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SUMMARY

We examined structural variation in soil faunal communities from 146

agroecosystems in The Netherlands, using a unique database of taxonomi-

cally highly resolved soil samples gathered by uniform methods. For each

site, data included measurements of average body mass (M) and population

density (N) of each detected taxon and environmental and human‐use
factors. We used three descriptors of soil faunal community structure:

abundance–mass slope, which is the slope of the regression line through all

faunal taxa in a site plotted on log(N)‐versus‐log(M) coordinates (all loga-

rithms were base 10); the taxonomic diversity of each community’s fauna

(number of animal taxa at the finest available level of taxonomic resolution);

and the total biomass of all fauna. The goal of the study was to account for

variation in these descriptors and to develop causal hypotheses.

These structural descriptors varied systematically. More than half of the

variation in each descriptor was explained by external human, environmen-

tal, and biotic influences. Few predictors were needed to explain structural

variation: above‐ground ecosystem type (ET, describing the kind of human

management); soil bacterial biomass; and a measure of precipitation. ET was

the most important predictor of below‐ground faunal community structure.

Abundance–mass slopes ranged from –0.85 to –0.07 with mean –0.51;

only four slopes were more negative than –3/4 (i.e., the log(N)‐versus‐
log(M) regression line was steeper than –3/4). Slopes less negative than –1

(respectively, –3/4) indicated that, on average, taxon biomass (respectively,

taxon energy consumption) increased with taxon body mass. Abundance–

mass slope was more negative in more disturbed sites than in less disturbed

sites. Disturbance may have produced this pattern by affecting populations

of large‐M taxa, which are slower to reproduce, more than small‐M taxa.

Across some types of site (super‐intensive farms and possibly intensive

farms), greater soil bacterial biomass was associated with less‐negative
abundance–mass slope, suggesting top‐down control of bacterivorous taxa.

ET and soil bacterial biomass were sufficient to explain most of the variation

in the whole abundance–mass allometric relationship, including slope and

intercept.

Total faunal biomasses were higher in recently fertilized sites. Greater soil

bacterial biomass was associated with the same increase in log faunal bio-

mass between sites, on average, for all ET. Taxonomic diversity differed in

sites of different ET in a way related to human disturbance. Precipitation

was associated oppositely with diversity in sites of different types. Testable

mechanistic hypotheses for the patterns observed here are discussed.
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I. INTRODUCTION

For decades, studies have examined the influence on food web structure of

factors such as environmental variability (Briand, 1983); three‐ versus two‐
dimensionality of habitat (Briand and Cohen, 1987); amount of primary

productivity (Briand and Cohen, 1987; Vander Zanden et al., 1999); acidifi-

cation in lakes (Locke and Sprules, 1994); habitat duration patterns in

temporary ponds (Schneider, 1997); habitat size (Spencer and Warren,

1996; Vander Zanden et al., 1999); and disturbance or ‘‘stress’’ (Havens,

1994; Jenkins et al., 1992). Differences in food web (henceforth web) struc-

ture by habitat type (e.g., pelagic versus terrestrial; Bengtsson, 1994; Cohen,

1994; Havens, 1997) and over time and space using habitats of the same type

(Carney et al., 1997; Clarke, 1998; Closs and Lake, 1994; Schoenly and

Cohen, 1991) have also been investigated. Differences in web structure

have typically been measured with a suite of descriptors based on the binary

predation matrix (P ¼ [pij], where pij is 1 if taxon j eats taxon i, regardless of

how often this occurs, and 0 otherwise), such as: link density; various kinds

of connectances (Warren, 1994, gives definitions); proportions of top, inter-

mediate, and basal taxa; and minimum, mean, modal, median, and maximal

food‐chain length (where the length of a food chain is the number of trophic

links that comprise it).

However, web studies have been criticized for using data of poor quality,

based on insufficient sampling of ecosystems (Bersier et al., 1999; Cohen

et al., 1993; Hall and Raffaelli, 1991; Martinez, 1991; Polis, 1991; Polis and

Strong, 1996; Winemiller, 1990). Statistics such as connectance and modal

food‐chain length depend sensitively on sampling effort (Goldwasser and

Roughgarden, 1997; Martinez et al., 1999; Winemiller, 1990). Incomplete

sampling limits even modern webs (Woodward et al., 2005, their Figure 3).

Descriptors of web structure based on detailed trophic data are especially

vulnerable to undersampling because ‘‘the detection of trophic links system-

atically lags behind the detection and inclusion of species, which may render

the accurate measurement of many web properties inherently problematic’’

(Goldwasser and Roughgarden, 1997).

In response to the sensitivity of traditional web descriptors to sampling

effort, several authors called for quantitative measures of trophic links, so

that the intensity or frequency of each link is used in place of a binary

indicator of whether the link occurs (Cohen et al., 1990; Kenny and

Loehle, 1991; Martinez, 1991; Paine, 1992; Pimm et al., 1991; Wootton,

1997). Quantitative measurements would better characterize webs for

which trophic links have highly uneven magnitude (e.g., many weak links

and a few strong ones; Reuman and Cohen, 2005). Bersier et al. (2002)

proposed descriptors of web structure that used quantitative link
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measurements. Their proposed descriptors, based on information‐theoretic
concepts, were intended to improve upon, but serve the same conceptual

purpose, as classical descriptors such as the proportions of top, intermediate,

and basal taxa, and link density. The quantitative‐link‐based descriptors of

Bersier et al. (2002) may be less sensitive to undersampling if undersampling

affects primarily measurements of weak links. However, the highly detailed

web data needed to calculate descriptors such as those of Bersier et al. (2002)

are difficult to obtain; they include an empirical estimate of the strength of

each trophic link. We took the opposite approach here: we used descriptors

expected to be more robust to moderate undersampling because they do not

use trophic data. Vander Zanden et al. (1999) took a similar approach using

stable‐isotope indicators of web structure that did not require detailed trophic
data. We explain how the descriptors we used reflect web structure without

using trophic data (Section II). The work of Cyr et al. (1997) was similar to

ours, but used lakes. Some of their results are comparable to ours.

Most studies of the relationship between population density (N) and

average body mass (M) of species (e.g., Damuth, 1981; Peters, 1983; Russo

et al., 2003; reviews include Blackburn and Gaston, 2001; Kerr and Dickie,

2001; Leaper and Raffaelli, 1999) focused on species from a single broad

taxon or trophic level (e.g., birds or herbivorous mammals). When such data

were gathered globally or regionally, log(N)‐versus‐log(M) scatter plots

often showed a linear relationship and had regression slope (here called

abundance–mass slope) about �3/4 (e.g., Damuth, 1981, 1987; Greenwood

et al., 1996; Nee et al., 1991). This macroecological relationship has been

explained using metabolic theory (Brown et al., 2004; West et al., 1997) and

other mechanisms (e.g., Blackburn and Gaston, 1993). For all taxa in a local

web (an ecological context very different from that in which data on only one

clade are gathered, be it locally, regionally, or globally), recent studies found

that log(N) was often linearly related to log(M) but abundance–mass slopes

varied widely from web to web (Cohen et al., 2003; Cyr et al., 1997; Jonsson

et al., 2005; Leaper and Raffaelli, 1999; Marquet et al., 1990; Mulder et al.,

2005a, Reuman et al., this volume; Woodward et al., 2005). The faunal

abundance–mass slope of a web was one of the descriptors used in this

study. Total biomass of all fauna and taxonomic diversity of all fauna were

also used.

This study examined the structural variation in 146 soil agroecosystems in

The Netherlands. Our descriptors of soil faunal communities did not use

trophic data, but reflected patterns of energy flow through the web and

indirectly reflected web structure (Section II). We found that variation in

abundance–mass slopes and other descriptors was largely explained in terms

of environmental, human‐use, and biotic factors. We developed testable

hypotheses of mechanisms.
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II. SOIL FAUNAL DESCRIPTORS

Names and units of soil faunal community descriptors are listed in Table 1

and explained here.

Table 1 Names, abbreviations (if defined), and units for all variables in four cate-
gories: environmental, human‐use, and non‐faunal biotic variables, and soil faunal
descriptors

Name of variable Units and measurement information

Environmental variables
Mean daily air temperature �C, mean over 21 days before sampling
Mean noon air temperature �C, mean over 21 days before sampling
Mean daily precipitation mm, mean over 21 days before sampling
Maximum daily precipitation mm, max over 21 days before sampling
Modified Julian date a linear function of Julian Day; see text
Phosphate content
(after water extraction)

mg P2O5/l

Phosphorus content (after
acetate–lactate extraction)

mg P2O5/kg dry soil

Soil pH Power of H in KCl
Latitude m south from Amersfoort
Longitude m west from Amersfoort
Area of site Hectares

Human‐use variables
Above‐ground
ecosystem type (ET)

Forest, pasture, winter farm, organic farm,
conventional farm, intensive farm, or
super‐intensive farm

Standardized livestock density Animal units that excreted an average of 161 kg
N/(ha yr) and 41 kg P/(ha yr)

% of site on which maize grew %
% of site on which grass grew %
% of site used for other crops %
Phosphorus in‐flux from manure kg/(ha y), proportional to livestock density

Carbon resource variables
Soil bacterial biomass mg C/g dry soil
Log soil bacterial biomass log mg C/g dry soil
Soil organic matter % of dry soil
Bacterial diversity Band count after DGGE
Shannon–Wiener index of
bacterial diversity

Index of DGGE band patterns

Percent bacterial cells dividing %, measured one week after sampling
Mean bacterial cell length mm

Soil faunal descriptors
Faunal diversity Number of taxa
Total faunal biomass mg/m2

Abundance–mass slope –
Abundance–mass intercept Individuals/m2, log scale
Expected log(N) of smallest taxa Individuals/m2, log scale
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A. Abundance–Mass Slope

The abundance–mass slope of a site is the coefficient b in the linear model

logðNÞ ¼ b logðMÞ þ aþ e ð1Þ
fitted by ordinary least squares regression to data on animal taxa in the

soil samples from the site. Bacteria were excluded because their level of

taxonomic resolution (a single node) was not comparable to that of other

taxa. Only the total biomass of fungal mycelia and organic detritus was

quantified (Mulder et al., 2005a), so fungal mycelia were excluded from

calculations of abundance–mass slopes. Protists were not quantified, but

are virtually absent from sandy soils such as those used in this study.

