Allometry of Body Size and Abundance in 166 Food Webs

DANIEL C. REUMAN, CHRISTIAN MULDER, CAROLIN BANAŠEK-RICHTER, MARIE-FRANCE CATTIN BLANDENIER, ANTON M. BREURE, HENRI DEN HOLLANDER, JAMIE M. KNEITEL, DAVE RAFFAELLI, GUY WOODWARD AND JOEL E. COHEN

Summary ... 2
I. Introduction .. 3
II. Theory ... 5
 A. The Energetic Equivalence Hypothesis ... 5
 B. The Energetic Equivalence Hypothesis with Trophic Transfer Correction. ... 6
III. Methods ... 6
 A. Testing Theory ... 6
 B. Testing Linearity ... 7
 C. Reasons for Nonlinearity and Alternative Models 9
 D. General Methods .. 11
IV. Data .. 11
V. Results .. 14
 A. Testing Theory ... 14
 B. Testing Linearity ... 18
 C. Reasons for Nonlinearity and Alternative Models 19
VI. Discussion .. 22
 A. Slopes and Predictions of Theory .. 23
 B. Examples of Ecological Errors from Unsupported Models 24
 C. Discussion of Methods ... 26
 D. Recommendations and Future Directions .. 28
Acknowledgments .. 29
Appendix I. How and Why Linearity Tests Differ from Those of Cohen and Carpenter .. 30
 A. Testing the Assumption of Linearity of Conditional Expectation 30
 B. Testing the Assumption of Homoskedasticity of Residuals 31
 C. Testing the Assumption of Normality of Residuals 32
 D. Testing the Assumption of Homoskedasticity of Absolute Residuals 32
Appendix II. Testing the Composite Test of Linearity ... 33
Appendix III. Symmetric Linear Regression ... 35
Appendix IV. Additional Results of Linearity Testing 36
Appendix V. Abundance and Diversity of Bacteria .. 37
Appendix VI. Limitations of the Data ... 38
References ... 40
The relationship between average body masses (M) of individuals within species and densities (N) of populations of different species and the mechanisms and consequences of this relationship have been extensively studied. Most published work has focused on collections of data for populations of species from a single broad taxon or trophic level (such as birds or herbivorous mammals), rather than on the populations of all species occurring together in a local food web, a very different ecological context. We here provide a systematic analysis of relationships between M and N in community food webs (hereafter simply webs), using newly collected, taxonomically detailed data from 166 European and North American pelagic, soil, riparian, benthic, inquiline, and estuarine webs.

We investigated three topics. First, we compared log(N)-versus-log(M) scatter plots for webs and the slope b_1 of the ordinary-least-squares (OLS) regression line $\log(N) = b_1 \log(M) + a_1$ to the predictions of two theories (Section V.A). The energetic equivalence hypothesis (EEH) was not originally intended for populations within webs and is used here as a null-model. The second theory, which extends the EEH to webs by recognizing the inefficiency of the transfer of energy from resources to consumers (a trophic transfer correction, or TTC), was originally proposed for webs aggregated to trophic levels. The EEH predicts approximate linearity of the log(N)-versus-log(M) relationship, with slope $-3/4$ for all webs. The relationship was approximately linear for most but not all webs studied here. However, for webs that were approximately linear, the slope was not typically $-3/4$, as slopes varied widely from web to web. Predictions of the EEH with TTC were also largely falsified by our data. The EEH with TTC again predicts linearity with $b_1 < -3/4$ always, meaning that populations of larger taxa in a web absorb less energy from the environment than populations of smaller taxa. In the majority of the linear webs of this study, on the contrary, $b_1 > -3/4$, indicating that populations of larger taxa absorb more energy than populations of smaller ones. Slopes $b_1 > -3/4$ can occur without violating the conservation of energy, even in webs that are energetically isolated above trophic level 0 (discussed later).

Second, for each web, we compared log–log scatter plots of the M and N values of the populations of each taxon with three alternate linear statistical models (Section V.B). Trophic relationships determined which taxa entered the analysis but played no further role except for the Tuesday Lake and Ythan Estuary webs. The assumptions of the model $\log(N) = b_1 \log(M) + a_1 + \varepsilon_1$ (including linearity of the expectation) were widely but not universally supported by our data. We tested and confirmed a hypothesis of Cohen and Carpenter (2005) that the model $\log(N) = b_1 \log(M) + a_1 + \varepsilon_1$ describes web scatter plots better, in general, than the model $\log(M) = b_2 \log(N) + a_2 + \varepsilon_2$.

2 DANIEL C. REUMAN ET AL.

Author's Personal Copy
The former model is also better than the model of symmetric linear regression.

