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Exactly the same numerical predictions of the average relative abun
dance of species that follow from MacArthur's (1957) "broken stick" 
model also follow from a "balls and boxes" model (Cohen, 1966) with a 
different set of assumptions. This paper presents a third model, the "ex
ponential" model, leading to the same numerical predictions. The assump
tions of this third model are nearly opposite to those of MacArthur's. The 
numerical data which have been taken to confirm the broken-stick model 
in fact confirm all three models equally. Hence, this paper describes some 
experimental and field obervations which could discriminate among the 
available models. 

THE BROKEN-STICK MODEL 

Considering a community of populations of n different species within 
some taxon, the broken-stick model assumes that some critical (abun
dance-limiting) factor in the environment is fixed in quantity at, say, 8 

units (per unit time, if the critical factor is a rate). Let n - 1 points 
uniformly distributed between zero and 8 divide the critical factor into 
n intervals. The "order statistics" of interval size are the interval lengths 
rearranged in order of increasing size. The model predicts that the ranked 
average abundances of the species will be proportional to the expected 
values of the order statistics of interval size. 

The biological interpretation of this model has been to assume that 
species partition the available, fixed supply of the critical factor: the 
species divide it into mutually disjoint, exhaustive subsets. If the model 
is to have any usefulness, the critical factor must be some measurable 
dimension of species' niches. Energy input to the community is currently 
favored to be the critical factor. Further explication of the biology of the 
model appears in MacArthur (1960), Slobodkin (1961), and King (1964). 
Criticisms that the model seems to predict accurately only in certain nar
rowly defined circumstances yielding certain kinds of data are evaluated 
in Cohen (1966) and are quite relevant also to the exponential model to 
be presented. 

Reviewing the numerous empirical studies of species' abundance stimu
lated by MacArthur's broken-stick model, King (1964) concluded: 
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There is, in the author's opinion, an adequate body of data to permit the state
ment that the fit of at least some natural associations to the model is not fortuitous. 
This is not evidence that the basic stipulation of nonoverlapping and contiguous niches 
is correct since the former is obviously not true, at least not true in the strictest sense. 
There may, however, be some critical area, such as food utilization, in which very 
little overlap is permitted in a stable system. If this is true the limits of such permis
sible overlap have yet to be defined. Perhaps the studies which will contribute most 
to the evaluation of the model are studies of natural history and population dynamics 
of the tested groups. Without these data it is impossible to accept or reject the bi
ological assumptions on which the MacArthur model is based. 

THE BALLS AND BOXES MODEL 

If n species are considered, the balls and boxes model likens the en
vironment to a target of n boxes. Each box is a "subniche." The set of all 
boxes occupied by balls of a species at the end of the game is that species' 
"niche." For example, a waterhole during a certain season, a grove of fruit 
trees, or insects of a certain size might constitute subniches in a game being 
played by one group of species. Further explication of the biology of the 
model is offered in Cohen (1966, chap. iii). 

The n species distribute balls into the boxes until each species' "niche" 
contains a number of subniches different from the number of subniches 
in the niche of each other species. That is, one species throws balls until 
it has at least one ball in all n boxes; another throws until it has at least 
one in any n - 1 distinct boxes; and so on down to the least abundant 
species, which throws just one ball, which must land in some one box. The 
balls and boxes model predicts that the ranked average abundances of the 
species will be proportional to the ranked expected values of the numbers 
of balls thrown by each species. 

The biological interpretation of this model, in simplified form, has been 
that the principle of competitive exclusion is satisfied by letting species' 
niches overlap as long as there is at least one subniche they do not have 
in common. It is entirely possible that all the subniches of one species may 
be among the subniches of a second species, as long as the second has at 
least one subniche which the first does not. Hence this model requires a con
siderably weaker form of exclusion than does the broken-stick model, but it 
leads to the same predictions of ranked average abundances. 

