensible in 
the absence of sections 3 and 4 and 
compares these conclusions with those 
drawn by the original authors of the 
data. An Appendix provides methodo­
logical details. 

2. THE DATA 

Procedures for reconstructing demo­
graphic histories of local European pop­

. ulations are described by Fleury and 
Henry (1965) and Henry (1970). 

A family is defined as initiated by the 
marriage of a couple and terminated by 
the death of one spouse, separation, or 
disappearance from observation of the 
couple. If the family terminates after 

the wife reaches age 45, hence after the 
(presumptive) end of her childbearing 
years, the family is termed "complete." 
If the family terminates before the wife 
reaches age 45 because of the death of 
one of the partners, separation, or di­
vorce, the family is termed "incom­
plete." If the family is not known to 
belong to one or another of these cate­
gories, it is called "other." 

Gautier and Henry (1958) study mar­
riages in Crulai in Normandy (France). 
For marriages between 1688 and 1742 
whose children did not disappear from 
observation before they reached one year 
of age, they report the numbers living or 
dead (hereafter to be referred to as 
variable 1), according to the total num­
ber of children born into the family, or 
family size (hereafter variable 2), and 
according to the birth order (hereafter 
variable 3) of each child. They pool 
complete, incomplete, and other families. 
For consistency of format with the data 
reported for Geneva (to be described 
below), in families of three or more chil­
dren, I collapse all the intermediate 
categories of birth order into one cate­
gory called "middle." Hence the three 
categories of birth order are first, middle, 
and last for families of size three or 
more. For families of size two, there are 
no observations of middle births. For 
families of size one, there are observa­
tions of first births only. 

The numbers of children who survived 
or died by one month are reported along 
with the corresponding numbers for the 
same families for one year. In the fol­
lowing analysis I treat these survivorship 
figures separately as two sets of data: 
"Crulai 1 month" and "Crulai 1 year." 

Charbonneau (1970) reconstitutes the 
families formed by marriages between 
1670 and 1769 in Tourouvre-au-Perche 
(France). Again, I collapse the catego­
ries of birth order into first, middle, and 
last. Each observation is classified by 
type of family (variable 4) as complete 
or not complete. The data on survivor-
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ship to one month and to one year are 
here treated separately as the data sets 
"Tourouvre 1 month" and "Tourouvre 1 
year." 

Henry (1956) studies marriages 
among the bourgeoisie (the hereditary 
ruling class) of Geneva, from approxi­
mately 1550 to 1899. He reports the sur­
vival to age 20 (variable 1) of children 
by size of family (variable 2) and the 
three categories of birth order (variable 
3) according to whether the families 
were complete, incomplete, or other 
(variable 4) and according to which 
of seven half centuries (variable 5) the 
father of the family was born in. Since 
Henry (1956) uses only three categories 
for birth order (first, intermediate, and 
last) in Geneva, there is no choice but 
to use that or an even grosser classi­
fication. 

Table 1 summarizes the characteris­
tics of the data. The sources of the data 
analyzed here do not tabulate survival 
by sex of the child. Hence it is impossi­
ble to learn from these data whether the 
secular decline in childhood mortality 
affects the sexes differently. 
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3. METHODS AND MODELS 

One approach to the data considers 
survival as a dependent variable (or an 
effect or response variable). A second 
approach considers all variables other 
than chronological time as possibly. in­
teracting dependent or response vari­
ables. 

Under the first approach, only the 
interaction between survival and the re­
maining variables, singly or jointly, is 
examined. This approach assumes that 
the variables other than survival may 
affect survival, but not conversely. 

The second, scientifically more con­
servative approach seeks a minimal 
model to describe the data. This ap­
proach assumes that only time is a truly 
independent variable. The interactions 
among the remaining variables are of 
interest. 

In the following analyses, the second 
approach is used first for all five sets 
of data. Then survival is treated as a 
response variable in the four sets of data 
(Geneva excluded) and in an incomplete 
way for the Genevan data. With these 
data, these two approaches yield no dif-

TABLE I.-Characteristics of the Data 

Crulai Tourouvre-au-Perche Geneva 

Variable Variable Number Number Number 
Number Name Cells Range Cells Range Cells Range 

(i) (ci) (ci) (ci) 

1 Survival 2 living/dead 2 living/dead 2 living/dead 

2 Family size 13 1,2, ••• ,13 15 4,5, ••• ,18 ll 2,3, ••• ,ll,?.l2 

3 Birth order 3 first/inter- 3 first/inter- 3 first/inter-
mediate/last mediate/last mediate/last 

4 Type of family 1 complete and complete/other 3 complete/incom-
other plete/other 

5 )\poch 1 marriages from 1 marriages from half-century of 
1688 to 1742 1670 to 1769 father's birth: 

before 1600 to 
1850-1899 

Total cells 78 180 1,386 

Total logical zeros 6 0 42 

Total families 287 351 561 

Note: Family size is the number of live-born siblings. Both family size and birth order omit 
fetal losses and stillbirths. In the original data from Crulai and Tourouvre-au-Perche, 
but not Geneva, survival is reported for each birth order separately. 

Sources: For Crulai, Gautier and Henry, 1958, p. 269; for Tourouvre-au-Perche, Charbonneau, 
1970, pp. 409-413; for Geneva, Henry, 1956, pp. 216-217. 



38 DEMOGRAPHY, volume 12, number 1, February 1975 

ferences in substantive conclusions, and 
such small quantitative differences in 
the measures of the association of sur­
vival with other variables, that it is 
judged not worth completing the treat­
ment of survival as a response variable 
for the Genevan data. 

If survival were assumed to be a re­
sponse variable, then the continuously 
variable infant mortality rates could be 
approached by analysis of variance. But 
the assumed independent normal distri­
bution of errors in the response variable 
seems sufficiently implausible for the 
present data to exclude analysis of vari­
ance or, equivalently, regression analysis 
on first approach. 

This paper organizes the data into a 
multidimensional contingency table. A 
multidimensional contingency table is a 
generalization of an ordinary two-way 
contingency table with rows and col­
umns. In the cells of a two-way table 
are counts of frequencies of occurrence. 
For example, a two-way table might 
be formed from one of the present sets 
of data by considering only variable 1 
(survival) and variable 2 (family size). 
If the first row of such a table showed 
the number of children living after one 
month and the second showed the num­
ber dead while each column were identi­
fied with a given size of family, such a 
table would be appropriate for studying 
the possible interaction between family 
size and mortality. 

Now suppose that the data in this 
two-dimensional contingency table were 
subdivided into a set of two-dimensional 
tables according to the birth order (vari­
able 3) of the children within the fami­
lies. For example, one two-way table 
would show the relation between sur­
vival and family size among firstborn 

-children; another table, among children 
oi middle birth order; and a third, 
among last-born children., (Since there 
are no children of middle birth order in 
families of size two, the two-way table 

for middle birth order would contain 
"logical zeros" for the numbers of sur­
viving and of dead children in families 
of size two.) The resulting set of three 
two-way contingency tables is called a 
three-dimensional contingency table. 