Third, since not all of our log–log scatter plots formed approximately linear patterns, we explored causes of nonlinearity and examined alternative models (Section V.C). We showed that uneven lumping of species to web nodes can cause log\(N\)-versus-log\(M\) scatter plots to appear nonlinear. Attributes of the association between \(N\) and \(M\) depended on the type of ecosystem from which data were gathered. For instance, webs from the soil of organic farms were much less likely to exhibit linear log\(N\)-versus-log\(M\) relationships than webs from other systems. Webs with a larger range of measured log\(M\) values were more likely to appear linear. Our data rejected the hypothesis that data occupy a polygonal region in log\(N\)-versus-log\(M\) space.

I. INTRODUCTION

The relationship between average body masses (\(M\)) of individuals within species and densities (\(N\)) of populations of different species and the mechanisms and consequences of this relationship have been extensively studied for populations of species from a single broad taxon or trophic level such as birds or herbivorous mammals (e.g., Colinvaux, 1978; Damuth, 1981; Griffiths, 1992, 1998; Peters, 1983; Russo et al., 2003; reviews include Blackburn and Gaston, 1997, 1998, 2001; Brown, 1995, p. 94; Kerr and Dickie, 2001; LaBarbera, 1989; Leaper and Raffaelli, 1999). Data have been gathered at scales varying from global to local, often with different results for different scales (Brown and Maurer, 1986; Damuth, 1981; Lawton, 1989, 1990). One theory, sometimes called Damuth’s rule or the energetic equivalence hypothesis (EEH), predicts that when populations of all species absorb amounts of energy from the environment, per unit habitat, that do not vary systematically with \(M\), the linear relationship log\(N\) ≈ \(b_1\) log\(M\) + \(a_1\) should hold (Damuth, 1981). A linear relationship with slope \(b_1\) about equal to \(-3/4\) has been confirmed by a variety of global and regional empirical studies (e.g., Damuth, 1981; Gaston and Lawton, 1988; Greenwood et al., 1996; Nee et al., 1991; Peters, 1983; Peters and Wassenberg, 1983); reinforced by recent important developments in metabolic theory (Brown et al., 2004; Savage et al., 2004; West et al., 1997); explained using alternative mechanisms (Blackburn and Gaston, 1993); and usefully qualified (Blackburn and Gaston, 2001). Some studies that examined co-occurring local populations of species from a single taxon rejected linearity of the relationship and the value of the slope \(b_1 = -3/4\) and argued instead that data fall in a polygonal region in log\(N\)-log\(M\) space (Blackburn and
\[
\log(N) = b_1 \log(M) + a_1 + \varepsilon_1
\]
and
\[
\log(M) = b_2 \log(N) + a_2 + \varepsilon_2
\]
(where \(\varepsilon_i\) is independently normally distributed with mean 0 and constant variance) have both been used to describe data (for the former, see Damuth, 1981; Peters, 1983; for the latter, see Enquist et al., 1998, p. 164, who state that “Plant ecologists have traditionally treated mass as the dependent variable...”; Lonsdale, 1990).

Only a few studies have examined scatter plots relating \(\log(N)\) and \(\log(M)\) for the populations of all or most species occurring in a local web, regardless of taxonomy. The ecological context of such studies is very different from that of studies of populations of species from a single taxon, and we focus here on the web context. Web studies found approximate linear relationships between \(\log(N)\) and \(\log(M)\) (Cohen et al., 2003; Cyr et al., 1997a; Jonsson et al., 2005; Leaper and Raffaelli, 1999; Marquet et al., 1990; Mulder et al., 2005a; Woodward et al., 2005a). Such relationships do not follow from the EEH, since its assumptions are violated: for most webs, total energy acquired by the local population of a species may well depend systematically on species \(M\), since it may depend on trophic level, which is related to \(M\) (see Section VI; Brown et al., 2004; Cyr et al., 1997b; Jonsson et al., 2005). Some web studies used the statistical model of Eq. 1 (Cyr et al., 1997a; Leaper and Raffaelli, 1999; Marquet et al., 1990), while others used Eq. 2 or reported both regressions (Cohen et al., 2003; Jonsson et al., 2005; Mulder et al., 2005a; Woodward et al., 2005a).

We here have systematically analyzed relationships between \(M\) and \(N\) in 166 complete or substantial partial pelagic, soil, riparian, benthic, inquiline, and estuarine webs. Of these, 146 are soil webs. We investigated three related topics.

First, we compared \(\log(N)\)-versus-\(\log(M)\) scatter plots and regression slopes for populations within webs to the predictions of two theories: the EEH itself, which was not originally intended for webs and is used here for comparison, and an extension of the EEH of Brown and Gillooly (2003) and Brown et al. (2004) that incorporates the inefficiency of the transfer of energy from resources to consumers (a trophic transfer correction, or TTC). The EEH with TTC was intended for \(M-N\) data aggregated to trophic levels. We tested how well the theory works for taxonomically resolved webs. Both theories predict that \(\log(N)\) will depend approximately linearly on \(\log(M)\); the EEH predicts a slope of \(-3/4\) for all webs, whereas the EEH with TTC gives a formula for slope that predicts values less than or equal to \(-3/4\).
We discuss the shortcomings of these theories and how they might be improved.