THE EXPONENTIAL MODEL 

Suppose n quantities (random variables) X1, ••• Xn are independently 
and identically distributed with the cumulative distribution function 

Pr{X; :::::; xl = 1 - e->-z, A > 0, x ;::: 0, i = 1, 2, · · ·, n. (1) 

The X, are said to be exponentially distributed with scale parameter ..\. and 
location parameter zero. Defining 

i = 1, 2, · · ·, n, (2) 

and ranking the n values Ri in increasing size gives the n order statistics 
R(l)l .•• , R(n)· The expected value of the ith order statistic is 
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i 

E(Rul) = n- 1 L (n - j + 1)-1 (3) 
i =1 

exactly as in the broken-stick model and the balls and boxes model. The 
result (3) is proved in the Appendix. 

The exponential model proposes that, at least under the circumstances in 
which the numerical predictions (3) are confirmed, the abundances of the 
species considered behave like independently, identically, exponentially dis
tributed random variables. Hence, the average relative abundances are 
given by (3). The exponential model imposes no restrictions whatsoever on 
the degree of overlap or similarity between any or all dimensions of any 
species' "niche." The model refers only to observable abundances and not 
to niches at all. 

The exponential model is convincing only if there is some good reason to 
suppose that the species' abundances might be exponentially distributed. 
Feller (1966, chap. i) presents a slightly less than infinite number of ways 
in which the exponential distribution arises mathematically. Biological in
terpretations can be attached to many of these. For instance (Feller, 1966, 
p. 1), suppose the addition of one animal to a species' population has proba
bility 1 - p of occurring and probability p of not occurring; suppose that 
this probability is independent of the existing size of the population. (I do 
not claim that this is true in general, only that it may be under the cir
cumstances where [3] holds.) If population growth, viewed as a sequence 
of Bernoulli trials, is supposed to continue until the first animal fails to 
be added to the population (until the first failure of a Bernoulli trial), 
population size will be geometrically distributed. For large population 
sizes and appropriate values of p, the geometric distribution approaches 
an exponential one. 

In general, when species are studied without reference to community 
structure, abundances seem to be nearly log normally distributed rather 
than exponentially distributed (Preston, 1948; Whittaker, 1965), so the 
mode of population growth just proposed certainly does not always hold. 
Whether the populations of the special communities for which (3) has 
been confirmed may be considered to grow by the mode just described 
or by some other mode leading to the exponential distribution is an open 
question. 

IMPLICATIONS 

Now that three distinct models predict the same set of ranked average 
relative abundances for a community of n species, one major point of 
King's conclusion becomes more important: "The fit of at least some 
natural associations to the [broken stick] model ... is not evidence that 
the basic stipulation of nonoverlapping and contiguous niches is correct" 
(1964, p. 726). But experimental and field observations could be made in 
order to discriminate among the three models. Here are some suggestions. 

Suppose energy input to the community has been selected as the critical, 
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abundance-determining factor. Equivalently, suppose we wish to test 
whether energy input is a critical, abundance-determining dimension of 
species' niches and whether species partition energy according to the 
broken-stick model. We set up a terrarium or aquarium containing a 
stable community of n (perhaps only two or three) species in some taxon, 
and we make as sure as possible that the energy inputs to the community 
are as constant as possible over time. Thus food inputs, heat flows, and 
light exposure are either kept constant or kept at a fixed level per, say, a 
24-hr period. The abundances of the species are observed on each of a 
set of dates over some long period of time (long relative to the time in 
which fluctuations in population size occur). 

Among the possible measures of abundance are number of animals, 
biomass, and respiration calories. Naturally any measure which requires 
destruction of the animals makes it impossible to observe the same com
munity at a later date. 

The abundances on each date of observation are then ranked from 
smallest to largest and divided by the sum of the abundances on that date. 
This procedure yields the relative abundance on each date. At the end of 
the experiment, all the smallest relative abundances are averaged to
gether to give the average smallest relative abundance; all the next-to
smallest abundances are averaged together, and so on up to the largest 
abundances. The resulting n average values are to be compared with the 
predictions of equation (3). 

If (3) is confirmed, we then face the problem of discriminating among 
the broken-stick, balls and boxes, and exponential models; to this problem 
we turn in a moment. 

