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ESTIMATION AND INTERACTION IN A CENSORED 
2 X 2 X 2 CONTINGENCY TABLE 

JoEL E. CoHEl'i 

Society of Fellows, Harva~·d University, Cambridge, Mass. 02138, U.S. A. 

SUMMARY 

An iterative procedure is presented for obtaining the maximum likelihood estimates 
of the probabilities of three noninteracting attributes when the available observations are 
the number of individuals having none of the attributes, the numbers of individuals having 
each one and only that one of the attributes, and the number of individuals having two or 
more of the attributes. The procedure is applied to observations of the prevalence of single 
and mixed infections of human malaria. The results are interpreted with caution. 

1. INTRODUCTION 

If each of N individuals may or may not have each of A attributes, then 
the numbers of individuals having each possible combination of attributes 
form the entries in a 2A contingency table. In the analysis of such a table, the 
two questions of estimation and interaction frequently arise. Under the 
assumption that theN individuals are a random sample from a universe of 
individuals in which the probability of an individual's having one attribute 
is independent of his having any others, what is the best estimate of that 
probability? Arc the entries in the contingency table consistent with the 
assumption that an individual's possession of one attribute is independent of 
his possession of any other? 

Present answers to these questions, including cases when some entries 
in the contingency table may be missing or unobservable (truncated), are 
provided by Bhapkar and Koch [1968], Goodman (1968], Mantel [1970], 
Mosteller [1968], and the authors they cite. 

A censored contingency table is one in which some cells have been pooled 
or some frequencies summed so as not to reveal individual entries in finest 
detail. Of interest here is the form of censoring of a 2A table which leaves 
A + 2 numbers or cells: the number No of individuals who have none of the 
A characteristics, the numbers N; , i = 1, 2, · · · A, of individuals who have 
the ith attribute but who do not have any of the other attributes, and the 
number NA+l of individuals who have two or more attributes. Under the 
assumption of no interaction among attributes, the expectation of each N; is 
NP, , where a; is the probability of the ith attribute (that is, the probability 
of success on a Bernoulli trial involving the ith attribute), 0 < a; < 1, and 
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A 

Po = IT (1 - a1) 
i=l 

i = 1, 2, · · · , A, (1) 

PA+l = 1- ~P; = 1- (1 +?; 1 ~a) tJ (1- a.1). 

SinceP;/P0 = a,/(1- a;), it follows that a,= P;/(P0 + P,), i = 1, 2, ···A. 
If the observed N, were exactly equal to their expectations NP, , then the 
a, could be calculated as N;/(N0 + N,). 

For A = 3 this paper gives an easy iterative solution for the maximum 
likelihood (ML) estimates of the a 1 and discusses the problem of measuring 
interaction. The same ML methods apply for arbitrary A but are not required 
by the application in view. 

2. MAXIMUM LIKELIHOOD ESTIMATION 

The ML estimates of the a 1 , which in this case are also the modified 
minimum x2 estimates, are the solution of the system of A equations (Cramer 
[1946] p. 426): 

i = 1, 2, · · · , A. (2) 

For A = 3, substituting (1) into (2) gives, fori = 1, 2, 3, and i ~ j ~ k, 

where 
(4) 

Equation (3) is a quadratic in&, with coefficients involving Q1k • The roots of 
(3) are given by 

-2N&, = Q,.kN- N, - N4(1 + Q,.k) 

± {[-Q,.kN + N, + N4(1 + Q,.k)]2 + 4Q,.kNN;}' (5) 

and a positive value of&, is obtained only by taking the root with the negative 
sign in front of the radical. Since Q1k contains the product of probabilities 
in its numerator and their sum in its denominator, and hence should be small 
compared to 1, one initial estimate &;o> of a 1 is obtained by setting Q,.k = 0 
in (5) or (3), giving 

(6) 

An alternative initial estimate is suggested by the observation after (1) that 
a, = P;/(Po + P,): 

(7) 
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Given some initial estimates, values of Q;k then follow from (4) and improved 
~lll follow from (5). Further iteration proceeds back and forth between (4) 
and (5). 