Second, we examined log–log scatter plots of the M and N of populations of taxa in webs using three linear statistical models: the OLS model with independent variable $\log(M)$, the OLS model with independent variable $\log(N)$, and the symmetric model of type II regression. With new data and a shortage of theoretical guidance relevant to the data, it is sensible to consider a variety of statistical perspectives.

Third, since not all of the $\log(N)$-versus-$\log(M)$ scatter plots of this study were approximately linear, we considered departures from linearity, alternative nonlinear models, and possible causes for nonlinearity.

The practice of considering multiple types of linear regression in the same study, as we do, is common in other fields but not widely practiced in ecology; we justify our use of multiple models here and in Section VI. Theoretical considerations or preliminary data analysis should usually determine the most appropriate statistical model of linear regression. The data and theory currently available for M and N relationships in webs do not convincingly favor one model over others. The EEH was originally proposed for animals of determinate growth (Damuth, 1981) and implies that $\log(M)$ should be the independent variable that predicts $\log(N)$. The self-thinning rule (Lonsdale, 1990) was originally proposed for plants and implies that $\log(N)$ should be the independent variable that predicts $\log(M)$. Webs contain animals and plants. Neither theory was intended for webs, and no theory suggests which variable is causal for webs. Estimates of the error in the M and N measurements of this study are not available to guide the choice of a linear model. Therefore, we fitted several models to our data, compared their parameter estimates and tested whether their statistical assumptions were met. Our results and discussion will inform appropriate choices of linear models in future studies, where additional information about causality or measurement error may also be available to guide the choice of model.

II. THEORY

We here review the EEH and the EEH with TTC.

A. The Energetic Equivalence Hypothesis

The EEH (Damuth, 1981) assumes that populations of every species absorb the same total energy, E, from the environment, per unit area or volume of habitat. If the average metabolism of individuals of a species, and therefore the average energy requirements per individual, are proportional to $M^{3/4}$, then
\[N \propto \frac{E}{M^{3/4}} \]

By taking logs:

\[\log(N) = -\frac{3}{4} \log(M) + a \]

Therefore, the EEH predicts that: (1) \(\log(N) \)-versus-\(\log(M) \) relationships are approximately linear; and (2) they have slope about \(-3/4\).

B. The Energetic Equivalence Hypothesis with Trophic Transfer Correction

The EEH with TTC (Brown and Gillooly, 2003; Brown et al. 2004, especially pp. 1785–1786 and Eq. 13) does not assume that the populations of every species absorb the same amount of energy from the environment per unit habitat. Here \(a \), assumed to be roughly constant within a web, is the trophic transfer efficiency or Lindeman efficiency (the percentage of consumed biomass converted to body mass or reproduction), and \(\beta \) denotes the average consumer-to-resource body mass ratio in the web. The amount of energy available to consumers of mass \(M \) should be \(a \) times the energy available to their prey, which have mass \(M/\beta \), on average. Therefore, for every increase by a factor of \(\beta \) in the average size \(M \) of individuals of a species in a web, the abundance \(N \) (per unit of habitat) of that species should be less than that expected from the EEH by a factor of \(a \). Hence it is predicted that: (1) \(\log(N) \) and \(\log(M) \) in a web will be related linearly and (2) the slope will be \(-3/4 + \log(a)/\log(\beta)\):

\[\log(N) = \left(\frac{\log(a)}{\log(\beta)} - \frac{3}{4} \right) \log(M) + a \]

In the slope, \(\log(a)/\log(\beta) \) corrects for the inefficiency of trophic transfer. For the vast majority of webs, this formula predicts a slope less than \(-3/4\) since \(\log(a)/\log(\beta) < 0 \) if \(a < 1 \) and \(\beta > 1 \).

III. METHODS

Methods are reported here in sections corresponding to the sections of Section V below.

A. Testing Theory

The linearity prediction of the EEH and of the EEH with TTC was tested for each web with a “quadratic coefficient F-test” of whether a model quadratic in \(\log(M) \) explained significantly more variation in \(\log(N) \) than a linear
model, and more broadly by testing other assumptions of the statistical model of Eq. 1 (see Section III.B.1 for details). Nonlinear webs were considered to falsify the predictions of both theories.

To test predictions for each linear web, the slope of the OLS regression of \(\log(N) \) against \(\log(M) \) (Eq. 1) was computed and compared to the prediction \(-\frac{3}{4}\) for the EEH and to the prediction \(\log(z)/\log(\beta) - \frac{3}{4} \) for the EEH with TTC. Here \(z \) was assumed to be equal to 10%. In webs where trophic links were available, the value of \(\log(\beta) \) was taken as the mean of \(\log(M_c/M_r) \) across all trophic links, where \(M_c = \) consumer mean body mass and \(M_r = \) resource mean body mass. The mean of the log ratios was used instead of the log of the mean ratios because distributions of log ratios were much more symmetric than distributions of untransformed ratios. Computing \(\log(\beta) \) required detailed trophic link data, which were available only for two pelagic webs and one estuarine web (from Tuesday Lake and the Ythan Estuary, respectively; see Section IV). For other webs, slope predictions of the EEH with TTC were considered to be incorrect if the empirically estimated slope was greater than \(-\frac{3}{4}\). Thus, we used different methods of testing the quantitative predictions of the EEH with TTC for the Tuesday Lake and Ythan Estuary webs, and for the other webs.