If the observed distribution is flatter than would be predicted by (3), 
that is, if the largest average value observed is not as large as the largest 
average value predicted and if the smallest average value observed is 
larger than the smallest average value predicted, then we must consider 
the possibility of a threshold effect-a minimum population size required 
for each species to survive. 

A least squares formula for estimating the threshold from the observed 
values, assuming the broken-stick model, is given in Cohen (1966, chap. ii) 
along with a formula for predicting the ranked average abundances ac
cording to the broken-stick model when this threshold is taken into ac
count. Kendall and Stuart (1961, p. 97) give the computationally simpler, 
best linear (minimum variance, maximum likelihood) estimator of the 
threshold (location parameter) for the exponential distribution. (In the 
47 cases for which data are presented in the Appendix to Cohen [1966], the 
numerical values of the threshold given by the least squares estimator and 
by the best linear estimator are quite close.) Predicted relative abundances 
in the exponential case are calculated from (2) above, where now the X, 
need not have a location parameter equal to zero. If the predicted relative 
abundances, adjusted for threshold, correspond well to the observed values, 
then we may proceed to try to distinguish among the three models. 
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If, even after this adjustment for threshold, the predictions seem far 
from the observations, then all three models must be considered not rele
vant to the experimental situation. Insofar as the experimental situation 
can be taken as a paradigm of the distribution of abundances in certain 
parts of nature, the three models must then be considered not relevant to 
those parts of nature. 

Now suppose our predictions, with or without threshold, are confirmed 
approximately. In order to separate the broken-stick from the other two 
models, we consider the total abundances on each date of observation. 
The broken-stick model predicts that the total abundances will be constant 
(within errors of counting or of measurement) from one date of observation 
to the next, since the abundance-limiting factor, energy input, has been 
held constant. The exponential model predicts that the sum of the n species' 
abundances will not be constant but will have a r distribution (or Pearson 
Type III distribution), that is (Feller, 1966, p. 10), will have density 
function 

X(Xxt-te-~~ 

(n- 1)! ' 

where ,\ is again the scale parameter of the individual exponential func
tions. The balls and boxes model predicts that the sum of the abundances 
will be distributed as the sum of independent geometric variables with n 
different means; the moments of this distribution can be derived from the 
product of the probability generating functions of the individual geometric 
variables. 

But the main thing to look at is whether the total abundances are con
stant. If not, set aside the broken-stick model, or at least the belief that 
energy input is the critical factor in it. If so, the broken-stick model is 
strikingly confirmed. 

To discriminate the balls and boxes model from the exponential model, 
rather than trying to determine the detailed distribution of the summed 
abundances, it would probably be more useful to examine the detailed 
natural history of the species and to decide whether their "niches," how
ever defined operationally, were totally unconstrained in relation to each 
other (exponential model) or could reasonably be described as consisting 
of component "subniches," the number of which differed between any two 
species (balls and boxes models). 

Field observations which might discriminate the broken-stick from 
the exponential model have been suggested by Robert H. MacArthur (per
sonal communication, July 19, 1967). He suggests visiting an island on 
which, in the taxon being considered, half the mainland species are missing. 
The broken-stick model assumes that abundances are limited only by the 
critical factor, which would be presumed to be the same on island and 
mainland; hence the total number of individuals (per unit area) would 
be predicted to be the same on island and mainland. The exponential 
model, as proposed above, assumes that the location and scale parameters 
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are constant over time and across species, for a community with a given 
set of species; the model applies only to a fixed set of species and hence is 
consistent with either greater or lesser total abundances when the set of 
species is changed. On the additional, stronger assumption that the loca
tion and scale parameters would be constant even if the species com
position of the community were changed, the exponential model would 
predict, all else being equal, half as many total individuals in the taxon 
(per unit area) on the island as on the mainland. 

Generalizing MacArthur's idea, we could compare any two areas such 
that, within the taxon studied, the species in one area would be a strict sub
set of the species in the other area and all other factors which might affect 
abundance would be equal. The total abundances per unit area could then 
be compared as before. 