3. INTERACTION 

In modeling the censored 2A contingency table introduced above, a 
parameter 8 may be introduced to measure the deviation of the number NA+ 1 

of individuals with multiple attributes from the expected number of such 
individuals assuming no interaction among attributes. Under this new model, 
theN, are multinomially distributed in cells with probabilities 11"; , where 1r1 

is proportional toP, fori = 0, I, · · • , A, and 7rA+1 is proportional to 8PA+1. 
Thus if 8 is greater (or less) than 1, an individual has a greater (or less) 
chance of having two or more attributes under this model than he would under 
the assumption of no interaction. Normalizing so that the 1r1 sum to 1, we have 

P; 
7r 1 = -~-+-(c--8----"-I-:--)P=-A -+1 ' i = 0, I,··· , A, 

(8) 
8PA+1 

7r A +1 = __ (,.-----'"-'-!..,-)P-- ' 
I + 8- I A+l 

where the P, are the functions of a, given by (I). Since this model has A + I 
independent probabilities and A + I parameters (8 and the a,), it has no 
degrees of freedom; 8 may be expressed exclusively as a function of the 7r; • 

The parameter 8 is a weighted average of the first-order up to (A - I)
order interactions in the 2A table in a way which may be illustrated by the 
case A = 3. For i ~ j ~ k, if first-order interactions make the probability 
of the two attributes i and j in the absence of k proportional to 8k(I - ak)a;a; 

instead of simply to (1 - ak)a,a; and if a second-order interaction makes the 
probability of all three attributes proportional to 80a 1a 2a 3 instead of simply 
to a 1a 2a 3 , then 8 is the weighted average of these interaction coefficients 8; 

which satisfies 8P4 = 8oa1a2aa+81(I-a1)a2aa+82a1(I-a2)aa+8aa1a2(I-aa). 

Clearly when all the 8; are equal, 8 = 8;. The extension to A > 3 is obvious. 
For A = 2, the number N 3 of individuals who have two or more attributes 

equals the number of individuals who have exactly two attributes. No 
censoring of the usual 2 X 2 table remains to be done. From (8) it follows that 

(9) 

The estimate § of 8 obtained by replacing each 7r; with N, is just the relative 
odds in a 2 X 2 table. Approximate confidence limits for the estimate §have 
been obtained by Goodman [I964] and the authors he cites. Hence the value 
of § may be used to measure approximately the goodness of fit of the no
interaction model (I) instead of ealculating all the expected frequencies and 
using Pearson's X2 • 

For A = 3, it may be shown from (8) that 

8= . 
11"111"211"3 + 7ro7ri7r2 + 7ro7r27rs + 7ro7rl7ra 

(IO) 
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An estimate § of 8 is obtained by repla.cing each 71"; in (10) with N; . Asymp
totically for large N, § is normally distributed (Cramer [1946] pp. 354, 366) 
with E(s) = 8 and with variance (11) which depends on the multinomial 
variances and covariances, var (N.) = N1r1 (1 - 1r;) and fori~ j, cov (N,, N;) = 
-N7r;1r; : 

where 

......... 
4 

( as ) 2 4 
( as )( as ) var s = N t; aN. 7r;(l - 7r;) - 2N t:; aN, aN; 11";11"; , 

asjaNa = NaN./D + NaNlN2NaN./D\ 

asjaNl = -(s/D)(NaN2 +NoNa+ N2Na), 

asjaN2 = -(8/D)(NaNl +NoNa + N1Na), 

asjaNa = -(8/D)(NaNl + NaN2 + N1N2), 

asjaN. = (N~/D), and 

D = N1N2Na + NoN1N2 + NoN2Na + NoN1Na . 

(11) 

(12) 

Though unattractive analytically, the approximate variance (11) presents no 
computational difficulties. The 100 a% confidence interval around § may be 
approximated by§ ± zx(~ §)!,where Zz is the xth percentile of the standard
ized normal distribution, x = 50(1 +a). This approximation to the confidence 
interval assumes that § is symmetrically distributed in the region of estima
tion. Because § ranges over (0, + co) this assumption is not lil\:ely to be valid 
for values of § near zero unless N is very large. 