Abundance–mass slope provides information about how faunal taxon

biomass varies with taxon M. Because the biomass B of a taxon is its

abundance N times its average body mass M, B ¼ NM, the abundance–

mass slope plus one indicates how B changes for taxa of increasing body mass

(Cohen et al., 2003). If b ¼ –1, then the trend is for all taxa to have equal

biomass. If the abundance–mass slope is less negative than –1, for example,

if b ¼ –3/4, then biomass tends to increase with increasing body mass; if the

abundance–mass slope is more negative than –1, for example, if b ¼ –5/4,

then biomass decreases with increasing body mass.

Abundance–mass slope also describes how taxon energy consumption

varies with taxon M, reflecting how energy flows through the web. The

energetic equivalence hypothesis assumes that taxa absorb energy from the

environment in amounts that do not depend systematically on M (Damuth,

1981, 1987). If all taxa absorb energy at constant rate R, then since the

metabolic rate E of an individual organism is approximately a power law

of its body mass, E ¼ kM
�
indiv (e.g., Peters, 1983), then (henceforth, neglect-

ing variation of individuals’Mindiv from the meanM of their respective taxa)

we can write R ¼ kNM�, so that N ¼ R/(kM�), and

logðNÞ ¼ �� logðMÞ þ logðR=kÞ ð2Þ
Thus the energetic equivalence hypothesis predicts an abundance–mass slope

b ¼ –�. The value of � is often claimed to be close to 3/4 (Brown et al., 2004;

Peters, 1983; West et al., 1997). Observing an abundance–mass slope less

negative than (respectively, more negative than) –� suggests that larger taxa

absorb more (respectively, less) energy from the environment than smaller

taxa. Departures of abundance–mass slopes from the benchmark value –3/4

register departures from energetic equivalence or a failure of the metabolic

assumption that all taxa absorb energy at a rate proportional to NM�

(Figure 1).

If webs are size‐structured so that large taxa eat primarily small ones, then

differences between webs in abundance–mass slope reflect differences in how
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Figure 1 Differences in abundance–mass slope and intercept. Dots are populations
of taxa in hypothetical webs; solid lines are ordinary least squares regressions whose
slopes are the abundance–mass slopes. The communities in (A, C) have more‐negative
(steeper) abundance–mass slopes than that in (B). The community in (C) has higher
abundance–mass intercept than those in (A, B). Dashed lines have slope –1: two taxa
on the same dashed line have the same biomass; taxa on higher dashed lines have more
biomass. Dotted lines have slope –3/4: two taxa on the same dotted line consume the
same amount of energy; taxa on higher dotted lines consume more energy.

ABUNDANCE–MASS ALLOMETRY IN FOOD WEBS 51

Author's Personal Copy
energy filters through trophic links, which is related to web trophic structure.

In a two‐species food chain, if the population production of the resource r is

kNrMr
� and the population production of the consumer, c, of r is kNcMc

�,

assuming all production of r is consumed by c, then

akNrM
�
r ¼ kNcM

�
c ð3Þ

where a is the efficiency by which c converts what it eats into its own

production. Taking logs of this equation and rearranging gives

logðNcÞ � logðNrÞ ¼ logðaÞ � �½logðMcÞ � logðMrÞ� ð4Þ
Dividing Eq. 4 by log(Mc)–log(Mr) shows that the slope of the line connec-

ting r and c on log(N)‐versus‐log(M) axes (the abundance–mass slope) is

log(a)/log(b)–�, where b ¼ Mc/Mr is the consumer‐to‐resource body mass

ratio. Several authors have elaborated this theory to relate aspects of food

web structure such as average consumer‐to‐resource bodymass ratio andmass‐
specific taxonomic diversity to the abundance–mass slope of this study and

other types of mass–abundance allometry (Brown et al., 2004, especially their

Eq. 13; Damuth, 1994; Jonsson et al., 2005; Reuman et al., 2008, this volume).



52 DANIEL C. REUMAN ET AL.

Author's Personal Copy
B. Faunal Diversity and Total Biomass

Soil faunal taxonomic diversity, or simply faunal diversity, was defined as the

number of faunal taxa in each site. For clarity, we emphasize that this count

excluded bacteria, fungal mycelia, plant roots, and detritus. Many previous

studies used the number of web nodes (often denoted S) to describe or model

web structure (e.g., Cohen, 1990; Williams and Martinez, 2000). Other

studies examined spatial variation in the diversity of species within a clade

such as birds or nematodes (Jetz and Rahbek, 2002; Mulder et al., 2003).

Variation of single‐clade diversity may be easier to study than variation in

whole‐web diversity because taxonomic expertise is often specific. However,

organisms live in physical sites which include taxa from many clades, so

variation in site diversity is also ecologically important, and the local diversity

of clades depends in part on the site’s entire biotic structure. Thinking of

diversity at a site as a vector of the numbers of taxa with one entry for the

number of taxa of each major clade is a useful way to combine clade‐specific
and whole‐site or whole‐web approaches in future research. The total faunal

biomass of each site was computed by summing MN over all faunal taxa.

C. Abundance–Mass Intercept and Expected Log Population
Density of Smallest Taxa

We defined the abundance–mass intercept of a site as the coefficient, a, in Eq. 1,

fitted to faunalM andN data from the site. Abundance–mass intercept depends

on the units ofM because the vertical axis (the log(N)‐axis) occurs atM¼ 1 unit

(log(M)¼ 0). The same units forM (micrograms drymass) were used through-

out the study but the abundance–mass intercept is not easy to interpret because

log(M) ¼ 0 (M ¼ 1 mg) occurred in the middle of the body‐mass range.

We used a web descriptor that contained the same information as

abundance–mass intercept and was easier to interpret biologically: the

expected log(N) of the smallest taxa. The smallest faunal taxa in each site

were about the same size. The minimum log(M) occurring in each site had

mean value –1.5 (M ¼ 10–1.5 ¼ 0.032 mg, corresponding to the average body‐
mass values of soil nematodes such as Aphelenchoides and Metateratocepha-

lus) and ranged from –1.4 to –1.6. An expected log(N) of smallest taxa was

defined for each site to be the value log(N) of the best‐fitting line Eq. 1 at

log(M) ¼ –1.5. Expected log(N) of smallest taxa has a clear biological

interpretation and is independent of the units used to measure M. If units

of M were chosen so that the smallest taxa had M ¼ 1, then expected log(N)

of smallest taxa would equal abundance–mass intercept. In a size‐structured
system, expected log(N) of smallest taxa is directly affected by the energy

available to basal species and by their consumers.
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III. DATA

All data for this study were gathered between 21 April 1999 and 4 June 2002

from 146 farms, pastures, and forests on Pleistocene sand in The Nether-

lands. Mulder et al. (2003, 2005a,b) gave complete details on how data were

gathered. We here describe the nature of the data including definitions and

units of measurement. Names, units, and abbreviations of variables are listed

in Table 1.

A. Data on Taxonomy, Average Body‐Mass, and
Population Density

For each site, all soil animals, including nematodes, arthropods (mites,

insects, and myriapods), enchytraeids (potworms), and lumbricids (earth-

worms), were identified to genus or family. Of the 65 nematode, 177 arthro-

pod, and 18 oligochaete taxa identified in any of the 146 sites, 78% of the

nematodes, 88% of the microarthropods, and 100% of the oligochaetes were

identified to genus; the rest to family. For each taxon, average body mass

(M, in micrograms dry mass) and population density (N, in individuals per

square meter of soil surface) were measured. The same M was used for all

sites where a given taxon occurred. Bacteria, fungal mycelia, plant roots, and

detritus were each treated as single ‘‘taxa’’; of these, M and N were obtained

only for bacteria. Protists were ignored.

B. Environmental Data

Modified Julian date started on 17 September with a value of –164 and

increased by one each subsequent day until 16 September, where it stopped

with a value of 200 in a nonleap year and 201 in a leap year. Both modified

Julian date and standard ‘‘Julian Day’’ (Mulder et al., 2003) must start on

some day of the year, artificially indicating a difference of 365 or 364 between

that day and the previous one (for leap years and nonleap years, respectively).