Because the EEH and the EEH with TTC can be interpreted as predicting \(N \) from \(M \), we compared predicted slopes primarily to slopes from OLS regression with independent variable \(\log(M) \). The assumptions of the standard linear model with independent variable \(\log(M) \) were largely met by web data, but many assumptions of the standard linear model with independent variable \(\log(N) \) and assumptions of the symmetric linear regression model were not met (Section V). To show whether results depend on the choice of model I versus model II regression, we present model II results as well.

Slopes of the upper bounds of distributions of taxa plotted on \(\log(N) \)-versus-\(\log(M) \) axes were computed using a method of Blackburn et al. (1992). The method separates populations of taxa into \(\log(M) \) bins and computes the regression slope through the taxon populations that have the maximal \(\log(N) \) values in each bin. Three to eight bins were used.

B. Testing Linearity

1. Ordinary-Least-Squares Regression

We tested whether the assumptions of the standard linear models Eqs. 1 and 2 held for each of the 166 webs. The units used to measure \(M \) and \(N \) varied by community, but the analysis of linear relationships between \(\log(M) \) and \(\log(N) \) was not affected by the unit. Use of dry mass or wet mass (see Section IV) did not affect the analysis, as it was reasonable to assume a roughly constant
or nonsystematically varying conversion factor between dry and wet body mass within a community.

The linear model

\[y = bx + a + \varepsilon \]

makes five principal assumptions: linearity of the average (conditional expectation \(E(y|x) \)) of \(y \) as a function of \(x \), normality of the residuals from the regression line, homoskedasticity, serial independence of the residuals, and no (or negligible) error in the measurements of \(x \) (Cohen and Carpenter, 2005; Snedecor and Cochran, 1967). The validity of only the first four assumptions can be tested statistically using available data; we tested them. Cohen and Carpenter (2005) discussed the fifth assumption for Tuesday Lake. The methods we used are similar to those of Cohen and Carpenter (2005), but differ in a few important respects (Appendix I).

Linearity of \(E(y|x) \) was tested using the “quadratic coefficient \(F \)-test”: we fitted the quadratic model

\[y = cx^2 + bx + a + \varepsilon \]

(7) to data and did an \(F \)-test to see whether the quadratic term of the model explained a significant amount of variation. Unless the \(F \)-test rejected the hypothesis that \(c = 0 \) at 1% significance level, data passed the test. The quadratic coefficient \(F \)-test was also a test of the assumption of homoskedasticity of residuals (Appendix I.B).

Normality of the residuals \(r \) from the best-fitting line was tested in two ways: using the Jarque–Bera test (Jarque and Bera, 1987) and the Lilliefors test (Lilliefors, 1967). Both are composite tests of normality of unknown mean and variance. Simulations indicated that the Lilliefors test made fewer than 1% Type I errors at nominal 1% significance level (Appendix II).

We tested homoskedasticity of the absolute residuals \(|r| \) using the “absolute residuals \(F \)-test.” We fitted the quadratic model

\[|r| = cy^2 + by + a + \varepsilon \]

(8) where \(\hat{y} \) was the value of \(y \) predicted from the best-fitting line. We then did an \(F \)-test to see if this model explained significantly more of the variation in \(|r| \) than the mean of \(|r| \) did. If this \(F \)-test was unable to reject the hypothesis of no trend in \(|r| \) at the 99% confidence level, then data passed the absolute residuals \(F \)-test. We tested serial independence of the residuals using the Durbin–Watson test, as implemented by Kanzler (2005). All methods were encapsulated into one Matlab function which is available on request from D.C.R. or J.E.C.

The probability of Type I errors was investigated for each of the five component tests by simulation. The probability that all five tests passed for simulated data generated by a model of the form \(y = bx + a + \varepsilon \) was around
95–96% but appeared to depend on the number of taxon populations simulated. We said that data \((x, y)\) “passed the composite test with independent variable \(x\)” if all five tests failed to reject their null hypotheses. These simulation-based significance levels for the composite test are needed because the component tests are not independent. The probability of at least four tests passing was above 99.8% in 100,000 simulations (see Table S1 of Appendix II). Therefore, if data do not pass the composite test (because one or more of the five tests fail), then the null hypothesis that the assumptions of the linear regression model hold can be rejected with significance level around 4–5%. If two or more tests fail, then the same null hypothesis can be rejected with significance level substantially below 1%.