The transformed variable 81 = log § is distributed over (- co, + co) and 
may be preferable. The asymptotic variance of 81 is given by replacing §with 8 1 

everywhere in (11). Then since a8'jaN, = a log §jaN, = (1/s)(asjaN,), the 
asymptotic variance of the log-transform is 1/§2 times the asymptotic variance 
of s. C~fidence intervals around 8 1 on the logarithmic scale are given by 
81 ± z(var 8 1) 1 for the appropriate z. A confidence interval on the logarithmic 
scale may be exponentially transformed back to the arithmetic scale to yield 
a second approximation to a confidence interval around s. 

Another way to set confidence limits on §, given data which do fit (1) 
according to the x2 test at some probability level, is suggested by a reviewer 
(N. Mantel): find the greatest (and least) parameter values 8* such that when 
the a 1 are fitted conditional on 8* from (8), the fit worsens just significantly. 
See Mantel and Patwary [1961]. 

The following numerical example will show that neither the arithmetic 
nor the transformed (approximate) confidence intervals around §are especially 
satisfactory for moderate sample sizes N. 

4. NUMERICAL APPLICATION: HUMAN MALARIA 

A computer program written to carry out the estimation procedure of 
section 2 calculates the current estimates of a, initially from (6) and subse-
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quently from (4) and (5). It then derives the expected values of N; from these 
estimates using (1) and compares them with the observed values of N; by 
calculating Pearson's X 2 • Iteration terminates when the changes in X 2 and 
in &i between two successive iterations are each less than 0.01. Then a second 
set of initial estimates of a, is computed from (7) and the entire procedure 
is repeated. 

This double calculation permits a comparison of the two initial estimators 
(6) and (7). In the examples of real data analyzed below, none of the corre
sponding final values of &, and X 2 in the two analyses differed by as much 
as 10-5, and hence only a single set of calculations will be presented for each 
set of data. In only one case did the two initial estimlttors require different 
numbers of iterations to quasi-converge: in the third set of data (for the 
whole sample), estimators (6) required three iterations, while (7) required 
two. The other data required two or three iterations. In general, when the 
data agreed poorly with the model (1) of no interaction, the initial estimates 
(6) were closer to the final estimates of ai than were (7), while when the data 
agreed well with (1), the initial estimates (7) \Yere closer to the final. 

Examples not reported here show that the procedure recovers accurately 
and quickly the parameter values used to generate artificial data. 

Since there are 5 data cells and 3 fitted panm1eters, the value of X 2 is 
compared with the distribution function of x" with 5 - 1 - 3 = 1 D.F. 

An example of the biological data (from Downs et al. [1943] p. 22) which 
gave rise to this estimation problem is given in Table 1. School children 

TABLE 1 

PREVALENCE OF SINGLE AND MIXED MALARIAL INFECTIONS OF SCHOOL CHILDREN IN TRINI

DAD AND TOBAGO COMPARED TO EXPECTATIONS FROM A MODEL OF NO INTICRACTION 

Nonnal spleens 

Observe db 
~ILEa 

Fitted & 

No infection 5856 5856.4 

P. falcirarum only 298 297.6 .0484 

P. vivax only 127 126.7 .0212 

P. malariae only 41 40.9 .0069 

Nixed infection 9.4 

x' 0.023 

0.8<P<0.9 

0.949 

99% con£. int. c Lower Upper 

Arithmetic .9383 .9597 

Transformed .9384 .9599 

aCalculation described in section 2. 

bData from Downs !,1: _'Q. ((1943] p. 22), 

cCalculation described in sections 3 and 4. 

Enlarged spleens All children 

r--ILE MLE 
Observed Fitted & Observed Fitted & 

1053 1172.0 6909 6920:8 

592 495,5 .2971 890 880.1 .1128 

290 214.2 .1545 417 409.0 .0558 

205 146.1 .1109 246 240.5 .0336 

78 190.3 87 98.6 

147.742 l. 782 

p « 0.01 0.1<P<0.2 

0.213 0.852 

Lower Upper Lower Upper 

.2113 .2144 .8487 .8544 

.2113 .2146 .8487 . 8579 
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(aged 5 to 15) on Trinidad and Tobago were examined and classified as having 
an enlarged spleen (spleen positive) or a spleen of normal size (spleen negative). 
Blood smears from children in both groups were examined for the presence 
or absence of each of three species of malarial parasite (genus Plasmodium). 
However, only the numbers of individuals whose blood smears had no parasites 
(N0), Plasmodium falciparum only (N1), P. vivax only (N2 ), P. malariae 
only (N3), or a mixed infection (N4) were reported. This form of censorship
the pooling of all mixed infections-is found in most reports of malaria 
surveys in areas where more than two species of Plasmodium occurred. 