If this three-dimensional table were 
then subdivided into two or more three­
dimensional tables according to the com­
pleteness of information about the fam­
ily (variable 4), the resulting set of 
three'-dimensional tables could be viewed 
as a four-dimensional table; and this in 
turn could be refined by the epoch of 
observation (variable 5) to give a set of 
four-dimensional tables or a single five­
dimensional table. 

The two-way table has two margins: 
one, the list of row sums, and two, the 
list of column sums. In the present ex­
ample, the row sums show the number 
of children who lived and the number 
who died, irrespective of family size. 
The shorthand which will be used for 
this margin is [ 1], because the margin 
describes the frequency distribution of 
variable I. Similarly, [2] is the list of 
column sums showing the frequency dis­
tribution of live births by family size. 

From the perspective of the five­
dimensional table, the two-way table of 
survival versus family size is also a 
margin. This margin shows thejoint fre­
quency distribution of variables 1 and 
2, irrespective of the remaining vari­
ables. It will be denoted by [ 1, 2]. For 
the Genevan data, this margin appears 
in Table 8. 

The models used in this paper to gen­
erate expectations with which the ob­
served data may be compared are called 
hierarchical log-linear models. These 
models generalize the model of inde­
pendence in a two-way (two-dimen­
sional) table. That model of indepen­
dence sa-ys that the relative frequencies 
(or probabilities) of the cells in the joint 
distribution of variables 1 and 2 should 
be the product of the relative frequen-
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cies in the corresponding rows and col­
umns of the margins. The shorthand 
which will be used for such a model is 
[1] [2] because the margin [1] is as­
sumed to interact multiplicatively with 
the margin [2]. If the observed frequen­
cies agree reasonably well (by some sta­
tistical criterion) with the expected fre­
quencies of this model,. then there are 
no statistical grounds for assuming that 
variables 1 and 2 interact. Evidence of 
interaction between or among variables 
is obtained by showing that observations 
fail to fit well the predictions of a model 
which assumes no such interactions. 

Log-linear models assume that the rel­
ative frequencies in the joint distribution 
should be the product of relative fre­
quencies fixed by margins of the table. 
The margins which are included in a 
model specify the interactions among 
variables which the model assumes to 
operate, but not a direction of causation 
(Goodman, 1972). 

Every model with a reasonable chance 
of fitting any of the sets of data in this 
paper includes the margin [2, 3], which 
describes the joint distribution of family 
size and birth order. The reason is that, 
because of the way birth orders have 
been defined, the distribution of children 
in a family among the birth orders 
(variable 3) is a function of family size 
(variable 2). Families of size n have 
n - 2 children of middle rank. 

By way of illustration, the model [1, 
2] [2, 3] assumes interaction between 
survival and family size, on the one 
hand, and between family size and birth 
order, on the order, but independence 
(multiplicative interaction) between this 
pair of joint distributions. The model 
may also be described as assuming the 
conditional independence of survival 

- (variable 1) and birth order (variable 
3), given family size (variable 2). If 
variable 1 is generalized from "living 
or dead" to "affected with a disease or 
not affected," this model is the null hy-
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pothesis of the method of Greenwood 
and Yule (1914). 

Technical details are discussed in the 
Appendix. 

4. REsULTS oF CoMPUTATIONS 

The data from Crulai 1 month, Crulai 
1 year, Tourouvre-au-Perche 1 month, 
Tourouvre-au-Perche 1 year, and Ge­
neva will be reviewed in the order just 
listed. 

Below the models in Table 2 are com­
parisons of models. For example, the 
comparison 1 - 2 (read "model 1 minus 
model 2") shows that, in return for giv­
ing up 14 degrees of freedom, G2 is re­
duced by 13.115, a nonsignificant reduc­
tion. Nothing is gained by assuming that 
survival interacts with family size in the 
data from Crulai on survival to one 
month. 

Forward selection (see Appendix) 
leads from model 1 to the model with 
only one additional margin which makes 
the greatest improvement in goodness 
of fit (model 3, which assumes inter­
action between survival and birth or­
der). Further addition of the remaining 
possible margin (model 4) does not im­
prove the fit significantly. 

Goodman's (1971) backward elimina­
tion and Fienberg's (1970) procedure 
(see Appendix) start from model 4 and 
eliminate that margin which causes the 
least (and a nonsignificant) worsening 
of goodness of fit. The result of deleting 
margin [1, 2] from model 4 is model 3. 
Further elimination of either margin 
leads to a significant worsening of good­
ness of fit (at the five percent level). 
Hence backward elimination also rests 
at model 3. 

A probability has been assigned to 
each model or comparison of models. 
Although this probability is intended to 
represent the chance that a value of G2 

greater than that observed would occur 
by sampling fluctuation alone, the prob­
ability assigned may be larger than the 
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TABLE 2.-Fits and Comparisons of Log-Linear Models: Crulai 1 Month and Crulai 1 Year 

Model or Comparison lc
2

1 df z p 

Models: 1 month 
1 [1] [2,3] 49.604 35 1.65 p ~ .05 
2 [1,2] [2,3] 36.489 21 O.Ol<P<.025 
3 [1,3] [2,3] 37.905 33 0.64 p - .26 
4 [1,2] [1,3] [2,3] 22.398 19 .25<P<.50 

Comparison 
1-2 Survival x family size 13.115 14 .25<P<.50 
1-3 Survival x birth order 11.699 2 p < .005 
2-4 Survival x birth order 14.091 2 p < .005 
3-4 Survival x family size 15.507 14 ,25<P<.50 

Models: 1 year 
5 [1] [2,3] 39.658 35 0.60 p- .27 
6 [1,2] [2,3] 29.022 23 .10<P<.25 
7 [1,3] [2,3] 32.283 33 -0.27 p - .61 
8 [1,2] [1,3] [2,3] 17.632 21 .50<P<.75 

Comparisons 
5-6 Survival x family size 10.636 12 .50<P<.75 
5-7 Survival x birth order 7.375 2 .025<P<.05 
6-8 Survival x birth order 11.390 2 p < .005 
7-8 Survival x fami~y size 14.651 12 .25<P<.50 

Note: In this and all later tables where the following symbols appear, 
c2 • log likelihood ratio; 
z • standardized normal transformation of G; and 
P • nominal probability that a worse fit between the model and data would have 

occurred by chance (using a one-tailed test) assuming the model were true. 
Source: The data used in the calculation of this table were obtained from Gautier and 

Henry, 1958. 

true probability because of a positive 
correlation in mortaHty among members 
of a sibship, such as Adlakha (1970, 
p. 87) demonstrated in modem Turkey 
(see Appendix). 

1f in Table 2 a nominal one percent 
significance level had been chosen be­
cause simplicity of the model were con­
sidered more important, then model 1 
might be preferred. 

Table 3 shows survival according to 
birth order along with the maximum 
likelihood estimates of 1112q0, the prob­
ability that a newborn child will be dead 
within one month, by birth order. The 
firstborn child has nearly twice the prob­
ability of dying of the middle or last 
born. 

The data from Crulai on survival to 
one year are qualitatively very similar. 
All models considered in Table 2 fit the 

data acceptably at the five percent level. 
Model 7, which allows for interaction 
between birth order and survival, is the 
choice of forward selection and back­
ward elimination. 