A permissive test of linearity between \(\log(M)\) and \(\log(N)\) is the quadratic coefficient \(F\)-test alone. That test examines only whether a line describes data at least as well as a quadratic curve. The composite test is a more stringent measure of whether models are statistically defensible. Data must fail the composite test if they fail the quadratic coefficient \(F\)-test, but not conversely.

2. Symmetric Linear Regression

The assumption of bivariate normality of data, made by symmetric linear regression methods such as reduced major axis (RMA) and major axis (MA) regression, was tested by examining marginal distributions of data. Normality of \(\log(M)\) and \(\log(N)\) distributions was tested using the Jarque–Bera and Lilliefors tests. A symmetric linear regression method recommended by Isobe et al. (1990) was also used. The method called the OLS-bisector, calculates the line bisecting the angle formed by the OLS regressions of \(\log(N)\) against \(\log(M)\), and \(\log(M)\) against \(\log(N)\). Confidence intervals for symmetric regressions were calculated using the formulas of Isobe et al. (1990), which do not rely on the assumption of bivariate normality, because that assumption was usually violated by the data of this study (Section V). Symmetric regression slopes are always presented with \(\log(M)\) on the horizontal axis.

C. Reasons for Nonlinearity and Alternative Models

1. Lumping of Taxa

The effects on linearity of lumping multiple taxa into a single node were investigated by performing post hoc lumping on the soil data (see also Martinez, 1993; Sugihara et al., 1989). Only results in Section V.C.1 were based on artificially lumped data. For each lumped node, \(N\) was computed as the sum of the \(N\) values of the populations of the taxa comprising the node,
and M was computed as the N-weighted mean of the M values of these populations. Two types of lumping were performed and analyzed. First, nematodes in soil webs were artificially lumped into body-mass categories. Nematodes were the smallest invertebrates in the soil webs. Second, in separate computations, all soil web taxa except bacteria were lumped to trophic guilds which jointly described feeding behavior and broad taxonomic group (e.g., bacterivorous nematodes, fungivorous collembolans). These two types of lumping simulate lumping that is unevenly (the nematode lumping) and evenly (the trophic guild lumping) applied across the range of $\log(M)$ values measured.

2. Are Some Ecosystem Types Not Linear?

To investigate whether $\log(N)$–$\log(M)$ linearity depends on ecosystem type, unlumped soil webs were classified into seven types (organic farm, conventional farm, intensive farm, super-intensive farm, pasture, winter farm, and forest). This classification was augmented with the categories “riparian” (including all the webs from the banks of Lake Neuchâtel) and “inquiline” (including all the webs from Sumatra Savannah) to form a classification of 162 webs into nine types. Pelagic, benthic, and estuarine webs were not included because these categories had too few webs. A 9×2-contingency table was created where the rows represented the nine site types, and the columns represented passing ($M+)$ or failing ($M-)$ the composite test with independent variable $\log(M)$. A χ^2 test evaluated the null model of independence between the site type and passing or failing the composite test. For each contingency table cell, the Freeman–Tukey deviate (Bishop et al., 1975, p. 137) was compared to a standard normal distribution to determine which contingency table cells were significantly more or less than expected from the null model.

3. Testing for Polygonal Relationships

Polygonal relationships (as defined by Lawton, 1989) between $\log(N)$ and $\log(M)$ hold for some local, co-occurring assemblages of species from a single broad taxon (Blackburn and Gaston, 1997; Blackburn et al., 1993; Brown and Maurer, 1986, 1989; Lawton, 1990). Local assemblages of species from a single taxon are ecologically different from webs. Nevertheless, we tested whether polygonal relationships describe the data of this study. A polygonal relationship entails heteroskedasticity; we tested for heteroskedasticity using the absolute residuals F-test.

For a positive control, we simulated data occupying an approximately polygonal shape in $\log(N)$-versus-$\log(M)$ space to test whether the absolute
residuals F-test was capable of rejecting homoskedasticity at the 99% significance level for truly polygonal data. The average minimum $\log(M)$ value in the soil webs of this study was -1.51 (not including bacteria) and the average maximum $\log(M)$ value was 3.89, so we chose simulated $\log(M)$ values randomly and uniformly in this range. The mean upper-bound slope for the soil webs was -0.66 (Section V), so we imposed an approximate upper constraint

$$\log(N) \leq -0.66\log(M) + 5$$

(9)

on simulated data. We imposed an approximate lower-bound constraint

$$\log(N) \geq -0.1\log(M) + 1$$

(10)

(so the lower bound took value $-0.1 \times 3.89 + 1 = 0.611$ at the top of the $\log(M)$ range). For each simulated $\log(M)$ value, the corresponding $\log(N)$ was chosen randomly and uniformly between 0.611 and 5. Any pair ($\log(M)$, $\log(N)$) outside the constraints was discarded. In this way, 57 points were generated between the constraint lines (57 points were generated because the average number of taxa in the soil systems was 57). A normal random variable of mean 0 and standard deviation 0.5 was added to the $\log(N)$ value of each point, and the absolute residuals F-test and Lilliefors test were applied to the resulting scatter plot.