We used modified Julian date because the new discontinuity occurred in the

middle of the largest interval with no sampling. Modified Julian date values

ranged from –16 to 122, well away from the discontinuity.

The Royal Netherlands Meteorological Institute (www.knmi.nl, De Bilt)

supplied air temperature and precipitation data (minima, maxima, and

averages for the 21 days before sampling) near each investigated location.

The mean of the highest and lowest temperatures on each day were provided,

and the mean of these minima and maxima is calculated over the period of

21 days.

http://www.knmi.nl
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Soil phosphorus content was measured using two methods of extraction.

Phosphate content after water extraction used aqueous extraction at water‐
to‐soil ratio 60:1 by volume, after 22 h of pre‐equilibrating soil with water,

and 1 h of gently shaking before filtration (Sissingh, 1971). Phosphate con-

tent after water extraction reflects the maximal possible concentration of

phosphorus in the soil moisture biofilm, a thin layer of water around soil

particles. Phosphorus content after acetate–lactate buffer extraction includes

phosphorus occluded in oxides on the surfaces of soil particles and in water‐
insoluble compounds. Results of the two methods were highly correlated in

our 146 sites (R2 ¼ 81.4%).

Acidity (pH) of oven‐dried soil samples was measured in 1 M potassium

chloride solution. Latitude and longitude were given in meters, falsely pro-

jected south and west, respectively, from Amersfoort (52 �0902200N,

5 �2301500E; see Mulder et al., 2005b). This stereographic double‐projection
on the Bessel spheroid is widely used in The Netherlands.

C. Human‐Use Data

1. Above‐Ground Ecosystem Type

Above‐ground ecosystem type (ET) took seven values: forest, winter farm,

pasture, organic farm, conventional farm, intensive farm, and super‐
intensive farm (Mulder et al., 2005a,c, 2006; Schouten et al., 2004). The last

five ETs were called cultivated farms.

Winter farms were defined to be lands not cultivated or grazed at the time

of sampling, but previously and later used for grazing or to grow non‐cereal
crops. Previous land‐use of winter farms included multicropping, intercrop-

ping, crop rotation, and alley cropping. Forests were subjected to the low‐
intensity management of traditional agroforestry; they were typically planta-

tions of Scots pine (Pinus sylvestris), but sometimes also included European

larch (Larix decidua) or naturalized Douglas fir (Pseudotsuga menziesii).

Other sites were cultivated actively at the time of sampling. Management

regime was the most important factor in defining the other ET values.

Organic farms, pastures, and conventional farms were subjected to middle‐
intensity management; intensive and super‐intensive farms were subjected to

high‐intensity management. Organic farms were certified organic by the

Agricultural Economics Research Institute of The Netherlands (LEI‐DLO,

www.lei.wur.nl). Bio‐organic and biodynamic farming techniques were used

on organic farms. Compost and farmyard manure were used for fertilization;

no biocides were used. Pastures were used for both grazing and farming.

They were similar to organic farms, and used specific agronomic practices to

enhance nitrogen fixation by the rhizobia of the clovers Trifolium repens and

54 DANIEL C. REUMAN ET AL.
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Trifolium pratense. On conventional farms, mineral fertilizers were used

to compensate for the much smaller amount of farmyard manure used

compared to organic farms.

On intensive and super‐intensive farms, both organic and mineral fertili-

zers were used in substantial amounts. More biocides were used on super‐
intensive farms than on intensive farms. Biocide and fertilizer use informa-

tion was gathered through farmer interviews. The Dutch Central Bureau of

Statistics (CBS) regularly surveyed the use of chemical pesticides in arable

and horticultural farming (www.cbs.nl). Previous surveys were conducted in

1992, 1995, 1998, and 2000. Livestock density also played an important role

in site classification, as did farm area, crop mixture, the farming regime used

during the 5 years before sampling, and recent harvest or planting (Mulder

et al., 2005d,e). The majority of sites of this study were rural (87.0%); the

majority of farms were no‐tillage (61.4%). Numbers of sites of each ET

are listed by Reuman et al. (this volume, their Table 4).

2. Other Human‐Use Data

Standardized livestock density was measured as the numbers of animal units

(cows, calves, pigs, and poultry) per hectare that excreted an average of

161 kg N ha–1 yr–1 and 41 kg P ha–1 yr–1 according to the CBS (www.cbs.

nl, accessed February 2006). The percentages of each site on which grass,

maize, and other crops (mainly potatoes and beets) grew were measured.

Phosphorus in‐flux from animal manure was assumed to be proportional to

standardized livestock density, and was therefore not included as a separate

predictor in models.

D. Carbon Resource Data

Carbon resource data describe important carbon pools that support the

bottom of the soil faunal food web: soil organic matter and bacteria. Soil

bacterial biomass (Mulder et al., 2005a) and its logarithm were predictors in

models (see Section IV). Soil organic matter was measured as a percent of dry

soil. Genetic diversity of bacteria was determined using Denaturing Gradient

Gel Electrophoresis (DGGE; Mulder et al., 2005a,b) after DNA amplifica-

tion by polymerase chain reaction (PCR) using a general probe for bacterial

16S‐ribosomal DNA (Bloem and Breure, 2003). The variable genetic diversi-

ty of bacteria used here was the number of bands appearing after electropho-

resis at fixed denaturant concentration. Band patterns were analyzed by

image analysis using two replicates per site. Bacterial cells were counted in

soil smears by fluorescent staining (Paul et al., 1999). Cell numbers, lengths

http://www.cbs.nl
http://www.cbs.nl
http://www.cbs.nl
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(in micrometers) and the frequencies of dividing cells (percentages of

bacterial cells dividing one week after sampling) were determined by direct

confocal laser scanning microscopy coupled to a fully automatic image

analysis system (Mulder et al., 2005a).

IV. METHODS

All computations were done in Matlab version 6.5.0.180913a (R13).

A statistical significance level of 1% was used.

A. Classification of Variables

Variables classified (in Table 1) as environmental variables, human‐use
variables, and carbon resource variables were used to predict response

variables classified as soil faunal descriptors.

B. Stepwise Regression

To analyze variation in soil faunal descriptors and to develop hypotheses

about causes of the variation, stepwise linear regression was an appropriate

exploratory technique because of its simplicity. We used the stepwise linear

regression algorithm of Appendix I. Starting from amodel that predicts a soil

faunal descriptor by its mean, the algorithm alternately may add predictors

for greater explanatory power, and remove them for model simplicity.

A backward‐only elimination procedure was not used because we wanted

simple models. A forward‐only procedure was not used because many pre-

dictors of this study are related, and a model without redundancy was desired.

Our stepwise procedure rarely removed predictors, so a forward‐only method

might have produced similar results.

C. Testing Assumptions of Linear Models

The standard linear model Eq. 1 makes five principal assumptions about

data, listed in most elementary statistics texts and reviewed by Cohen and

Carpenter (2005) and Reuman et al. (this volume). The validity of four

assumptions can be tested statistically with our data. Because 110 of the

146 sites satisfied all four testable assumptions at the 1% level (Reuman et al.,

this volume), we used abundance–mass slopes and intercepts of all sites for

subsequent modeling of these descriptors. Including sites that violated the
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regression assumptions was not statistically problematic because we used only

the point estimates of b and a, not their confidence intervals. Stepwise regres-

sion was also used to construct linear models of b and a using only the 110 sites

for which assumptions were satisfied (Appendix III), with similar results.

We also used the general linear model

y ¼ Xbþ e ð5Þ
where y is a site descriptor and X encodes predictors. We tested whether

data met the assumptions of each general linear model using seven tests,

described in Appendix II. Results of these tests are in Appendix III. Typically,

assumptions were not violated, or were only mildly violated.

V. RESULTS

A. Models of Soil Faunal Community Structure

Linear models of abundance–mass slope, log faunal biomass, and faunal

diversity explained, respectively, 58.0%, 60.7%, and 73.8% of the variation

in the three response variables (Table 2). Of the 23 potential predictors

(environmental, human‐use, and carbon resource variables, Table 1), step-

wise regression selected only ET, maximum daily precipitation, soil bacterial

biomass, and soil organic matter. Soil organic matter provided only a mar-

ginal increase in total R2, but this may be expected since soil organic matter

was uniformly low for sandy soils such as those of this study, and did not

vary much among our sites compared to differences in soil organic matter

between sandy soils and other types of soil such as clay and peat. A large

percentage of observed variation in all soil faunal descriptors was explained.

Only a few predictors were needed.

B. Relative Importance of Variables

1. ET was the Most Important Predictor

ET alone explained 51.7%, 56.6%, and 66.0% of the variation in abundance–

mass slope, log faunal biomass, and faunal diversity, respectively (Table 2).

ET was always the most influential single predictor and was always chosen

first in stepwise regression.