The margin which describes birth 
order and survival appears in Table 3, 
along with 1q0, the probability that a 
newborn infant will be dead within one 
year, by birth order. Firstborn children 
had one chance in four of dying while 
middle and last born suffered only 70 
percent of that mortality. The pattern 
of differences in mortality by birth order 
is maintained from one month to one 
year in this group of children, but the 
size of the differences decreased abso­
lutely and relatively. 

Since, in the data from Crulai, the 
margin [2, 3] is obligatory for all mod­
els, the treatment of survival as a re-
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sponse variable is identical to the analy­
sis just completed. With the data from 
Tourouvre-au-Perche (four variables), 
the treatment of survival as a response 
variable is different. 

For the data on the survival to one 
month of infants in Tourouvre-au­
Perche (Table 4), the minimal model, 
model1 ([1][2, 3][4]), fits very poorly. 
Models 2 through 6 add, one at a time, 
each remaining two-way margin other 
than [2, 3] to model 1. Only model 6 
fits the data at all acceptably, and it 
fits quite well. In model 6, the distribu-
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tion of family sizes depends on whether 
the families were complete (as defined 
above) or were not complete. Charbon­
neau (1970, pp. 409--413) gives the num­
ber of families by size and type. 

The comparisons of models 7, 8, 9, 
and 13 with model 6 show that the addi­
tion of any two-way interaction to those 
two considered in model 6 never results 
in an improvement in goodness of fit 
which is significant at the one percent 
level. Only allowing for the interaction 
between survival and birth order (model 
7) results in an improvement which ap-

TABLE 3.-Numbers of Children Living or Dead by the Age Indicated According to Birth 
Order for All Five Sets of Data (Margin [1, 3]) 

Birth Order 

Data Set First Middle Last 

Crulai 1 month 
Living 230 648 217 
Dead 57 90 26 

l/12q0 0.199 0.122 0.107 

Crulai 1 year 
Living 215 606 201 
Dead 72 132 42 

lqO 0.251 0.179 0.173 

Tourouvre 1 month 
Living 279 1,399 306 
Dead 72 250 45 

l/12q0 0.205 0.152 0.128 

Tourouvre 1 year 
Living 254 1,196 277 
Dead 97 453 74 

lqO 0.276 0.275 0.211 

Geneva 20 years 
Living 391 1,099 394 
Dead 170 677 167 

20q0 0.303 0.381 0.298 

q • (number of children dead at age x + y years)/(number of children 
x Y living at age y years). 
Sources: Gautier and Henry, 1958; Charbonneau, 1970; Henry, 1956. 
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TABLE 4.-Fits and Comparisons of Log-Linear Models: Tourouvre-au-Perche 1 Month 

Model or Comparison lc2 1 df z p 

Models 
1 [1] [2,3] [4] 523.729 133 16.09 p ~ 0 
2 [1,2][2,3][4] 504.516 114 16.70 p = 0 
3 [1,4] [2,3] 522.772 132 16.12 p - 0 
4 [1] [2,3] [3,4] 509.755 131 15.77 p - 0 
5 [1,3] [2,3] [4] 515.355 131 15.95 p ~ 0 
6 [1] [2,3] [2,4] 94.249 89 .43 p - .33 
7 [1,3][2,3][2,4] 85.875 87 -.05 p - .52 
8 [1] [2,3] [2,4] [3,4] 94.250 87 .58 p ~ .28 
9 [1,2][2,3][2,4] 75.034 73 .21 p- .42 

10 [1][2,3,4] 94.250 77 1.36 p - .09 
11 [1,2] [2,3,4] 75.035 61 1.25 p = .10 
12 [1,3][2,3,4] 85.876 75 .90 p = .18 
13 [1,4] [2,3,4] 93.285 76 1.37 p = .09 
14 [1,2][1,3][2,3,4] 66.589 59 .72 p = .24 
15 [1,2][1,4][2,3~4] 73.730 60 1.23 p ~ .11 
16 [1,3][1,4][2,3,4] 85.038 74 .92 p ~ .18 
17 [1,2][1,3][1,4][2,3,4] 65.280 58 .70 p ~ .24 

Comparisons 
1-6 Size x type 429.480 44 19.98 p - 0 
5-7 Size x type 429.480 44 19.98 p - 0 
6-7 Survival x order 8.374 2 .01 <p<,025 
6-8 Order x type o.ooo 2 p - 1 
6-9 Survival x size 19.215 16 ,25<p<,5o 
6-13 Survival x type, order x type, 

and size x order x type 0.964 13 p ~ 1 
10-11 Survival x size 19.215 16 .25<p<,50 
12-14 Survival x size 19.287 16 
13-15 Survival x size 19.555 16 
16-17 Survival x size 19.758 16 
10-12 Survival x order 8.374 2 .01 <p<,025 
11-14 Survival x order 8.446 2 
13-16 Survival x order 8.247 2 
15-17 Survival x order 8.450 2 
10-13 Survival x type 0.965 1 .25<P <,50 
11-15 Survival x type 1.305 1 
12-16 Survival x type 0.838 1 
14-17 Survival x type 1.309 1 

Note: For definition of symbols see note to Table 2. 
Source: The data used in the calculation of this table were obtained from 

Charbonneau, 1970. 

proaches that level of significance (P is 
between 0.01 and 0.025). 

Hence for Tourouvre 1 month, the 
assumption that the distribution of fam­
ily size and the type of family interact 
suffices. The data provide some indica­
tion, though not overwhelming evidence, 
that, as in Crulai, firstborn infants suffer 
higher mortality than middle or last 
born; last born suffer very slightly lower 
mortality than middle born. 

When fit to the Tourouvre 1 year 

data, none of the 17 models in Table 4 
is acceptable at the 0.5 percent level. 
Model 1 in Table 5 shows that all possi­
ble two-way interactions do not suffice 
to describe the data. 

Models 2 through 5 in Table 5 add, 
one at a time, each three-way inter­
action to the model of all two-way inter­
actions. Only model 3 fits the data ac­
ceptably at the one percent level, and 
this model fits well. Model 3 assumes a 
three-way interaction among survival, 
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family size, and type of family. One 
interpretation of this interaction might 
be that survival depends on family size, 
but the nature of the dependence is af­
fected by whether or not the family is 
complete. 

Table 6 presents this margin [1, 2, 4] 
and infant mortality 1q0 by family size 
and type of family. Although overall 
infant mortality in "other" families is 
only slightly greater than infant mortal­
ity in complete families, there is a 
greater increase in infant mortality with 
family size among the complete families 
than among the others. 

Of the remaining two-way interac­
tions in model 3, the interaction between 
birth order and type of family contrib­
utes negligibly ( cf. models 6 and 3). 
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Eliminating the interaction [1, 3] be­
tween survival and birth order (see Ta­
ble 3) has an effect which is not sig­
nificant at the five percent level. The 
pattern of infant mortality differs strik­
ingly from the pattern so far: infant 
mortality among first and middle born is 
high and virtually identical; mortality 
among last born is about three-quarters 
of that among first and middle born. 

Thus the Tourouvre 1 year data may 
be described by assuming (model 7) that 
survival, family size, and type of family 
interact, and that is all (other than the 
usual interaction [2, 3] between family 
size and birth order). The evidence here 
for interaction between survival and 
birth order is weak. 