D. General Methods

All computations were done in Matlab version 6.5.0.180913a (R13) using some functions from the Statistics Toolbox Version 4.0 (R13). All logarithms were base 10.

IV. DATA

This study analyzes 1 benthic stream web, 2 pelagic lake webs, 8 inquiline webs, 8 riparian webs, 146 soil webs, and 1 estuarine web. Data for each of these 166 systems were a list of taxa (sometimes complete, sometimes not) and the mean body mass (M) per individual and density (N) of the local population of each taxon. The average numbers of taxa in each web varied by community type (Table 1). The level of taxonomic resolution varied slightly by community type. We included only highly resolved webs. Most taxa were resolved to species or genus level. We now describe the communities studied.

The benthic web was in Broadstone Stream, a naturally acid stream in southeast England containing no vertebrates (Woodward et al., 2005b). All known organisms in Broadstone Stream were quantified, except those always passing a mesh of 500 μm (permanent meiofauna). The 32 taxa included 24 species, 3 genera, 3 families, 1 order, and 1 class. Body mass
was in milligrams dry mass per individual. Population density was in individuals per square meter of the bottom surface. Both M and N data were obtained by direct measurement.

The two pelagic webs were in Tuesday Lake, a mildly acidic lake in Michigan, USA. The fish populations were not exploited and the drainage basin was not developed when the data were gathered (Carpenter and Kitchell, 1993; Cohen et al., 2003; Jonsson et al., 2005). Data for the two webs were collected in 1984 and 1986. Three fish species were removed and another fish species was introduced in 1985. In both 1984 and 1986, all known taxa in the nonlittoral epilimnion of Tuesday Lake were resolved to species and quantified except parasites and bacteria; but only taxa connected to the webs were included for this study (50 species in 1984, 51 in 1986). Cohen and Carpenter (2005) conducted a similar analysis using all taxa, including six additional taxa in each year that were not connected to the web. Body mass was measured in kilograms fresh mass. Population density was given in individuals per cubic meter of the nonlittoral epilimnion, where all trophic interactions occurred. Both M and N values were obtained by direct measurement.

The eight inquiline webs were in the water-filled leaves of eight individual pitcher plants (*Sarracenia purpurea*) in Sumatra Savannah, Apalachicola National Forest, Florida, USA (Kneitel and Miller, 2002, 2003). We included here only webs with more than 10 taxa. All known taxa in each pitcher were quantified. Of the 23 nonbacterial taxa in any of the pitchers, 5 were species (such as the rotifer *Habrotrocha rosa*), 15 were genera (mostly protozoans), and 2 were the broader categories “mites” and “flatworms.” Bacteria were classified into seven “marker taxa” by diluting, culturing, and classifying colonies by appearance (*sensu* Cochran-Stafira and Von Ende, 1998). Units

Table 1 Number of taxa in the communities of each type

<table>
<thead>
<tr>
<th>Web location</th>
<th>Web type</th>
<th>Number of webs</th>
<th>Mean number of taxa</th>
<th>Minimal number of taxa</th>
<th>Maximal number of taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday Lake</td>
<td>Pelagic</td>
<td>2</td>
<td>50.5</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Netherlands Soil</td>
<td>Soil</td>
<td>146</td>
<td>54.5</td>
<td>30</td>
<td>96</td>
</tr>
<tr>
<td>Lake Neuchâtel Riparian</td>
<td>Riparian</td>
<td>8</td>
<td>140.25</td>
<td>104</td>
<td>175</td>
</tr>
<tr>
<td>Broadstone stream</td>
<td>Benthic</td>
<td>1</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Sumatra Savannah</td>
<td>Inquiline</td>
<td>8</td>
<td>12.25</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Ythan estuary</td>
<td>Estuarine</td>
<td>1</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>All webs</td>
<td>166</td>
<td>56.63</td>
<td>11</td>
<td>175</td>
</tr>
</tbody>
</table>

The broad taxon consisting of all bacteria was not included in these counts for The Netherlands soil webs.
for M were milligrams dry weight, and units for N were individuals per milliliter of water. Both M and N values were based on direct measurements, but M values were assumed to be the same from pitcher to pitcher.

The eight riparian webs were in four meadows in the Grande Carïçaie on the south shore of Lake Neuchâtel in Switzerland (Banašek-Richter, 2004; Cattin Blandenier, 2004). Spring and summer webs were quantified for each meadow. Two meadows were mown and two were unmown. One mown and one unmown meadow were dominated by Schoenus nigricans; the other two meadows were dominated by Cladium mariscus. All known animal taxa were quantified for each web. Plant taxa were not included in the analysis of this study because only the total biomass ($M \times N$) was estimated for each vegetation unit (Cattin et al., 2003); M and N were not estimated separately, so plants could not be included in log(N)–log(M) scatter plots. Taxonomic resolution varied in these data: most taxa were species or genera, but broader classifications were also included. Classifications by life stage also occurred: some species and genera were split into larvae, immatures, and adults. Body masses in units of milligrams dry weight were estimated from the literature for vertebrates and for arthropods too small to be weighed directly (mites and collembolans); they were measured directly for earthworms, and derived from other measurements of body size for other taxa. Units of N were individuals per square meter, measured directly.