ET provides information about soil faunal structure beyond that

contained in all other predictors combined. All predictors including ET

(but excluding interaction terms) explained significant variation in faunal

diversity (69.9%) beyond that explained (57.6%) by all predictors except ET



Table 2 Coefficients of determination (R2) for linear models of site descriptors (first column)

Response
variable

R2, sole predictor
ET (%)

Second predictor Increment in
R2 (%)

Third
predictor

Increment in
R2 (%)

Total R2

(%)

Abundance–mass
slope

51.7 ET � soil bacterial biomass
(Figure 3)

6.3 NA NA 58.0

Log faunal
biomass

56.6 Soil bacterial biomass
(Figure 4)

4.1 NA NA 60.7

Faunal diversity 66.0 ET � maximum daily
precipitation (Figure 5)

6.3 Soil organic
matter

1.6 73.8

Final models never had more than three predictors. Stepwise regression did not include an additional predictor in a model unless inclusion caused a

significant increase in R2 (1% level, F‐tests). ET, maximum daily precipitation, soil bacterial biomass and soil organic matter are defined in Table 1. ET� y

denoted interaction terms between ET and y. NA ¼ Not Applicable, because no significant third predictor was selected. Total R2 may differ from sum of

component R2s due to rounding.
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(F6,111 ¼ 7.6, p < 0.0005). The same was true with marginal significance for

abundance–mass slope (61.4% vs. 55.3%, F6,111 ¼ 3.0, p ¼ 0.01), and log

faunal biomass (67.9% vs. 62.9%, F6,111 ¼ 2.9, p ¼ 0.012).

2. Human‐Use Variables Were More Important Than

Environmental Variables

Human‐use variables substantially influenced soil faunal descriptors even

after controlling for the influence of environmental variables. Environmental

effects on descriptors were mediated by human‐use factors. In detail, human‐
use variables explained more variation in each soil faunal descriptor than did

environmental variables (faunal diversity: 65.5% vs. 45.0%; abundance–mass

slope: 51.4% vs. 34.1%; log faunal biomass: 59.9% vs. 49.5%). Human‐use
and environmental variables together explained significantly more variation

in each soil faunal descriptor than environmental variables alone (F‐tests,
p< 0.0005 for all three), but not significantly more than human‐use variables
alone (F‐tests, p > 0.042 for all three).

For the model including all human‐use and environmental predictors, R2

values for each soil faunal descriptor were: for faunal diversity, 67.3%; for

abundance–mass slope, 58.8%; for log faunal biomass, 63.2%.

3. Comparison Between Human‐Use and Carbon

Resource Variables

Human‐use variables substantially influenced abundance–mass slope and

faunal diversity after controlling for carbon resource variables. The effects

of carbon resource variables on abundance–mass slope and faunal diversity

were mediated by human‐use factors. In detail, human‐use variables

explained more variation in these two descriptors than did carbon resource

variables (abundance–mass slope: 50.7% vs. 37.7%; faunal diversity: 65.4%

vs. 33.0%). Human‐use and carbon resource variables together explained

significantly more variation in each of these two descriptors than carbon

resource variables alone (F‐tests, p< 0.0005), but not significantly more than

human‐use variables alone (F‐tests, p > 0.113). For the model including

all human‐use and carbon resource predictors, R2 values were 68.4% for

faunal diversity and 53.1% for abundance–mass slope.

For log faunal biomass, models using both human‐use and carbon resource

predictors explained significantly or marginally significantly more variation in

both descriptors thanmodels with human‐use predictors alone (R2¼ 58.7% vs.

63.7%, F7,124 ¼ 2.4, p ¼ 0.022), and also more variation than models with

carbon resource predictors alone (R2 ¼ 38.4% vs. 63.7%, F10,124 ¼ 8.7,

p< 0.0005).
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4. Human‐Use Predictors Were Essential

Human‐use variables explained significant additional variation in all soil

faunal descriptors beyond that explained by all other predictors (i.e., envi-

ronmental and carbon resource) combined (faunal diversity: 69.9% vs.

51.1%; abundance–mass slope: 61.4% vs. 44.8%; log faunal biomass: 67.9%

vs. 56.0%; F‐tests, p < 0.0005 for all).

C. Interpreting Variation in Structure

Since ET was an important predictor of soil faunal descriptors, we summa-

rize the mean values of each descriptor by ET, and give ranks and statistical

ranks of the ET for each descriptor (Table 3). By computing mean

abundance–mass slope (Table 3) and intercept and mean expected log(N)

of smallest taxa by ET, we found the mean abundance–mass allometry line

for each ET (Figure 2). Forests, the most nutrient‐limited and possibly the

least disturbed ET, had the least negative mean abundance–mass slope

(–0.30), the lowest average soil faunal biomass, and the highest mean faunal

diversity. Forests had, on average, the most rapid increase of taxon biomass

and energy consumption with taxon M. Winter farms had the most negative

mean abundance–mass slope (–0.61), the lowest average faunal biomass
Table 3 Mean values of soil faunal descriptors by above‐ground ecosystem
type (ET)

Abundance–mass
slope

Log faunal
biomass

Faunal
diversity

Forests –0.30 (1a) 5.88 (7b) 76.9 (1a)
Organic farms –0.52 (4b) 6.56 (4a) 52.1 (4c)
Pastures –0.48 (3b) 6.66 (2a) 61.9 (2b)
Conventional farms –0.56 (6b) 6.57 (3a) 44.9 (7c)
Intensive farms –0.54 (5b) 6.48 (5a) 46.3 (6c)
Super‐intensive

farms
–0.48 (2b) 6.71 (1a) 61.6 (3b)

Winter farms –0.61 (7c) 5.90 (6b) 48.4 (5c)
p‐Values 5.8% 27.7% 3.8%

Numbers in parentheses are ranks of the mean values by ET. Superscript letters indicate a

statistical rank: a linear model in which the sole predictor was a categorical variable with

categories given by the letters was not statistically significantly different from the model with

sole predictor ET (F‐tests, p‐values given in the last row). For example, in predicting abundance–

mass slope, a model with three categories (a) forests, (b) organic farms, pastures, conventional

farms, intensive farms, and super intensive farms, and (c) winter farms, was not statistically

different from the model with sole predictor ET.
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(statistically tied with forests), and the lowest mean faunal diversity. Winter

farms had, on average, the slowest increase of taxon biomass and energy

consumption with taxon M. Cultivated farms were intermediate between

forests and winter farms in many respects.

1. Explaining Abundance–Mass Slope: Disturbance

and Top‐Down Effects

Several possible mechanisms (e.g., disturbance and fertilization) could

account for the dominant influence of ET on soil faunal structure. Winter

farms may have been most disturbed by humans and environmental factors:

they were sampled during winter and had been cleared of most crops at last

harvest. Forests may have been least disturbed: they were not actively man-

aged. Cultivated farms may have suffered an intermediate level of human

and environmental pressure. Increasing disturbance (here only speculatively

assessed) from forests (no grazing or tillage) to cultivated farms (grazing, no

tillage) to winter farms (winter conditions, tillage, no grazing) may have had

a more detrimental impact on present large‐bodied animals, which are slower

to reproduce, causing the corresponding decrease (steepening) in slope

(Table 3). We hypothesize that disturbance is one of the mechanisms

(see Section VI) responsible for the variation in abundance–mass slopes.

Our results do not suggest that disturbance can explain the presence or



62 DANIEL C. REUMAN ET AL.

Author's Personal Copy
absence of specific small versus large taxa, but only that disturbance may

help explain relative abundances of taxa that are present. Lumbricids, which

encompass the largest‐M taxa in any of our sites, were absent in both

relatively undisturbed sites (forests) and in relatively disturbed sites (winter

farms), but were present in sites hypothesized to have intermediate levels of

disturbance.

Increasing soil bacterial biomass was associated with increasing (less steep)

abundance–mass slope for super‐intensive and possibly intensive farms

(Figure 3). The increase in abundance–mass slope with increasing soil bacterial

biomass may have reflected top‐down control of faunal populations in super‐
intensive and intensive farms: as the bacterial resource available to low‐M,
ET
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Figure 3 Linear model of abundance–mass slope as a function of above‐ground
ecosystem type (ET) and soil bacterial biomass. Line styles correspond to ET as in
Figure 2. The model that constrained to 0 all model slopes except that for super‐
intensive farms (so that all lines on the figure except the one for super‐intensive farms
would be forced to be flat) explained 54.9% of the variation, not significantly less than
the model that estimated all ET slopes independently (F6,132 ¼ 1.6, p ¼ 14.7%).
Although the general‐linear‐model confidence intervals for intensive farms included 0,
when abundance–mass slope was regressed against soil bacterial biomass for intensive
farms only (ordinary linear regression), the slope was significantly positive (p¼ 0.1%):
abundance–mass slope may have increased with increasing soil bacterial biomass for
intensive farms, as well as for super‐intensive farms.
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bacterivorous faunal taxa increased, abundances of high‐M consumers of

these animals apparently increased faster than the abundances of the low‐M
taxa themselves, suggesting that the high‐M taxa were partly responsible for

keeping populations of their prey in check (cf. Wardle et al., 1998).

2. Explaining Abundance–Mass Allometry

A model with sole predictor ET explained 71.1% of the variation in expected

log(N) of smallest taxa (F6,139 ¼ 56.9, p < 0.0005). Forests had the lowest

mean expected log(N) of smallest taxa (¼ 3.44; N ¼ 103.44 ¼ 2754.3 indivi-

duals/m2). Other ETs, including winter farms (mean ¼ 4.15), had similar

mean expected log(N) of smallest taxa, ranging from mean ¼ 4.04 (super‐
intensive farms) to mean ¼ 4.50 (conventional farms). Forests had rare

smallest faunal taxa relative to other sites, whereas in winter farms the

abundance of the smallest faunal taxa was comparable to that of cultivated

farms. The largest taxa occurring in forests were about as abundant as

similar‐sized taxa in cultivated farms and the largest taxa in winter farms

were much less abundant than similar‐sized taxa in other sites (Figure 2).