Models 5 and 8 to 14 in Table 5 treat 

TABLE 5.-Fits and Comparisons of Log-Linear Models: Tourouvre-au-Perche 1 Year 

Model or Comparison !c2! df z 

Models 
1 [1,2] [1,3] [1,4] [2,3] [2,4] [3,4] 102.656 70 2.54 
2 [1,2,3] [1,4] [2,4] [3,4] 69.228 42 2.66 
3 [1,2,4] [1,3] [2,3] [3,4] 71.727 66 0.53 
4 [1,3,4][1,2][2,3][2,4] 100.114 68 2.53 
5 [2,3,4][1,2][1,3][1,4] 102.470 60 3.41 
6 [1,2,4] [1,3] [2,3] 71.736 68 0.36 
7 [1,2,4](2,3] 77.259 70 0.64 
8 [2,3,4] [1,2,3] [1,4] 69.196 30 4.08 
9 [2,3,4] [1,2,4] [1,3] 71.660 56 1.44 

10 [2,3,4][1,3,4][1,2] 100.103 58 3.43 
11 [2,3,4][1,2,3][1,2,4] 38.150 26 1.59 
12 [2,3,4][1,2,3][1,3,4] 64.906 28 3.98 
13 [2,3,4][1,2,4][1,3,4] 69.777 54 1.47 
14 all 3-way margins 33.918 24 1.38 

Comparisons 
6-3 Order x type 0.009 2 
7-6 Survival x order 5.523 2 
5-8 Survival x size x order 33;274 30 
9-11 Survival x size x order 33.510 30 

10-12 Survival x size x order 35.197 30 
13-14 Survival x size x order 35.859 30 

5-9 Survival x size x type 30.810 4 
8-11 Survival x size x type 31.046 4 

10-13 Survival x size x type 30.326 4 
12-14 Survival x size x type 30.988 4 

5-10 Survival x order x type 2.367 2 
8-12 Survival x order x type 4.290 2 
9-13 Survival x order x type 1.883 2 

11-14 Survival x order x type 4.232 2 

Note:· For definition of symbols see note to Table 2. 
Source: The data used in the calculation of this table were obtained from 

Charbonneau, 1970. 

p 

p - 0,006 
p - 0.004 
p - 0.30 
p - 0.006 
p < 0.001 
p - 0,36 
p ~ 0.26 
p < 0.0001 
p - 0,07 
p < 0.001 
p - 0,06 
p < 0.0001 
p - 0.07 
p - 0.08 

p > .995 
.05<P<,l0 
.10<P<.50 

p < .005 

.lO<P<. 50 
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TABLE 6.-Number of Children Living or Dead at Age One Year in the Tourouvre-au-Perche 
Sample by Size and Type of Family (Margin [1, 2, 4]) 

Com12lete 
Size of 
Family Living Dead 

4 96 20 
5 99 36 
6 108 36 
7 109 24 
8 116 36 
9 87 39 

10 136 44 
11 79 31 
12 59 25 
13 21 5 
14 20 8 
15 0 0 
16 26 22 
17 15 2 
18 11 7 

Total 982 335 

~ource: Charbonneau, 1970. 

survival as a response variable. Each 
model includes the margin [2, 3, 4]. 
Model 5 demonstrates that allowing sur­
vival to interact pairwise with each of 
the remaining variables is inadequate 
to describe the data. The remaining 
models add three-way interactions one 
at a time, two at a time, and three at a 
time. As in the preceding analysis of 
these data, all and only those models 
which include the margin [1, 2, 4] de­
scribe the data acceptably. The compari­
sons of models at the bottom of Table 5 
confirm that only the joint interaction 
of survival, sibship size, and type of 
family makes a significant difference in 
the fit of models, regardless of what 
background interactions are assumed. 

The four sets of data (two from 
Crulai, two from Tourouvre-au-Perche) 
have yielded identical substantive infer­
ences from analysis which treated all 
variables as response variables and from 
analysis which treated only survival 
as a response variable. The following 
analysis of the Genevan data treats all 
variables as response variables. A par-

Type of Family 

lqO Living 

0.172 120 
0.267 209 
0.250 106 
0.180 97 
0.237 90 
0.310 46 
0.244 27 
0.282 22 
0.298 20 
0.192 0 
0.286 0 

8 
0.458 0 
0.118 0 
0.389 0 

0.254 745 

Other 

Dead 

64 
51 
38 
36 
38 
26 
13 

0 
16 

0 
0 
7 
0 
0 
0 

289 

0.348 
0.196 
0.264 
0.271 
0.297 
0.361 
0.325 
o.ooo 
0.444 

0.467 

0.279 

tial analysis, not reported here, has indi­
cated that treatment of survival as a 
response variable again gives very simi­
lar results. I judged it unnecessary to 
repeat the full analysis. 

Table 7 presents 18 of the models 
fitted to the data from Geneva. The 
same kind of analysis described for Cru­
lai and Tourouvre applies here, and a 
detailed verbal commentary will be re­
placed by a brief summary. 

Models 1, 2, and 3 demonstrate that 
at least one three-way interaction must 
be assumed to describe the data and 
that the margin [2, 4, 5] is necessary 
and sufficient. That margin, the joint 
distribution of family size and type by 
epoch, is given explicitly by Henry 
(1956, pp. 216--217) and is suggested by 
his finding that both fertility and mor­
tality among Genevan adults (aged 20 
and over) declined markedly between 
1550 and 1899 but that fertility and 
adult mortality changed at different 
times and rates. The decline in adult 
mortality shifted the distribution of type 
of family from incomplete (interrupted 
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TABLE 7.-Fits and Comparisons of Log-Linear Models: Geneva 20 Years 

Model or Comparison lc21 df z p 

Models 
1 All 2-way interactions 1127.723 872 5.74 p .: 0 
2 All 3-way except [2,4,5) 987.417 <658 >8.18 p :. 0 
3 [1)[2,3)[2,4,5] 686.688 649 1.05 p - 0.14 
4 [1,2)[2,3)[2,4,5) 584.726 639 -1.54 p - 0.95 
5 [1,3)[2,3)[2,4,5) 666.698 647 0.56 p - 0.29 
6 [1,4)[2,3)[2,4,5) 654.447 647 0.22 p - 0.41 
7 [1,5)[2,3)[2,4,5) 455.814 643 -5.65 p :. 1 
8 [1,2)[1,3)[2,3)[2,4,5) 584.981 637 -1.47 p - 0.93 
9 [1,2) [1,4) [2,3) [2,4,5) 540.544 637 -2.80 p - 0.997 

10 [1,2)[1,5)[2,3)[2,4,5) 430.892 633 -6.21 p .:. 1 
11 [1,3)[1,4)[2,3)[2,4,5) 631.856 645 -0.35 p - 0.64 
12 [l,3)[1,5)[2,3)[2,4,5) 451.477 641 -5.74 p .:. 1 
13 [1,4)[1,5)[2,3)[2,4,5) 443.434 641 -6.01 p .: 1 
14 [1,2)[1,3)[1,4)[2,3)[2,4,5) 539.416 635 -2.78 p - 0.997 
15 [1,2) [1,3) [1,5) [2,3) [2,4,5) 429.984 631 -6.19 p .:. 1 
16 [1,2)[1,4)[1,5)[2,3)[2,4,5) 413.865 631 -6.74 p .: 1 
17 [1,3)[1,4)[1,5)[2,3)[2,4,5) 437.703 639 -6.15 p .:. 1 
18 [1,2) [1,3) [1,4) [1,5) [2,3) [2,4,5) 412.790 629 -6.72 p :. 1 