The 146 soil webs were sampled in five types of farm (organic, conventional, intensive, super-intensive, and pastures; see Mulder et al., 2003a), as well as winter farms (not cultivated at the time of sampling), and unmanaged pine plantations in The Netherlands. All taxa known to occur in the rhizosphere were quantified except fungal mycelia and plant roots, for which M and N estimates were difficult to obtain, and protists, which were extremely rare in the investigated sandy soils. In prior studies, the abundances of fungi (mycelia) and plant roots in the rhizosphere were treated together as unity (Mulder et al., 2005a). In the present study, these groups were omitted. Of 169 nematode, 186 microarthropod, and 17 oligochaete taxa identified in any of the 146 soil webs, ~78% of the nematodes, 83% of the microarthropods, and 100% of the oligochaetes were genera; the rest were families. All bacterial cells were quantified and classified as a single taxon. We usually excluded bacteria from each web before running the composite test described in Section III.B. Units of M were micrograms, and units of N were individuals per square meter. Samples were taken from the top 10 cm of soil. M and N estimates were based on direct measurement, but the mean M values for each taxon were assumed to be the same at all sites (Mulder et al., 2005b).

The estuarine web was in the Ythan Estuary, about 20 km north of Aberdeen, Scotland (Hall and Raffaelli, 1991). The web of the Ythan Estuary contained 91 taxa: 1 mammal, 26 birds, 18 fish, 44 invertebrates, and the 2 broader categories of phytoplankton and macroalgae. Of these, 73 were
resolved to species level; most remaining taxa were genera. Body mass was in grams fresh mass per individual; abundance was absolute numbers of individuals in the whole estuary.

V. RESULTS

A. Testing Theory

1. Linearity and Slopes Computed from Data

Approximate linear relationships between log(M) and log(N) held often but not universally for the webs of this study (Table 2, Figure 1). Linearity results are presented in detail in Section V.B.

The slopes b_1 of the best-fitting parameterizations of Eq. 1 were widely distributed. Distributions of slopes were similar with and without nonsoil webs (Figure 2A). Distributions were similar with and without webs that failed the composite test with independent variable log(M) (Figure 2C).

The slopes obtained by Cyr et al. (1997b) for lake webs were very different from most slopes obtained here, further emphasizing the variability among webs of the slopes b_1. The maximum slope of Cyr et al. was -0.74; the minimum slope was -1.10 (contrast with Figure 2A and C). Since Cyr et al. systematically excluded rare species, their slopes may correspond more closely to the slopes of the upper-bounds of log(N)-versus-log(M) distributions for whole webs (Blackburn et al., 1992; Section III.C). But their slopes also differed significantly from the upper-bound slopes of this study (Wilcoxon rank–sum test, $p < 10^{-5}$): the mean upper-bound slope for the soil webs of this study, using four log(M) bins, was -0.66, with 5th and 95th percentiles -1.01 and -0.15. Similar results were obtained using three to eight bins.

The variability of RMA slopes and OLS-bisector slopes was just as great as that of the slopes b_1 (standard deviations 0.17, 0.15, and 0.15, respectively). MA slopes were even more variable (standard deviation 0.27). See Appendix III, Figure S1 for histograms.

2. Comparison with the Energetic Equivalence Hypothesis

Some scatter plots were not linear on log(N)-versus-log(M) axes (Figure 1E and F; Table 2, especially column 2). Neither the EEH nor the EEH with TTC can describe these nonlinear webs.

Of the 121 webs that passed the composite test with independent variable log(M) (and hence were linear), 99% confidence intervals for b_1 contained -1 only 10 times, $-3/4$ only 67 times, and $-2/3$ only 102 times. The slopes b_1 are not universal for webs. Model II slopes also varied widely (Appendix III). The specific slope predictions of the EEH were refuted by our data.
Table 2 Number of webs that passed each of the five tests of the assumptions of the standard linear model