ET and soil bacterial biomass sufficed to predict the allometric relation-

ship Eq. 1 in its entirety (both slope and intercept or expected log(N) of

smallest taxa). The sole predictor ET explained most of the variation in

the intercept (R2 ¼ 74.4%; p < 0.0005), and in expected log(N) of smallest

taxa. ET and the interaction ET � soil bacterial biomass predicted the

slope b (Table 2, Figure 3). ET and soil bacterial biomass were also sufficient

to predict log faunal biomass (next section and Table 2). Faunal biomass was

related to abundance–mass slope and intercept: shifting all taxa up by the

same amount on log(N)‐versus‐log(M) axes corresponds to multiplying all

faunal N values by the same factor, and would increase both log faunal

biomass and abundance–mass intercept by the log of that factor.

3. Explaining Faunal Biomass: Fertilization and Disturbance

Mean log faunal biomasses of forests and winter farms were statistically

indistinguishable and smaller than those of the other ETs; mean log faunal

biomasses for other ETs were also indistinguishable from each other

(F5,139 ¼ 1.3, p ¼ 0.277; Table 3). Winter farms and forests were not recently

heavily fertilized, whereas other sites were. We hypothesize that recent fertil-

ization contributed to increased soil faunal biomass. Livestock density

provides only a partial measure of fertilization because cattle manure is

only one form of fertilization. Forests and winter farms had no livestock.

Disturbance may also have contributed to low faunal biomass for winter
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farms if winter farms can be considered greatly disturbed and if disturbance

preferentially affected large organisms like earthworms.

Increasing soil bacterial biomass was associated with the same rate of

increase in log faunal biomass for all ET (Figure 4). This effect was of

secondary importance to the effect of ET (Table 2).

4. Explaining Faunal Diversity: Disturbance

Mean faunal diversity distinguished three groups of ET: (1) forests had

highest diversity; (2) super‐intensive farms and pastures had intermediate

diversity; and (3) winter, conventional, organic, and intensive farms had

lowest diversity (Table 3). Comparing winter farms and forests suggests

that disturbance may have been one factor decreasing faunal diversity.

However, because super‐intensive farms had higher diversity than intensive
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Figure 4 Linear model of log faunal biomass as a function of above‐ground ecosys-
tem type (ET) and soil bacterial biomass. Line styles correspond to ET as in Figure 2.
A model that constrained the y‐intercepts for the winter farm and forest lines to take a
single value, and the y‐intercepts of all the other lines to take a single value (possibly
different from the single value for winter farms and forests) explained 58.5% of the
variation in the response variable, not significantly less than the model that estimated all
y‐intercepts independently (F5,138 ¼ 1.52, p ¼ 18.8%). Similar results were obtained by
regressing log faunal biomass against ET and log soil bacterial biomass (Figure S1).
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farms, other factors were likely also operative, or disturbance operated in

several ways (next section).

Increasing maximum daily precipitation increased diversity significantly

(1% level) for winter farms and significantly decreased diversity for pastures

(Figure 5). For intensive farms, the mean of daily precipitation over the

21 days before sampling (mean daily precipitation) was positively associated

with diversity (R2 ¼ 35.5%, F1,144 ¼ 10.5, p ¼ 0.004). Thus, precipitation

affected diversity oppositely in sites of different types. Soil organic matter

was also included as a predictor in the model of faunal diversity selected by

stepwise regression, but soil organic matter increased total R2 by only 1.6%.

D. Testing for Artifacts

As noted above (Section III.A), �78% of nematodes, 88% of microarthro-

pods, and 100% of oligochaetes were genera and the rest were families. Thus,

taxonomic resolution was slightly higher for larger‐M taxa, as expected from
ET
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above‐ground ecosystem type (ET) and maximum daily precipitation during the
21 days prior to sampling. Line styles correspond to ET as in Figure 2. The model
that constrained to 0 all slopes except those for pastures and winter farms explained
71.0% of the variation, not significantly less than the model that estimated all slopes
independently (F5,132 ¼ 1.2, p ¼ 31.4%).
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the many physiological traits and comprehensive classification keys available

for soil mesofauna and macrofauna in comparison to the few traits used for

the terrestrial nematofauna. Although there was some overlap in log(M) at

the extremes of the size distributions of nematodes, arthropods, and enchy-

traeids (Figure 6; lumbricids are off the abscissa to the right), most arthro-

pods were larger than most nematodes and most enchytraeids and all

lumbricids were larger than most arthropods. Because smaller taxa were

less well resolved, average abundance–mass slope may have been less than

(steeper than) it would have been if all taxa were genera. Still, lumping did

not explain observed variation in abundance–mass slope. Neither the pro-

portion of nematode taxa that were genera (PN) nor the proportion of

arthropod taxa that were genera (PA), nor both of these predictors together

explained significant variation in abundance–mass slope (F‐tests, p > 0.092).

Neither the model with predictors ET and ET � PN nor the model with

predictors ET, ET � PN, and ET � PA explained significantly more varia-

tion in slope than the model with sole predictor ET (F‐tests, p > 0.114). The

model with predictors ET and ET � PA explained marginally significantly

more variation than the model with sole predictor ET (F7,132¼ 2.7, p¼ 0.011),

but the only significant (1% level) slope coefficient in this model was the

coefficient for winter farms. Plotting abundance–mass slope against PA for

only winter farms revealed four high‐leverage sites with PA ¼ 1; when these

were removed, PA had no significant association with abundance–mass slope

( p ¼ 0.237).

Total faunal biomass could not have been affected by lumping since the

mathematical operation of computing total faunal biomass is not affected by

lumping. PN did not explain significant variation in log total faunal biomass

(p ¼ 0.537). PA explained a small but significant amount of variation (R2 ¼
10.5%, p < 0.0005), but this was attributable to joint variation by ET in both

PA and log total faunal biomass: the model with predictors ET and PA

explained significantly more variation in log total faunal biomass than the

model with sole predictor PA (F6,138 ¼ 24.5, p< 0.0005), but not significantly

more than the model with sole predictor ET (F1,138 ¼ 0.1, p ¼ 0.756). The

model with predictors ET and ET � PA did not explain significantly more

variation than the model with sole predictor ET (F7,132 ¼ 1.9, p ¼ 0.074), so

log total faunal biomass was not associated with PA within ETs even though

some ETs had sites spanning a wide range of PA. Neither the model with

predictors ET and ET � PN nor the model with predictors ET, ET � PN,

and ET� PA explained significantly more than the model with sole predictor

ET (F‐tests, p ¼ 0.113 and 0.034, respectively).

Faunal diversity was not significantly associated with PN (p ¼ 0.282), but

was significantly positively associated with PA ( p < 0.0005). This positive

association may have affected the ranking (Table 3) of ET by mean faunal

diversity. Forests, which had the highest mean diversity, and winter farms,
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which had among the lowest (Table 3), had very similar mean PAs. Super‐
intensive farms and pastures, which had mean diversity intermediate between

forests and winter farms, also had mean PAs similar to forests and winter

farms. Because these ETs had similar mean PAs, their mean diversity values

were directly comparable. In contrast, conventional, intensive, and organic

farms had lower mean PAs, and had mean diversity similar to winter farms

(Table 3). If conventional, intensive, and organic farms were as well resolved

taxonomically as other sites, mean diversity of each of these ETs may have

been intermediate between mean diversities of forests and winter farms,

supporting the hypothesis that decreased taxonomic diversity was related

to disturbance in the sites of this study.

Within ET, neither PN nor PA affected faunal diversity: none of the

three models with predictors ET and ET � PN, or with predictors ET and

ET � PA, or with predictors ET, ET � PN and ET � PA explained signifi-

cantly more variation in faunal diversity than the model with sole predictor

ET (F‐tests, p > 0.086). Therefore, the effects of precipitation on faunal

diversity (Figure 5), observed to occur within ETs, are not confounded by

the overall dependence of diversity on PA.

VI. DISCUSSION

We summarize our main findings in the context of prior work. First, our data

demonstrated that variation in abundance–mass slope, total faunal biomass,

and faunal diversity is systematic, and can be partially explained in terms of

external influences. Cyr et al. (1997) demonstrated systematic variation in the

abundance–mass slopes of lakes. By necessity, they systematically excluded

rare species, so their slopes may have been more like the slopes of the upper

bounds of log(N)‐versus‐log(M) relationships, as calculated by Blackburn

et al. (1992). Our results and those of Cyr et al. demonstrate that abundance–

mass slope is a useful descriptor, capable of registering the effects of anthro-

pogenic and other influences on biologically important aspects of multiclade

community structure.