Comparisons for forward selection 
3-4 Survival x size 101.962 10 p < .005 
3-5 Survival x order 19.990 2 p < .005 
3-6 Survival x type 32.241 2 p < .005 
3-7 Survival x epoch 230.874 6 p :. 0 

7-10 Survival x size 24.922 10 .005<P< .01 
7-12 Survival x order 4.337 2 .10<P<.25 
7-13 Survival x type 12.380 2 p < .005 

13-16 Survival x size 29.569 10 p < .005 
13-17 Survival x order 5.731 2 .05<P<.l0 

16-18 Survival x order 1.075 2 .25<P<.50 

Comparisons for backward elimination 
17-18 Survival x size 24.913 10 .005<P<.Ol 
16-18 Survival x order 1.077 2 .20<P<.30 
15-18 Survival x type 17.194 2 p - 0.0002 
14-18 Survival x epoch 126.626 6 p ' 0 
13-16 Survival x size 29.569 10 p - 0.001 
10-16 Survival x type 17.027 2 p - 0.0002 

9-16 Survival x epoch 126.679 6 p :. 0 

7-13 Survival x type 12.380 2 p < .005 
6-13 Survival x epoch 211.013 6 p :. 0 

Note: For definition of symbols see note to Table 2. 
Source: The data used in the calculation of this table were obtained from Henry, 1956. 

before the wife reached age 45 by death 
of one of the spouses) to complete fami­
lies. The decline in fertility shifted the 
di£tribution of family sizes from larger 
to smaller sizes. Hence a likely candi­
date for a three-way interaction is [2, 
4, 5]. 

Forward selection among the models 
in Table 7 thus leads from model 3 to 7 

to 13 to 16 to 18. Forward selection iden­
tifies the variables which interact with 
survival in order of importance (most 
to least) as epoch (see the rightmost 
column of Table 9), family size (Table 
8), and birth order (Table 9). Backward 
elimination leads from model 18 to 16 
to 13 to 7 to 3. Both methods coincide 
in ranking the variables other than sur-
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TABLE 8.-Number of Children Living or Dead by Age 20 in Genevan Sample According to 
Family Size (Margin [1, 2]) 

Family 
Size Living 

2 137 
3 248 
4 283 
5 250 
6 169 
7 164 
8 162 
9 130 

10 118 
11 71 

:2:12 152 

Source: Henry, 1956. 

vival by the importance of their inter­
action with survival. Birth order has no 
important interaction with survival; the 
epoch has an extremely important effect 
on survival. 

To describe these data from Geneva 
requires the same choice between sim­
plicity of model and goodness of fit as 
have the previous data. All of the models 
in Table 7 from model 3 onward fit the 
data acceptably at the ten percent level. 
Many of the more complex models pro­
vide fits which are improbably close. 
It is only the contrasts between models 
which justify assuming more than does 
model 3. The interaction between sur­
vival and birth order is significant at the 
one percent level only in the comparison 
of model 5 with model 3; both of these 
models exclude the more significant in­
teractions of survival with family size, 
type, and epoch. 

When Table 9 is compared with Table 
3, the pattern of higher mortality in the 
firstborn in Crulai and Tourouvre-au­
Perche is not apparent in the estimates of 
mortality by age 20, 2Qq0 , for Geneva, 
even in those epochs contemporaneous 
with the data from Crulai and Tou­
rouvre-au-Perche. Whether this is a real 
geographical difference, or whether dif­
ferences in survival by birth order up to 
one year even out by age 20 is unknown. 

Proportion 
Dead Dead 20q0 

57 0.29 
73 0.23 

101 0.26 
90 0.26 
89 0.34 

102 0.38 
102 0.39 
86 0,40 

102 0.46 
72 o.so 

140 0,"48 

The same analysis performed in Table 
7, models 3 to 18, for all families from 
Geneva, is repeated in models 1 to 8 of 
Table 10 for the complete families from 
Geneva only. Since all. families are of a 
single type (complete), variable 4 is 
independent of all others. The three-way 
margin [2, 4, 5] collapses to [2, 5]. 

Among the complete families of Ge­
neva, as among all the families, the 
epoch interacts most importantly with 
survival, the family size next most im­
portantly, and birth order nat signifi­
cantly (each interaction being consi­
dered conditional on the preceding). By 
contrast with all the Genevan families, 
among the complete families the change 
in survival with epoch must be con­
sidered in order to describe the data 
acceptably. 

5. SuBSTANTIVE INFERENCES 

The substantive inferences from the 
last section are reviewed here without 
reference to the log-linear models on 
which they are based and are compared 
with the inferences drawn by the orig­
inal authors. 

Each conclusion below reflects a 
choice between simplicity of model and 
goodness of fit to the data, a choice 
which remains subjective to the extent 
that present statistical theory offers no 
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firm grounds for such choices. The ad­
vantage of this form of subjectivity over 
some less formal treatments of the data 
is that the levels of probability among_ 
which I am exercising choice are explicit 
in the preceding section. 

Crulai 1 month. There is strong, 
though not overwhelming, evidence that 
firstborn infants have a chance of dying 
by one month which is almost twice that 
of later-born infants, regardless of fam­
ily size. 

Crulai 1 year. Among birth orders, 
the absolute and relative differences in 
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the probability of dying by one year 
diminish, though the same pattern of ex­
cess mortality among the firstborn re­
mains. The data can be described by 
assuming that survival to one year is 
independent of both birth order and 
family size. 

Tourouvre-au-Perche 1 month. As in 
Crulai, there is strong, but not over­
whelming, evidence that firstborn infants 
have a chance of dying by one month 
which is greater than that of middle or 
last born. The data can be described by 
assuming that family size and the type 

TABLE 9.-Number of Children Living or Dead by Age 20 in Genevan Sample According to 
Birth Order and the Half-Century in Which the Father Was Born (Margin [1, 3, 5]) (Last 

Column is Margin [1, 5]) 

Birth Order All 
Birth 

Epoch Father Born First Middle Last Orders 

Before 1600 
Living 55 236 54 345 
Dead 53 206 54 313 

20q0 0.490 0.466 0.500 0.48 

1600-1649 
Living 69 297 61 427 
Dead 38 238 46 322 

20q0 0.355 0.445 0.430 0.43 

1650-1699 
Living 69 220 74 363 
Dead 40 124 35 199 

20q0 0.367 0.360 0.321 0.35 

1700-1749 
Living 55 102 60 217 
Dead 21 64 16 101 

20q0 0.276 0.386 0.211 0.32 

1750-1799 
Living 50 82 51 183 
Dead 10 24 9 43 

20q0 0.167 0.226 0.150 0.19 

1800-1849 
Living 52 98 48 198 
Dead 2 12 6 20 

20q0 0.037 0.109 0.111 0.09 

1850-1899 
Living 41 64 46 151 
Dead 6 9 1 16 

20q0 0.128 0.123 0.021 0.10 

Source: Henry, 1956. 
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TABLE 10.-Fits and Comparisons of Log-Linear Models: Geneva Complete Families Only 