The analysis is presented in Table 1 for spleen-negative children, spleen
positive children, and all children combined. For the spleen-negative children 
and the total sample, the values of X 2 (0.02 and 1.78, respectively) are too 
small to permit rejection at the 1% level of the assumption that there is no 
interaction between species of infection. For the spleen-positive children, the 
value of X 2 = 147.74 makes the hypothesis of no interaction improbable. 
Some of the difficulties of interpreting these findings will be discussed in the 
final section. 

In the presentation (section 3) of a model for measuring interaction via 
the parameter s, two confidence intervals around a sample estimate ~ were 
suggested. Using z99 . 5 = 2.58 to obtain a 99% confidence interval, these two 
confidence intervals are the usual one calculated on the arithmetic scale, 

~ ± 2.58 (;;:r ~) 1 , and the exponentially transformed interval based on the 

variance of the log-transform s' = log ~. namely exp (s' ± 2.58 (;;;:r s')1). 

These two intervals, which may be called the 'arithmetic' and the 'trans
formed,' respectively, are given along with the sample estimate ~ for each 
set of data. 

Assuming that the x2 test is a true measure of whether or not the data 
reveal interaction, the confidence intervals around ~ should include 1 (the 
value of s when there is no interaction) for the spleen-negative children and 
for the total sample, while they should exclude 1 for the spleen-positive 
children. In fact, as Table 1 shows, both the arithmetic and the transformed 
confidence intervals exclude 1 in all three cases. Thus, if the x2 test is a good 
standard, the approximate variance in (11) is not a satisfactory source of 
information about the distribution of ~-

5. INTERPRETING THE RESULTS 

When statistical analysis of data on the joint prevalence of parasitic 
species fails to reveal any association (as in spleen-negative children or in the 
whole sample), or reveals a negative association (as in spleen-positive children) 
or a positive association, circumspection is required in interpreting the results. 

The absence of apparent interaction in the contingency table does not 
necessarily imply that the parasitic species do not interact \vithin individual 
hosts. Though infections may occur independently, prior infection with one 
species may inhibit the level of infestation with a second. Such an interaction 
can be revealed only by counts of parasites in the blood, and is known to occur 
among related malaria strains in rodents (Cox and Voller [1966]). 
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A negative association among parasites-fewer mixed infections than 
expected from no interaction-could arise from at least five different causes. 
First, the parasite species could be localized in different, largely disjoint 
regions, giving no opportunities for mbmd infections, but the sample in the 
contingency table could be pooled over these regions. Second, children with 
mixed infections may suffer from increased rates of death or sickness, and 
hence be less likely to survive for or appear in a malaria survey. Third, malarial 
species may appear alternatively in the peripheral blood which is sampled in 
a survey even though both are present in the body at once; hence single-species 
infections may be observed when mixed infections actually occur. Fourth, in 
poor laboratory technique, diagnosis of a blood smear may stop or tend to stop 
after the discovery of a single parasite or single parasite species, especially 
if infection with one species is much more massive than infection with others. 
Fifth, resistance to infection mobilized by infection with one species of 
malaria may apply cross-specifically to diminish the rate or duration of 
infection with another species. 

That the negative association between malarial species was found in 
children with enlarged spleens favors the fifth explanation because enlargement 
of the spleen is one common indicator of a well developed immune response. 
Splenomegaly is not an unfailing indicator of immune response, however, 
both because the spleen may grow smaller again after development of an 
immune response and because it may enlarge for reasons other than the 
development of malaria-specific immunity. But if the preceding four alterna
tive explanations can be ruled out by stratification of the data by (1) locality 
and (2) age, and by appropriate (3) sampling and (4) diagnostic technique 
then, in combination with experimental demonstration of cross-specific 
immunity to malaria in rodents (Cox and Voller [1966]), the fifth explanation 
becomes plausible. 