Several studies investigated the effects of specific kinds of disturbance on

traditional descriptors of web structure. Havens (1991, 1993) and Locke and

Sprules (1994) found that acidification in lakes was associated with decreases

in taxonomic diversity and measures of web complexity such as connectance

and link density. Havens (1994) showed that chemical stress decreased spe-

cies richness and web complexity in freshwater plankton webs in laboratory

mesocosms. Our hypothesis that disturbance was partly responsible for

decreases in faunal diversity from forests to winter farms is aligned with

these results.
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Wardle (1995) argued that tillage in agroecosystems, a form of disturbance,

is more harmful to populations of larger taxa than to populations of smaller

ones. Wardle’s results were based on a literature survey of the effects of tillage

on broad functional groups such as collembolans. If populations of larger taxa

decrease more than populations of smaller taxa under tillage and other forms

of disturbance, then abundance–mass slope will become more negative

(steeper). Thus, Wardle’s results are consistent with our hypothesis that dis-

turbance can decrease (steepen) the abundance–mass slope. Variation in the

abundance–mass slopes of the lakes of Cyr et al. (1997) was positively asso-

ciated with the population of the largest human settlement within 100 km of

the lake. These results conflict with our results and those of Wardle (1995) if

human population density can be regarded as an index of disturbance.

A second main result of this study was that only a few predictors (above‐
ground ET, soil bacterial biomass, and a measure of precipitation) sufficed to

explain a majority of variation in soil faunal structure. ET and soil bacterial

biomass were sufficient to explain most of the variation in the slope and

intercept of the abundance–mass allometric relationship. Cyr et al. (1997)

also used only a few predictors to explain abundance–mass slopes in their

lakes. One of these, annual lake primary production, may be analogous to

soil bacterial biomass because both variables represent the availability of a

basal resource. These encouraging results suggest that only a few variables

are needed to predict important aspects of faunal community structure.

A. Food Web Descriptors

Our soil faunal descriptors have advantages and disadvantages.

1. Abundance–Mass Slope

Abundance–mass slope describes a site’s biomass and energy‐use patterns

without using trophic data. Only a few individuals suffice to demonstrate a

species’ presence in a site and to estimate its M, and 10–20 individuals are

sufficient for an approximate estimate of N. In contrast, the much greater

difficulty of obtaining trophic data was illustrated byWoodward et al. (2005)

for the benthic system of Broadstone Stream in southeast England. They

created yield–effort curves plotting both the number of species discovered in

the system as a function of sampling effort, and the number of prey items

identified for each of nine common predators as a function of the number of

predator guts dissected. Even after dissecting 200–300 guts of each predator

species,Woodward et al.were still discovering new trophic links. Their species‐
discovery yield–effort curves reached an asymptote after reasonable sampling

effort, but trophic link yield–effort curves never did. Woodward et al.



70 DANIEL C. REUMAN ET AL.

Author's Personal Copy
estimated that only 63% of trophic links were detected. Highly resolved trophic

data in soil are even harder to get since visual gut content analysis is difficult.

Trophic links in the soil also vary spatially: the same species eat different

food at different soil depths (e.g., Ponge, 2000). Because abundance–mass

slope does not use trophic data, we expect that slope will be less sensitive to

undersampling than indices such as connectance.

2. Faunal Diversity and Total Faunal Biomass

Undersampling will cause underestimates of faunal diversity, S. If many rare

taxa exist, underestimation could be substantial. If species of low biomass

(MN) are less likely to be detected than species of high biomass, then total

biomass will be less sensitive to sampling effort than faunal diversity S: in

that case, undetected species are more likely to have low biomass, and

therefore to contribute little to total biomass, while contributing just as

much to S as any other species (namely, 1). If modern webs do not seriously

underestimate S, then this is not a big advantage. Faunal diversity generally

also depends on taxonomic lumping (Section V.D).

B. Relative Importance of Variables

Environmental effects on soil faunal descriptors were mediated by human‐
use influences: it was statistically possible to neglect direct environmental

effects on soil faunal structure if all human‐use predictors were included

(Results, Section V.B.2). Environmental factors indirectly influenced soil

faunal descriptors by affecting patterns of human use. In agricultural soil

systems heavily influenced by humans, farmers make management decisions

based partly on environmental factors. This pattern of causation may be

special to agriculture, but may become more widespread as human influence

on ecosystems increases.

It was also statistically possible to neglect direct influences of carbon

resource factors on some descriptors if all human‐use predictors were included
(Section V.B.3). Human use substantially influenced soil faunal structure

even after controlling for the influence of environmental and carbon resource

variables (Section V.B.4).

C. Limitations of This Study

1. Limitations of the Data

As noted above, variation in taxonomic resolution across the log(M) range

may have caused average abundance–mass slopes to be less than (steeper

than) they would have been if all taxa were genera; but variation in slope and
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the causes of this variation were not likely affected (Section V.D). Faunal

diversity values were also less than they would have been if all taxa were

genera. This may have obscured the ranking of ETs by faunal diversity and

the relationship between disturbance and diversity (Section V.D). Faunal

biomass was probably not much affected by taxonomic resolution.

Fungi, plant roots, and detritus were not incorporated into any of the

variables of this study. Mulder et al. (2005a) quantified the total biomass of

fungi, plant roots, and detritus, but that information was not used here

because N and M could not be quantified separately. In Mulder et al.

(2005a), the fungi were incorporated into the detritus due to the destructive

soil sampling method and subsequent treatment; specifically, the detritus was

taken to include all sporopollenins reasonable from the biogeochemical point

of view. Effective ways to include N, M, or biomass data for fungi, plant

roots, and detritus should be further explored. It may be appropriate to split

bacteria into more than one taxon (Reuman et al., this volume). The data of

this study did not include sampling records, so it was impossible for us to

form yield–effort curves and thereby estimate the completeness of sampling.

2. Limitations of the Models

All models of this study are nonmechanistic, exploratory models. They show

that it is possible to predict part of the variation in soil faunal community

structure from variation in external variables. These models should be replaced

with mechanistic models if possible. Models constructed using stepwise regres-

sion can have artificially inflatedR2. Some data mildly violated assumptions of

the standard linear model (Appendix III); p‐values for models where the data

violated assumptions should be considered approximate.

D. Future Directions

1. Descriptors and Predictors

Additional environmental, human‐use, and biotic predictors may be needed

to explain some of the unexplained variation in the descriptors of this study.

Reuman et al. (this volume) showed that most but not all local sites have

approximately linear log(N)‐versus‐log(M) scatterplots. The coefficient c in

the best‐fitting quadratic model

logðNÞ ¼ c logðMÞ2 þ b logðMÞ þ aþ e ð6Þ
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is one way to capture nonlinearity. This descriptor requires no trophic data

but is purely phenomenological. A mechanistically motivated replacement

for c would be useful.

All descriptors should be directly tested for sensitivity to sampling effort

using data that include sampling records. Descriptors should also be tested

directly for sensitivity to lumping of taxa.

2. Testing the New Hypotheses

To test the hypothesis that disturbance decreases (steepens) abundance–mass

slopes in soil fauna, measurements of disturbance are necessary. Distur-

bances that affect agricultural soils include harvest of plant material, de-

creased bulk density and mixing of soil horizons by plowing, and compaction

of soils by equipment and livestock. Measuring these variables on farms with

highly resolved taxonomic, M and N data would permit observational eval-

uation of the hypothesis. A controlled, replicated experiment in which differ-

ent types of disturbance are applied to different plots would also be useful,

with taxonomic, M and N data gathered for each plot at various fixed times

after disturbance. Factorial designs would permit exploration of the effects

of combinations of disturbance, including possible interactions among

different disturbances. The contrast between the results of Cyr et al. (1997)

and the findings of Wardle (1995) and this study accentuate the need to

measure specific types of disturbance.

On farms, fertilization includes compost, manure, and mineral fertilizers.

Fertilization timing, amount, and type should be measured along with highly

resolved taxonomic, M and N data. Studies investigating the effects of

fertilization on soil community structure and vice versa are common

(e.g., Coleman et al., 1983; Ingham et al., 1985; Matson et al., 1997; Okada

and Harada, 2007; Verschoor et al., 2001; Wardle, 2002), but have not used

the descriptors of this study. Controlled, replicated experiments to investi-

gate the effects of specific fertilization regimes on the descriptors of this study

are desirable.

Soils in agroecosystems provide excellent opportunities for observational

and experimental tests of the effects of external factors on community

structure, because soil systems can be studied in large numbers, and repli-

cated experiments are common (e.g., Wardle, 1995 and references therein,

Sanchez‐Moreno and Ferris, 2007; Wardle et al., 1995). However, to our

knowledge, most studies of variation in soil community structure have

focused on soil faunal components (such as the component consisting of all

nematodes, or microflora) and interactions among these components, rather

than on descriptors of the detailed structure of highly resolved faunal com-

munities. Descriptors such as connectance, common in the literature of web
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ecologists, have been used less often for soil webs, partly because trophic data

in the soil are often not well resolved (Wardle, 1995). We hope the methods

and results of this study will inspire further mutually beneficial collaboration

between soil ecologists and web ecologists.

An open question is to what extent our findings from soil agroecosystems

may apply to ecological communities with lesser or different kinds of human

influence or other sources of disturbance. Do more disturbed communities

have more negative (steeper) abundance–mass slopes? Do sites with greater

carbon resources for basal taxa have less negative (shallower) abundance–

mass slopes? What are similarities in the allometric patterns we have

studied between soil agroecosystems and other types of communities such

as rainforests, coral reefs, or wetlands?
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APPENDIX I. STEPWISE REGRESSION

Design matrices for the general linear models of this study were constructed

as follows:

(1) A column of 1s was always included, representing a constant term in the

models.