Model or Comparison fa 2 f df z p 

Models 
1 (1] [2,3] [2,5] [4] 335.990 259 3.18 p < .001 
2 [1,2](2,3][2,51[4] 239.916 249 -0.39 p - .65 
3 [1,3] [2,3] [2,5] [4] 314.642 257 2.44 p - .993 
4 [1,5] [2,3] [2,5] [4] 187.706 253 -3.10 p > .999 
5 [1,2] [1,3] [2,3] [2,5] [4] 239,265 247 -0.33 p - .63 
6 [1,2] [1,5] [2,3] [2,5] (4] 167.401 243 -3.73 p :.1 
7 [1,3] [1,5] [2,3] [2,5] [4] 181.713 251 -3.32 p .:01 
8 [1,2] [1,3] [1,5] [2,3] [2,5] [4] 165.432 241 -3.74 p ~ 1 

Comparisons 
1-2 Survival x size 96.074 10 p < .005 
1-3 Survival x order 21.348 .2 p <',005 
1-4 Survival x epoch 148.284 6 p ~ 0 

4-6 Survival x size 20.305 10 .025<?<.05 
4-7 Survival x order 5.993 2 p - .05 
6-8 Survival x order 1.969 2 .25<P<,50 

Note: For definition of symbols, see note to Table 2. 
Source: The data used in the calculation of this table were obtained from 

Henry, 1956. 

of family interact but that the survival 
of a child is independent of family size, 
birth order, or type of family. 

Tourouvre-au-Perche 1 year. The 
joint interactions among survival, fam­
ily size, and type of family take the 
form of a mortality which increases 
steeply with family size among complete 
families and of a higher average (but 
less rapidly increasing) mortality among 
the remaining families. Conditional upon 
this interacton, there is no apparent 
interaction between birth order and sur­
vival to one year. 

Geneva 20 years. For the ensemble 
of all families from Geneva, survival to 
age 20 appears to be independent of fam­
ily size, birth order, type of family, and 
epoch. Only an interaction among fam­
ily size, type of family, and epoch is 
required to describe the data globally: 
families get smaller and the proportion 
of complete families increases. But the 
data provide very strong evidence for 
the importance, in decreasing order, of 
the interactions between survival and 

epoch, survival and type of family, and 
survival and family size. Conditional on 
these interactions, there is no pattern of 
interaction between survival and birth 
order. 

Separate analysis of the complete 
families demonstrates that the decline 
of mortality with epoch must be recog­
nized to describe the data. Conditional 
on the effect of the epoch on survival (as 
well as the effect of the epoch on family 
size), there is some, but not very strong, 
evidence for a decrease in survival with 
increasing family size. No pattern of 
mortality by birth order appears. 

I now review briefly the analysis of 
these data by their original authors. 

Crulai 

Gautier and Henry (1958, pp. 172-
173) include only families of three or 
more children in their calculations of 
rates of infant mortality 1q0 by birth 
order. For the first and last born they 
perform the same calculation that I do 
in Table 3. For children of intermediate 
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birth order, they weight the infant mor­
tality rate for families of each size by 
the number of families of that size, 
rather than by the number of children 
in families of that size, in order to avoid 
weighting the overall infant mortality 
rate of children of middle order in favor 
of the larger families (which have more 
such children). 

My analysis in Table 2 offers no evi­
dence of a significant variation in infant 
mortality by family size. Hence the 
estimate in Table 3 of infant mortality 
for children of middle order, which 
weighted each child equally, should not 
differ greatly from that obtained by 
Gautier and Henry. It does not. For 
first, middle, and last lq-o's, Gautier and 
Henry obtain 0.269, 0.170, and 0.179, 
respectively. They comment: "There is 
a very appreciable excess mortality of 
the first born, which cannot be attrib­
uted to chance" but report no statistical 
test (Gautier and Henry, 1958, p. 173). 

Gautier and Henry suppose that mor­
tality during the first month is "endo­
genous," that is, due to difficulties of 
childbirth, and that mortality during the 
remainder of the first year is "exoge­
nous," that is, due to the hazards of the 
environment. They subtract 1;12qo from 
1q0 for each birth order and observe that 
the remainders vary much less than 
do the 1 q0's. Hence the differences in 
mortality by birth order are concen­
trated in the first month. They infer 
that the differences in infant mortality 
by birth order are largely attributable 
to differences in the ease of first and 
later deliveries. 

Tourouvre-au-Perche 

Charbonneau (1970, p. 179) calculates 
the rates of infant mortality 1q0 for first, 
middle and last born to be 0.276, 0.259, 
and 0.214, respectively. His· rates for 
first and last born agree very closely 
with those given here in Table 3. 
Whether his lower value (0.259 instead 
of 0.275) for children of middle rank is 
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due to his using the technique of Gautier 
and Henry is unknown, since he does not 
describe how he calculates his estimate. 
Charbonneau (p. 179) comments: "In 
spite of the presence of numerous in­
complete families, the mortality of the 
last born seems smallest. But the differ­
ence between first and last born cannot 
be considered significant." No statistical 
significance test is reported to support 
this conclusion. 

Charbonneau estimates endogenous 
mortality as 0.9 1; 1:2q0 and exogenous 
mortality as the difference between in­
fant mortality 1q0 and endogenous mor­
tality. He concludes that the difference 
(which he previously judged to be non­
significant) between first and last· born 
is due exclusively to differences in en­
dogenous mortality. 

Charbonneau (1970, pp. 180-181) 
notes that the infant mortality of the 
firstborn declines steadily with the age 
at marriage of the mother from 0.323 
for mothers married before age 20 to 
0.203 for mothers married at age 30 or 
more. He infers that 

the excess endogenous mortality of first 
born, pointed out above, may depend only 
on the relative proportion of women married 
before age 20. One could also, in this situa­
tion, explain the apparent decline in endo­
genous mortality in the births of later orders, 
which occur when the woman is older. 

Since the infant mortality of last-born 
children in Tourouvre-au-Perche was 
0.211, this explanation is conceivably 
even sufficient. 

A clue to the origin of the three-way 
interaction [1, 2, 4] found in the data on 
survival to one year, but not in the data 
on survival to one month, appears in 
Charbonneau's demonstration (1970, pp. 
174-175) of a clear decline in exoge­
nous infant mortality (that is, in mor­
tality occurring after one month) from 
1670-1719 to 1720-1769. (Mortality in 
the first month of life did not change 
substantially from the earlier period to 
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the later.) This observation suggests 
that, as in the data from Geneva, the 
epoch or historical period is a relevant 
variable over which the Tourouvre data 
have been collapsed. If environmental 
causes of death declined during the pe­
riod of observation, then the survival of 
adults through marriage would have im­
proved as well as the survival of infants 
after their first month; hence the propor­
tion of complete families would have 
increased. Collapsed over time, the si­
multaneous decline in mortality and 
increase in proportion of complete fami­
lies would appear as an association be­
tween survival and type of family. Even 
though age-specific fertility rates in 
c0mplete families appear not to have 
changed from 1665-1714 to 1715-1765 
(Charbonneau, 1970, p. 115), the magni­
tude of the association between survival 
and type of family would clearly change 
with the size of the family, since a 
higher proportion of the smaller in­
complete families than of the larger in­
complete families would shift to being 
complete (and to having more children). 
To say that the interaction between sur­
vival and type of family depends on 
family size is simply to say that there 
is a three-way interaction among all 
three variables. 