A positive association between parasitic species, though not observed in 
the example given, could appear in the contingency table even though different 
species were infecting hosts independently for three reasons, at least. First, 
differences in overall levels of exposure of different fractions of the population 
sampled may be due to: differences in duration of exposure because of age 
differences, differences in altitude, differences in occupation and daily habits, 
and differences in natural immunity or susceptibility to all species of malaria. 
Second, if diagnostic procedures are variable in quality, poor examinations 
of blood slides may miss all parasites while good examinations may be more 
likely to find parasites of all species. Third, infection with one species may 
weaken the host's resistance and pave the way for other species. This last 
possibility can be taken seriously only when the contributions of the first two 
explanations have been controlled by appropriate stratification and diagnostic 
technique. 

Finally, the probability of having one infection given another says nothing 
by itself about the probability (per unit time) of getting one infection given 
another. Inferences from prevalences to incidences require supplementary 
information and arguments (Cohen [1970]). 

The sum of these caveats is that the statistical analysis is only the begin-
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ning of understanding. Yet it can be a beginning. The many malaria surveys 
carried out in this century contain a wealth of epidemiological information 
about the interactions of malarial infections that remains to be exploited. 

An example of a censored 216 contingency table of the form considered 
in this paper appears in Yao et al. [1935]. 
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ESTIMATION ET INTERACTION DANS UNE TABLE DE CONTINGENCE 
TRONQUEE 2 X 2 X 2 

RESUME 

On presente une procedure iterative pour obtenir les estim[],teurs par le maximum de 
vraisemblance des probabilites de trois attributs sans interaction quand les observations 
disponibles sont le nombre des indlvidus n'ayant aucun de.s attributs, le nombre des indi
vidus ayant chacun un et seulement un de ces attributs et le nombre des individus ayant 
deux attributs ou plus. La procedure est appliquee a de> ob>erval.ions faites sur l'etendue 
des infections simples et m6langees de la Malaria chez l'home. Les resultats sont inter
pretes avec precaution. 

REFERENCES 

Bhapkar, V. P. and Koch, G. G. [1968]. On the hypothesis of 'no interaction' in contingency 
tables. Biometn:cs 24, 567-94. 

Cohen, J. E. [1970]. A Markov contingency-table model for replicated Lotka-Volterra 
systems near equilibrium. American Naturalist 10.1,_, 547-60. 

Cox, F. E. G. and Voller, A. [1966]. Cross-immunity between the malaria parasites of 
rodents. Ann. Tropical Med. Paras1:tology 60, 297-303. 

Cramer, H. [1946]. Mathematical Methods of Statistics. Princeton University Press, Prince
ton. 

Downs, W. G., Gillette, H. P. S., and Shannon, R. C. [1943]. A malaria survey of Trinidad 
and Tobago, British West Indies. J. Nat. Malaria Soc. 2 (1) Suppl., August. 

Goodman, L. A. [1964]. Simultaneous confidence limits for cross-product ratios in contin
gency tables. J. Roy. Statist. Soc. B 26, 86-102. 

Goodman, L. A. [1968]. The analysis of cross-classified data: independence, quasi-independ
ence and interactions in contingency tables with or without missing entries. J. A mer. 
Statist. Ass. 63, 1091-131. 

Mantel, N. [1970]. Incomplete contingency tables. Biomet1·ics 26, 291-304. 
Mantel, N. and Patwary, K. M. [1961]. Interval estimation of single parametric functions. 

Bull. Int. Statist. Inst. 38, 227-40. 
Mosteller, F. [1968]. Association and estimation in contingency tables. J. Amer. Statist. 

Ass. 63, 1-28. 
Yao, Y. T., Hsu, S. C., and Ling, L. C. [1935]. On the occurrence of intestinal parasites in 

man in different combinations. A statistical study of the results of 9853 fecal examina
tions. Far East Ass. Tropical Med., Tmns. Dth Congr. Nanking 1934. 2, 31-8. 

Received April 1970, Revised November 1970 