(2) For models including predictor ET, a column was included for each ET

value, e, containing 1 for sites of type e and 0 for other sites. There were

seven such columns.

(3) For models containing a continuous predictor variable x, a single column

with the values of x was included.

(4) For models including the interaction terms ET � x, a column was

included for each ET value, e, containing the values of x for sites of

type e and 0 for other sites. There were seven such columns.
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Higher‐order and other interaction terms were not considered. Design

matrices constructed in this way were not full‐rank; F‐tests were performed

either by eliminating redundant columns or using the methods on pp. 120–121

of Seber (1977).

Our customized stepwise regression procedure constructed a linear model

for a response variable y starting from the model that predicted y with its

mean.

(1) At the first step:

(a) The predictor variables that, by themselves, explained significant

variation in y were determined (F‐test, 1% level).

(b) Of these predictors, the one that gave the greatest reduction in the

corrected Akaike Information Criterion (AICc; Burnham and

Anderson, 2002) was included in the model.

(2) Each subsequent step began by considering the possibility of removing

predictors from the model:

(a) The possibility of removing each of the following predictors was

considered:

(i) Any single continuous predictor for which interaction terms with

ET were not also included in the model.

(ii) ET itself if no interaction terms between ET and other predictors

were included in the model.

(iii) ET � x for another predictor, x. In this case, both the possibility

of removing the interaction terms and x itself, and the possibility

of replacing the interaction terms with x were considered.

(b) From among the options that led to an insignificant reduction in the

explained variation in y (F‐test, 1% level), the one leading to the

smallest increase in the AICc was selected.

(c) If a predictor was removed, the algorithm continued from (2); if not,

it continued from (3).

(3) The possibility of adding a new predictor to the model was considered:

(a) The possibility of adding each of the following combinations of

predictors to the model was considered:

(i) Any single continuous predictor not already included in the

model.

(ii) ET if ET was not already included in the model.

(iii) ET � x for any single continuous predictor x if ET was already

included in the model. Interaction terms could be added even if x
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was not already included. Adding ET � x made x redundant if

it was present. Therefore x was deleted if the interaction terms

ET � x were added.

(b) From among the options that explained a significant amount of

additional variation in y (F‐test, 1% level), the option that gave the

greatest reduction in the AICc was selected.

(c) The procedure terminated if none of the options explained significant

additional variation (F‐test, 1% level). The procedure always termi-

nated for the data of this study; a similar algorithm has been proven

mathematically to terminate always (Miller, 1996).

At each step, the choice of predictors to add to or remove from the model

as based on the AICc instead of the coefficient of determination (R2)

ecause not all predictors were encoded in the design matrix using the same

umber of columns. Change in AICc with the addition of a predictor took

nto account not only the benefits obtained by adding the predictor (increase

n the R2 of the model), but also the ‘‘costs’’ incurred (more columns in the

esign matrix). The F‐test p‐value for adding a predictor to a model also took

nto account both the benefits and costs of adding the predictor. We did not

ake fine comparisons between F‐test p‐values associated with the addition

f different predictors to a model because the data of this study did not

lways meet the assumptions of linear models (Appendix II); F‐test p‐values
ere considered reliable enough only for rough comparison to the benchmark

alue 1%.

The six sites with ID numbers 180, 202, 223, 224, 226, and 238 were missing

oint estimates of one or more predictors. For example, the area of site ID

02 was preceded by > and the percent of Site ID 180 on which grass grew

as preceded by <. In all cases, unknown values fell within known ranges.

ites missing point estimates for a given predictor were omitted for fitting

nd evaluating models that used that predictor. To compare nested linear

odels, only sites were considered for which all data used by either model

ere present.

APPENDIX II. TESTING ASSUMPTIONS OF
LINEAR MODELS

inearity of E(yjX) was tested using the ‘‘quadratic coefficient F‐test with
quared prediction.’’ The prediction ŷ and residuals r ¼ y� ŷ of the best

tting linear model y ¼ Xb were computed. We fitted the quadratic model
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r ¼ gŷ2 þ bŷþ aþ e ðS1Þ
and did an F‐test to see whether the quadratic and linear terms of the

model explained significant variation in r. Unless the F‐test rejected the null

hypothesis that g ¼ b ¼ 0 with 1% significance, data passed this test.

Linearity of E(yjX) was also tested using the ‘‘quadratic coefficient F‐test
with squared predictors.’’ An augmented design matrix X0 was constructed
that included all columns ofX and additional columns. For each column inX

that represented a continuous predictor variable x, a column was added to X0
representing x2. If X included columns for ET� x, then columns for ET� x2

were added to X0. If X0 explained significantly more variation in y than X did

(F‐test, 1% level), data were said to have failed the quadratic coefficient F‐test
with squared predictors. The quadratic coefficient F‐tests were also tests of

the assumption of homoskedasticity of residuals (Reuman et al., this vol-

ume). For models with sole predictor ET, the augmented design matrix X0
was the same as X; the quadratic coefficient F‐test with squared predictors

was not performed for these models.

Normality of the residuals r from the best‐fitting linear model y ¼ Xb was

tested in two ways: using the Jarque–Bera test (Jarque and Bera, 1987) and

the Lilliefors test (Lilliefors, 1967). Both are composite tests of normality of

unknown mean and variance. The two tests are implemented in Matlab by

the functions ‘‘jbtest’’ and ‘‘lillietest.’’

Homoskedasticity of the absolute residuals jrj of data from the best‐fitting
linear model ŷ ¼ Xb was tested using the ‘‘absolute residuals F‐test with

squared prediction.’’ The prediction ŷ and residuals r of the best fitting linear

model y ¼ Xb were computed. We fitted the quadratic model

jr j¼ gŷ2 þ bŷþ aþ e ðS2Þ
and did an F‐test to see whether the quadratic and linear terms of the model

explained significant variation in jrj. Unless the F‐test rejected the null

hypothesis that g ¼ b ¼ 0 with 1% significance, data passed this test.

Homoskedasticity was also tested using the ‘‘absolute residuals F‐test with
squared predictors.’’ The augmented design matrix X0 of the quadratic

coefficient F‐test with squared predictors was used. If X0 explained significant

variation in jrj, data were said to have failed the absolute residuals F‐test with
squared predictors. For models with sole predictor ET, the augmented design

matrix X0 was the same as X; the test was not performed for these models.

Following Cohen and Carpenter (2005) and Reuman et al. (this volume),

we tested the serial independence of the residuals using the Durbin–Watson

test, as implemented in Matlab by Kanzler (2005). Residuals were sorted by ŷ

and then passed to the Durbin–Watson code.

Biological interpretations of values of the coefficients of a linear model

y¼Xbmay not be reliable if X failed the ‘‘collinearity test.’’ For this test, if X
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contained a column of 1s, it was removed. If columns were included for the

predictor ET, one of these columns was removed. We arbitrarily removed the

column for forests. If X contained a column for a continuous predictor x and

columns for ET � x, the column for x was removed (it was redundant

anyway). If X contained a column for x, it was replaced with a column for

x � mean(x). If X contained columns for ET � x, these columns were

replaced with interaction terms between x � mean(x) and ET. Each column

of the modified matrix X was regressed against the other columns and a

column of ones; R2 values were computed. The maximum of these R2 values

was the collinearity test result. If this result was high (80% is often used as a

benchmark value), the columns of X may have been too collinear for model

coefficients to be interpreted reliably. Coefficients of a model with highly

collinear columns can change drastically if the model is refitted with a few

data omitted. This collinearity test is related to the Variance Inflation Factor

of Stuart and Ord (1991, p. 1066). The interpretations of model coefficients

used in this study were approximate; we only looked at the sign of coeffi-

cients, attributing no importance to their magnitudes. For these purposes,

even fairly collinear X are acceptable.

APPENDIX III. DETAILED STATISTICAL RESULTS

A. Abundance–Mass Slope

ET alone explained 51.7% of the variation in abundance–mass slope (F6,139¼
24.8, p < 0.0005). A lumped ET model that assigned cultivated farms to a

single category, with forests and winter farms making two additional cate-

gories explained 48.4% of the variation in abundance–mass slope, not signifi-

cantly less than the unlumped ET model (F4,139 ¼ 2.3, p ¼ 0.058).

Data violated the assumptions of both the model with sole predictor ET

and the model with predictors ET and ET � soil bacterial biomass (Table 2):

homoskedasticity, both absolute residuals F‐tests, p < 0.01; normality of the

distribution of residuals, Jarque–Bera test, p < 0.01. But the residuals

appeared symmetrically distributed and only mildly heteroskedastic for

both models. The collinearity test result for the latter model was 78.8%.