Geneva 

Although he reports his observations 
of families of size two, Henry (1956, pp. 
159-164) analyzes only families of size 
three or larger. To estimate the mortal­
ity to age 20 of children of middle birth 
order, he weights the size-specific mor­
tality by the number of families rather 
than the number of children. The results 
Henry (1956, p. 161) obtains do not 
differ grossly from those in Table 9. As 
might be expected, his estimate of mor­
tality for children of middle order is 
slightly lower. 

Although Henry cautiously refrains 
from drawing any conclusions about the 

relations between birth order and sur­
vival, he does point out that in each 
epoch the last born appear to suffer the 
least mortality. This pattern appears in 
Table 9 if the last two epochs (1800-
1849 and 1850-1899) are combined to 
avoid small sample fluctuations in esti­
mating 20qo. Henry does not affirm the 
statistical significance of this difference 
but points out that in recent periods par­
ents who regulate the number of their 
surviving offspring may well replace a 
child intended as the last born who dies 
prematurely (p. 163) : 

With risks of death independent of rank, 
one could nevertheless have a proportion sur­
viving that was higher among last born than 
among the preceding children resulting from 
the fact that the children who would have 
been the last if they had lived did not re­
main so because they died prematurely. This 
is an effect not of birth order on mortality, 
but of mortality on birth order. 

Similarly, for the interaction between 
family size and survival, Henry observes 
that even in families that are not volun­
tarily controlling the number of their 
children, the interval between deaths 
following the premature death of the 
earlier born is shorter than when the 
earlier born lives to at least one year. 
Hence in families where more children 
die during their first few months, the 
final size (number of children born) is 
higher. 

The ineluctable conclusion from 
Henry's discussion is that the directions 
of causation underlying the associations 
established here must be investigated 
with great delicacy. This conclusion ar­
gues, persuasively I think, against the 
exclusive treatment of survival as a re­
sponse variable. 

Arguments that couples should limit 
the size of their families because later­
born children have an increased chance 
of dying find no support in the data 
on neonatal mortality in Crulai and 
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Tourouvre-au-Perche or in the data on 
infant mortality in Crulai. The associa­
ti.on between eventual family size (not 
birth order) and infant mortality in 
:r_ourouvre may result from pooling fam­
Ilies over a period of declining mortality. 
Birth order again played a negligible 
role in explaining rates of survival to 
a.ge 20 in Geneva, but eventual family 
Size was the most important variable 
after the overall mortality of the epoch. 
Hence, at least in these families it is 
belonging to a family that is going to 
become large, rather than being later 
born, which is unhealthy. 

The data from Geneva (Table 8) 
d~monstrate that the probability of sur­
vival to the approximate age at which 
r~pr~duction begins declines as family 
~Ize mcreases. (Table 8 exaggerates the 
~ncreas~ in p~obability of dying with 
mcreasmg family size which could have 
been observed at any one time because 
it collapses the simultaneous decline of 
mortality and family size over time.) 
But the average number of children 
surv.ivin~ to re~roductive age per family 
(~h.wh IS fam~ly size times the prob­
ability of surVIval) still increases with 
increasing family size. Hence if the dis­
t7ibu~ion. of famil~ sizes in this popula­
tiOn IS viewed as mfluenced by genetical 
ev~lution under natural selection, mech­
amsms other than or in addition to that 
proposed by Lack (1948, 1966) must 
be invoked to explain the abundance 
increasing with time, of smaller families: 

Few, if any, modern national statis­
tical bureaus publish data with sufficient 
internal structure to make possible 
ana~yses of contemporary or recent pop­
ulatiOns of the sort performed here for 
historical populations. Yet if the rela­
t~ons ~f childhood mortality to family 
srze, 'birth order, and parental mortality 
are to be studied in populations in which 
parents attempt to regulate their com­
pleted family size, such observations of 
the complete demographic histories of 
families are essential. 
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APPENDIX 

This paper fits hierarchical log-linear 
models to incomplete multidimensional 
cont~ngency t~bles by the iterative pro­
portiOnal fittmg procedure 'as imple­
mented in a revision of a computer pro­
gram originally written by Y. M. M. 
Bishop ~see Bishop et a!., n.d.; Mantel, 
1970; Fienberg, 1972; Goodman 1972). 

The log-likelihood ratio G2 is the mea­
sure of goodness of fit which is mini­
mized by the fitting procedure: 

G2 = \2 2; (observed) In 
(observed/ expected)\, 

where the summation extends over all 
cells in the table and by definition 0 In 
0 = 0. The ratio G2 has the distribution 
of >f. When the degrees of freedom (df) 
exceed 30, values of G2 are converted 
into standardized normal variates by the 
approximation z = (2G2) 112 _ (2 
df- 1)1/2, 

~ienberg (1972, pp. 188-190) de­
scnbes the procedure which assigns de­
grees of freedom to the value of G2 
calculated for a given model. As indi­
ca~ed in his correction (Fienberg, 1973), 
this procedure requires first finding the 
c~mponents which would be separable 
with respect to the model even if there 
were no logical zeros in the table and 
then finding the separations created 
within these components by the location 
of logical zeros. 

A convenient way has been found to 
carry out the first step. Suppose the 
model for a table of d dimensions con-
tains m margins M1 M 2 • • • M 

' ' ' "'' where each M;, is a subset of the set 
D = {1, 2, · · · , d} of the first d inte­
gers. Then the complete d-way table 
( assu~ing no logical zeros) is insepara­
ble with respect to the model if and 
only if 

U':'-1 (D - M;) = D. 

The proof is easy: each margin M 1 

fixes those dimensions whose numbers 
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are contained in Mi. Hence the cells 
which are associated in the sense of 
Fienberg are the cells which are adjacent 
along the other dimensions, namely, 
those contained in D - Mi. If the union 
of these dimensions not fixed by the 
margins is all dimensions, then all cells 
in the complete table are associated with 
respect to some margin. 

Table A-1 illustrates the assignment 
of degrees of freedom for a model for 
the Genevan data. The degrees of free­
dom lost by fitting the overall mean 
and the margins of each separate vari­
able are calculated just once for each 
set of data, since these degrees of free­
dom are lost regardless of the inter-

actions among variables considered in 
each particular model. (These are the 
22 degrees of freedom, i.e., parameters 
fitted for main effects in Table A-1.) 
Each margin Mi in the model (dis­
played in column 1) which had more 
than two dimensions implicitly con­
tained three two-dimensional margins 
(displayed in column 2). The potential 
number of parameters fitted by each of 
these margins (column 3) is II ( Cj ·- 1) , 
where the product is over all dimensions 
j contained in the margin Mi and Cj is 
the number of cells into which dimension 
j is divided, as in Table 1. 