One drawback of this approach is that it may be difficult to show con
vincingly that any two distinct areas with different numbers of species are 
ecologically similar enough, particularly in their supply of the critical fac
tor, to constitute a "controlled experiment." It is thus not too surprising 
that a field study which attempted to carry out MacArthur's proposal did 
not succeed in differentiating decisively between the broken-stick and ex
ponential models. 

Crowell (1961, 1962) compared resident land-bird populations on Ber
muda and those in similar habitats on the North American mainland. Only 
a few of the species found on the mainland are found in Bermuda. Crowell 
does not give the relative abundances of all land-bird species on Bermuda, 
so it is not possible to test the predictions (3). Hence it is not possible to 
decide whether his other findings are relevant to a comparative test of the 
three models considered here. 

But, on the assumption that his other results are relevant, Crowell's 
nicely substantiated finding of "considerable overlap" in species' methods 
and loci of feeding favors the exponential or balls and boxes models. 

Crowell (1961) also found that the 10 common resident land birds of 
Bermuda "achieve total populations at least as great as those of all species 
on comparable continental communities. . . . Absence of competition in 
Bermuda has allowed the few species present to attain far greater densities 
than they do in North America." If the energy available to the birds were 
exactly the same in both places, the broken-stick model would predict the 
same total (all species) populations in both places, not greater popula
tions on Bermuda. So, according to this model, differences in energy sup
ply must be assumed. The exponential model plus the strong assumption of 
constant parameters would predict that the species found in comparable 
North American and Bermuda communities would have the same absolute 
average abundances, respectively, in both, a prediction contradicted by 
Crowell's findings. But a possible difference in available energy, and the 
presence in Bermuda of species absent from the mainland, makes the 
ceteris paribus assumption implausible. 

The strong assumption of constant parameters for the exponential dis-
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tribution, regardless of the composition of the community, does not seem 
especially compelling to me, even in a comparison of two environments 
identical except for the species present. The assumption is not especially 
attractive because the presence or absence of one species alters the situa
tion of the others, even if "all else" is equal. I would prefer to see a critical 
comparison of the three models based on long-term field studies of a num
ber of communities in each of which the species composition was constant 
over time and for each of which the energy input from year to year, say, 
was constant. Observations like those suggested above for an experimental 
community could then be made and analyzed. 

Most likely, convincing conclusions can be drawn only from a com
bination of field and experimental tests. 

CONCLUSION 

Besides the three models just reviewed, it is probable that still others, 
with other biological interpretations, would lead to the same predictions 
of average relative species' abundances (3), and it is certain that a vast 
variety of models would lead to predictions approximating (3). Hence, 
confirmation of (3) alone does not confirm the assumptions of one model 
leading to (3) against the assumptions of another. 

The moral is hardly novel: Once a set of assumptions (a model) has 
been found which accounts for certain observed data, it is necessary to ask 
what other explanations are available, to determine how these other ex
planations differ in their observable implications, and to search for data 
which could discriminate among the explanations. Means of discriminating 
among the broken-stick, balls and boxes, and exponential models have 
been suggested. 

The arguments and conclusions of this paper apply with at least equal 
strength to the testing of these models in economics (Cohen, 1966). 
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APPENDIX 
PROOF OF EQUATION (3) 

Let S = X, + ... + Xn and Rw be the ith order statistic of the n values R, 
defined in (2) above. Then, since the X, have independent r distributions and 
since Rw is a scale-free function of the X,, the Rw are independent of S (Kendall 
and Stuart, 1958, p. 368, citing Pitman, 1937, Cambridge Phil. Soc. Proc. 33:212). 
Hence E(Rw)E(S) = E(RwS) = E(Xw). But 

E(Xu)) = ~ t (n - j + 1)-1 

and E(S) = n/'A (Sarhan and Greenberg, 1962, p. 343); (3) follows immediately. 
An even shorter proof follows from the fact that R, has the same distribution 

as the ith interval, from left to right, of a unit line randomly divided as in 
the broken-stick model (Feller, 1966, p. 75). Since the distributions are identical, 
the expected values of the order statistics must be also, hence (3). 
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