When only the 110 soil faunal communities satisfying the assumptions of

the linear model Eq. 1 were included, stepwise regression selected a model

with sole predictor ET that explained 48.5% of the variation in abundance–

mass slope (F6,103 ¼ 16.7, p < 0.0005). The assumptions of homoskedasticity

(both absolute residuals F‐tests, p < 0.01) and normality of the distribution

of residuals (Jarque–Bera Test, p < 0.01) were not met; but residuals

appeared symmetrically distributed and only mildly heteroskedastic. Forests

had the least‐negative mean slope (–0.30) across the 110 faunal communities,
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followed by super‐intensive farms (–0.47), pastures (–0.48), organic farms

(–0.54), intensive farms (–0.54), conventional farms (–0.55), and winter farms

(–0.60). A lumped ET model that assigned cultivated farms to a single

category, with forests and winter farms making two additional categories,

explained 43.9% of the variation in abundance–mass slope, not significantly

less than the un‐lumped ET model (F4,103 ¼ 2.3, p ¼ 0.064). Thus, using only

the 110 soil faunal communities that satisfied the assumptions of the linear

model gave mean abundance–mass slope values for each ET that were

substantially indistinguishable from those obtained using all communities.

B. Log Faunal Biomass

ET alone explained 56.6% of the variation in log faunal biomass (F6,139 ¼
24.8, p< 0.0005). A lumped ET model that assigned forests and winter farms

to one category, and all other sites to another category explained 54.6% of

the variation on log faunal biomass, not significantly less than the unlumped

ET model (F5,139 ¼ 1.3, p ¼ 0.277). Data satisfied all seven tests of the

assumptions of the model with sole predictor ET and the model with pre-

dictors ET and soil bacterial biomass (Table 2). The collinearity test result for

the latter model was 55.9%. The model with predictors ET and log soil

bacterial biomass (Figure S1) explained 60.0% of the variation in log faunal

biomass (F7,138 ¼ 29.57, p < 0.0005) and data passed all seven tests of the

assumptions of that model. The collinearity test result was 58.2%.

C. Faunal Diversity

ET alone explained 66.0% of the variation in faunal diversity (F6,139 ¼ 44.9,

p < 0.0005). A lumped ET model that assigned pastures and super‐intensive
farms to a single category; conventional farms, organic farms, intensive

farms and winter farms to another category; and forests to a third category

explained 63.4% of the variation in faunal diversity, not significantly less

than the unlumped ET model (F4,139 ¼ 2.6, p ¼ 0.038).

Stepwise regression selected a model of faunal diversity with predictor

variables ET, soil organic matter, and ET � maximum daily precipitation.

The collinearity test result was 58.9%. Faunal diversity was negatively influ-

enced by soil organic matter in this model. The influence of increasing

maximum daily precipitation on faunal diversity was significantly positive

for winter farms, significantly negative for pastures, and not significantly

different from 0 for other ET (1% level). The collinearity test result for the

model of faunal diversity with predictor variables ET and ET � maximum

daily precipitation (Figure 5) was 58.7%. Data satisfied all assumptions of the



Conv.

Org.
Int.
S.-Int.

Pstr.
Forest

Winter

6.016 5.557 6.475

6.480
6.395
6.624

6.613
5.838

5.809

5.635
5.545
5.731

5.663
5.138

5.040

6.058
5.970
6.177

6.138
5.488

5.425

ET Intercept 99% Conf. Slope
0.254 0.0594 0.449

99% Conf.

*

+

�

0.5

7.0

6.5

5.5

5.0

6.0

Lo
g 

fa
un

al
 b

io
m

as
s 

(m
g/

m
2 )

1.0 1.5 2.0

Log soil bacterial biomass (mg C/g dry soil)

2.5

Figure S1 Linear model of log faunal biomass as a function of above‐ground
ecosystem type (ET) and log soil bacterial biomass. Line styles correspond to ET as
in Figure 2. A model that constrained the y‐intercepts for the winter farm and forest
lines to take a single value, and the y‐intercepts of all the other lines to take another
value explained 58.1% of the variation in the response variable, not significantly less

ABUNDANCE–MASS ALLOMETRY IN FOOD WEBS 79

Author's Personal Copy
three models of faunal diversity that used predictors ET; ET, soil organic

matter, and ET�maximum daily precipitation; and ET and ET�maximum

daily precipitation.

For intensive farms, the mean of daily precipitation over the 21 days before

sampling was positively associated with faunal diversity (R2 ¼ 35.5%,

F1,144 ¼ 10.5, p ¼ 0.004).

D. Abundance–Mass Intercept and Expected Log Population
Density of Smallest Taxa

ET alone explained 74.7% of the variation in abundance–mass intercept

(F6,139 ¼ 68.4, p < 0.0005). Data satisfied all the testable assumptions of

this linear model except normality of the distribution of residuals (Jarque–

Bera Test, p < 0.01), but the residuals appeared symmetrically distributed

except for one outlier. Forests had the smallest mean intercept (3.00),

than the unconstrained model (F5,138 ¼ 1.29, p ¼ 27.1%).
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followed by winter farms (3.23), super‐intensive farms (3.32), pastures (3.46),

organic farms (3.54), intensive farms (3.62), and conventional farms (3.67).

A lumped ET model that assigned pastures and organic farms to one catego-

ry, intensive and conventional farms to another category, and the

three remaining ET values to three more categories explained 74.1% of the

variation, not significantly less than the un‐lumped ET model (F2,139 ¼ 1.7,

p ¼ 0.187).

The model selected by our stepwise regression procedure used predictor

variables ET, percent bacterial cells dividing (PBD), and interaction terms

between ET and modified Julian date. It explained 80.4% of the variation in

abundance–mass intercept (F14,131 ¼ 38.4, p < 0.0005); data passed all seven

tests of the assumptions of the model. The collinearity test result was 90.5%,

so model coefficient values should be interpreted with caution.

The model with predictor variables ET and ET � modified Julian date

explained 79.3% of the variation in abundance–mass intercept (F13,132 ¼
38.9, p < 0.0005); data satisfied all seven tests of the assumptions of this

model. Collinearity test results were 90.3%, so model coefficient values

should be interpreted with caution.

Restricting to the 110 soil faunal communities for which the assumptions

of the linear model Eq. 1 were satisfied, the predictor variable ET alone

explained 77.4% of the variation in abundance–mass intercept (F6,103 ¼ 58.9,

p < 0.0005); no variables or interaction terms explained a significant amount

of additional variation in the presence of ET. All testable assumptions of

linear models were satisfied except the assumption of normality of the

distribution of residuals (Jarque–Bera Test, p< 0.01); but residuals appeared

symmetrically distributed except for one outlier. Forests had the smallest

mean intercept (3.03) across the 110 faunal communities, followed by winter

farms (3.24), super‐intensive farms (3.34), pastures (3.47), intensive farms

(3.65), conventional farms (3.67), and organic farms (3.69). The lumped ET

model that assigned organic farms and pastures to one category, convention-

al farms and intensive farms to another category, and the three remaining site

types to three more categories explained 75.4% of the variation, not signifi-

cantly less than the unlumped ET model (F2,103 ¼ 4.7, p ¼ 0.011).

For the model of expected log(N) of smallest taxa with sole predictor ET,

data passed all the tests of the assumptions of this linear model except the

Jarque–Bera test. The residual distribution appeared approximately symmet-

ric. The collinearity test result was 54.9%. The stepwise regression procedure

selected a model of expected log(N) of smallest taxa with predictors ET, and

the interaction terms ET � modified Julian date and ET � longitude,

and explained 78.9% of the variation in expected log(N) of smallest taxa

(F20,125 ¼ 23.3, p < 0.0005). The model with predictors ET and ET �
modified Julian date explained 75.5% of the variation in expected log(N) of

smallest taxa (F7,132 ¼ 3.45, p ¼ 0.002).
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E. Log Faunal Population Density

ET alone explained 56.8% of the variation in log faunal population density

(F6,139 ¼ 30.4, p < 0.0005). Data satisfied all the testable assumptions of this

linear model except normality of the distribution of residuals (Jarque–Bera

Test, p < 0.01), but the residuals appeared symmetrically distributed except

for one outlier. Forests had the smallest mean log faunal population density

(5.46), followed by winter farms (5.96), super‐intensive farms (5.99), intensive

farms (6.06), pastures (6.11), conventional farms (6.14), and organic farms

(6.17). Forests had, on geometric average, 105.46 ¼ 288,403 animal indivi-

duals per square meter of soil surface; organic farms had 1,479,108.

A lumped ET model that assigned winter farms, super‐intensive farms and

intensive farms to one category; pastures, conventional farms, and organic

farms to another; and forests to a third category explained 55.2% of

the variation in log faunal population density, not significantly less than

the unlumped model (F4,139 ¼ 1.26, p ¼ 0.289).

The model selected by our stepwise regression procedure used predictor

variables ET, soil organic matter, and standardized livestock density; it

explained 62.6% of the variation in log faunal population density (F8,137 ¼
28.7, p < 0.0005). The same model with standardized livestock density

removed explained a significant but small amount (2.2%) less variation

(F1,137 ¼ 8.05, p ¼ 0.005). Data passed all seven tests of the assumptions of

both linear models except the Jarque–Bera test; residuals appeared approxi-

mately symmetrically distributed. For the model with predictors ET, soil

organic matter and standardized livestock density, the influence of increasing

either continuous predictor on log faunal population density was significant-

ly positive (1% level). That model had collinearity test result 77.0%. For the

model with predictors ET and soil organic matter, the influence of increasing

soil organic matter on log faunal population density was significantly

positive (1% level). That model had collinearity test result 55.7%.
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