However, some of these margins have 
either sampling or logical zeros. The 

TABLE A-I.-Assignment of Degrees of Freedom (dj) for the Model [1, 2, 5] [2, 4, 5] 
[2, 3] [1, 4] for Geneva, as an Illustration of the General Procedure (d = 5, m = 4) 

Potential 
Margins Parameters Marginal Cell Zeros 

Margin Mi in Mi ll(ci - 1) Zeros e Implied Z (Mi) 

[1,2,5] 60 33 33x9 a 297 
[1,2] 10 0 
[1,5] 6 0 
[2,5] 60 16 

[2,4,5] 120 93 93x6 ~ 558 
[2,4] 20 0 
[2,5] 60 16 
[4,5] 12 1 

[2,3] 20 la lx42 • 42a 

[1,4] 2 0 0 
37o 160 897 

d 
Number of cells in complete table • ll" ci • 1,386. 

i•l 

d d 
Parameters fitted for main effects • 1 + L (ci - 1) • L c - d + 1 a 26 - 5 + 1 • 22. 

i•l i•l i 

Cell zeros implied by two margins: 
z ([1,2,51 n [2,4,5]) - 276 
z ([2,4,51 n [2,3]) 6 
z ([1,2,51 n [2,31> o 

Cell zeros implied by three margins • 0. 

Parameters fitted • parameters for main effects +parameters for n way margins, n c 2,3.' •• 
- 22 + 370 - 160 - 232. 

Zero cells implied by margins • 897 - 282 • 615. 

d.f. = 1,386 - 232 - 615 - 539. 

a- Logical zeros: no children of middle rank in tamilies of size 2. 
Source: Henry, 1956. 
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number of parameters actually esti­
mated for each margin is reduced by the 
number of these zeros. (Caution is nec­
essary because some arrangements of 
marginal zeros reduce the number of 
parameters fitted by more than the num­
ber of zeros. For example, n - 1 zeros in 
a margin with only n cells leave no 
parameters to be estimated. Pathologies 
of this sort did not occur with the data 
analyzed here.) The number of zeros in 
each margin (column 4) must be deter­
mined by examination of each margin. 

Each of these zeros can only have 
arisen if all the cells which were summed 
to give that entry in the margin were 
also zero and in turn implies that the 
expected frequencies fitted to those cells 
will be exactly zero; hence these cells 
should not be counted among the degrees 
of freedom of G2 • The number of zero 
cells implied by each zero in the margin 
of Mi is ITch where the product is over 
all dimensions j in D - M;. The zero 
cells implied by margins which are 
proper subsets of the M; have already 
been counted once among the zero cells 
implied by M; and hence are not counted 
again. 

In order to avoid double counting of 
zero cells implied by more than one Mi, 
the table of data must be scanned to find 
the number of zero cells implied jointly 
by each possible combination of 2, 3 or 
more margins, each of which has at least 
one marginal zero. The total number 
of zero cells implied in the table by 
the zeros in the margins may then be 
counted by the principle of inclusion 
and exclusion. 

Corresponding to the model [1, 2, 5] 
[2, 4, 5] [2, 3] [1, 4] analyzed in Table 
A-1, the model which treats survival as 
a .response variable is [ 1, 2, 5] [ 1, 4] 
[2, 3, 4, 5]. In this model and all others 
which treat survival as a response vari­
able, the distinction between structural 
and sampling zeros disappears. There 
are simply no observations of survival 
for those vectors of values of the non-
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response variables which have zero fre­
quency, whatever the reason for the zero 
frequency. 

Note in Table 2 that, even though the 
margins are the same in both models 
2 and 6, model 2 has fewer degrees of 
freedom than model 6 because there were 
no deaths by one month among infants 
in families of size 13, although there was 
a death among such infants by one year. 
Hence there is a zero in the [1, 2] margin 
for Crulai 1 month, but no zero in that 
margin for Crulai 1 year. 

In testing the hypothesis that birth 
order does not affect survival ( condi­
tional upon the other variables being 
considered), the null model used to cal­
culate the probabilities assigned to the 
critical values of G2 assumes that the 
survival or death of each individual is 
independent of the survival or death of 
all others. But the data analyzed here 
consist of complete sibships. If members 
of a sibship were perfectly correlated in 
their survival or death by a given age, 
then the probability that the part of G2 

measuring differences across birth orders 
(conditional on all other variables) 
would exceed any pGsitive value is zero; 
each entire sibship lives or dies together. 
If the positive correlation were less than 
one, and a test of the null hypothesis 
that birth order has no effect on a mor­
tality gives a value of G2 that is sig­
nificant at (say) the five percent level, 
then the true probability that such a 
deviation from the null hypothesis would 
have happened by chance alone is less 
than five percent. If the test gives a 
value of G2 which is not significant at 
the nominal five percent level, it is pos­
sible that a deviation as large as that 
observed might happen by chance only 
five percent of the time. 

A detailed test for the presence of cor­
relation in mortality among members of 
a sibship requires for each family the 
vector reporting which children lived 
and which died by a given age, accord­
ing to birth order. Such details are not 
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available from the published tabulations 
but are present in the original familial 
reconstructions on which the tabulations 
are based. If there is no evidence against 
independence of birth orders, then the 
methods of analysis used in this paper 
are justified, and the probability values 
are accurate. Otherwise, the models for 
analyzing marginal homogeneity of 
Bishop et a!. (n.d., Chapters 7, 8) may 
prove helpful. 

The choice of a measure G2 of good­
ness of fit does not uniquely determine 
which model will be selected for two 
reasons. 

First, when there are many dimen­
sions in the contingency table, there are 
too many hierarchical models for the 
fit of ·all models to be measured. Fein­
berg (1970), Goodman (1971, 1973), 
Mantel and Brown (1973) and others 
have advocated various selection proce­
dures which reduce the number of 
models considered. The forward and 
backward procedures are illustrated in 
the text. 

Second, more than one model may fit 
the data adequately by the criterion of 
goodness of fit. When the true structure 
of the data is not known, some proce­
dure is needed to avoid more complex 
models than the purpose of the analysis 
justifies. Fienberg (1970) recommends 
eliminating margins from a hierarchical 
sequence of models arranged in order 
of decreasing complexity and stopping 
when the increase in G2 is significant for 
the increase in degrees of freedom. With 
the data being analyzed here, this pro­
cedure leads sometimes (e.g., models 13 
and 16 in Table 7) to the following 
awkward situation. For two models, M 
and M', the probability of a worse fit by 
chance, assuming the models are true, is 
very close to 1 (both models are too 
good). The more complex model M' dif­
fers from the simpler M by one margin 
M 1 : M' = M · M 1 • But the difference in 
goodness of fit between M' and M is 
wildly significant, that is, the probabil-

ity of the observed G2 ( M) - G2 (M') 
having df = df (M) - df (M') is very 
close to zero. 

In discussing a similar situation which 
arises with his data, Goodman (1971, 
p. 47) comments: "The choice between 
these two models will depend upon the 
weight given by the researcher to the 
advantages of the improved fit ... and 
the disadvantages of having introduced 
additional parameters." 

Perhaps, rather than seeking a unique 
model to describe the data, one should 
seek a rational method of assigning the 
contribution to goodness of fit which is 
due to each of the interactions (mar­
gins) which compose a complex model. 
Better theory here will have immediate 
utility. 
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