<table>
<thead>
<tr>
<th>Web location</th>
<th>Independent variable</th>
<th>Quad. coef.</th>
<th>J.-B. test</th>
<th>Lilliefors test</th>
<th>Abs. resids. F-test</th>
<th>D.-W. test</th>
<th>All five tests</th>
<th>Four tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday Lake</td>
<td>Log(M)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Netherlands, no bacteria</td>
<td>Log(M)</td>
<td>127 (87%)</td>
<td>146 (100%)</td>
<td>143 (98%)</td>
<td>141 (97%)</td>
<td>133 (91%)</td>
<td>110 (75%)</td>
<td>142 (97%)</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>106 (73%)</td>
<td>101 (69%)</td>
<td>124 (85%)</td>
<td>70 (48%)</td>
<td>75 (51%)</td>
<td>36 (25%)</td>
<td>66 (45%)</td>
</tr>
<tr>
<td>Lake Neuchâtel</td>
<td>Log(M)</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadstone stream</td>
<td>Log(M)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sumatra Savannah</td>
<td>Log(M)</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ythan estuary</td>
<td>Log(M)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0*</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0*</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>Log(M)</td>
<td>139 (84%)</td>
<td>166 (100%)</td>
<td>163 (98%)</td>
<td>160 (96%)</td>
<td>148 (89%)</td>
<td>121 (73%)</td>
<td>157 (95%)</td>
</tr>
<tr>
<td></td>
<td>Log(N)</td>
<td>116 (70%)</td>
<td>121 (73%)</td>
<td>144 (87%)</td>
<td>85 (51%)</td>
<td>88 (53%)</td>
<td>45 (27%)</td>
<td>78 (47%)</td>
</tr>
</tbody>
</table>

Both log(M) and log(N) were separately used as the independent variable; 99% confidence levels were used. The tests are (Section III.B):Quad. coef. F-test, quadratic coefficient F-test; J.-B. test, Jarque–Bera test; Abs. resids. F-test, Absolute residuals F-test; D.-W. test, Durbin–Watson test. The column “All five tests” has the number of webs that passed all five of these tests. The column “Four tests” has the number of webs that passed at least four of these tests. Values in parentheses are percentages of the number of webs shown in Table 1.

Phyllopectus, a paddle worm, was an outlier on plots of log(M)-versus-log(N) for the Ythan Estuary. When it was removed, the p-value for the absolute residuals F-test went from 0.0097 to 0.0121 for independent variable log(M). For independent variable log(N) it went from 1.16×10^{-5} to 1.7×10^{-5}. The pass/fail status (1% level) of the other components of the composite test did not change with the removal of that taxon for either choice of independent variable.
3. Comparison with the Energetic Equivalence Hypothesis with Trophic Transfer Correction

To test the slope predictions of the EEH with TTC, we used only the 121 webs that passed the composite test. Slopes predicted by the EEH with TTC differed from slopes calculated from Tuesday Lake and the Ythan Estuary data (Table 3). (These webs passed the composite test with independent variable \(\log(M) \).) Confidence intervals contained theory-predicted slopes.
for only b_1 of the Ythan Estuary. Apart from this case, these webs violated the specific slope predictions of the EEH with TTC.

Log(α), the log assimilation efficiency, is always less than 0. Provided mean log(β) > 0, as is almost always true, the EEH with TTC always predicts $b_1 = \log(\alpha)/\log(\beta) - 3/4 < -3/4$ (**Section II.B**). In contrast, slopes $b_1 > -3/4$ occurred for the vast majority of the linear webs of this study (**Figure 2C**). Many RMA, MA, and OLS-bisector slopes greater than $-3/4$ occurred as well (32, 79, and 26 webs, respectively). These results falsify the slope predictions of the EEH with TTC for taxonomically resolved webs.

For Tuesday Lake, we assumed a trophic transfer efficiency $\alpha = 10\%$ and found that predictions of the EEH with TTC did not fall within 99% confidence intervals of true slopes. How sensitive were our results to the
assumption that $\alpha = 10\%$? For predictions to fall barely within 99% confidence intervals of true slopes, α would have to be 18.6% for Tuesday Lake 1984 and 32.0% for Tuesday Lake 1986. To fall barely within 95% confidence intervals, α would have to be 24.0% or 42.8%, respectively. For predicted slopes to equal true slopes, α would have to be 56.4% for Tuesday Lake 1984 and 102.9% (an impossible value) for Tuesday Lake 1986. The values of α required for the predicted slope to fall barely within confidence intervals around the observed slope seem high for Tuesday Lake. Our results for Tuesday Lake suggest that an additional correction term in the slope formula may be necessary (Section VI.A). For most soil webs of this study, no value of α less than 1 makes the predictions of the EEH with TTC agree with true slopes.

Table 3 Comparison of slopes predicted by theory with true slopes for Tuesday Lake 1984, Tuesday Lake 1986, and the Ythan Estuary

<table>
<thead>
<tr>
<th>Slopes</th>
<th>Tuesday Lake 1984</th>
<th>Tuesday Lake 1986</th>
<th>Ythan Estuary</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEH</td>
<td>−0.75</td>
<td>−0.75</td>
<td>−0.75</td>
</tr>
<tr>
<td>EEH + TTC</td>
<td>−1.06</td>
<td>−1.07</td>
<td>−1.06</td>
</tr>
<tr>
<td>b_1</td>
<td>−0.84 (−0.98, −0.71)</td>
<td>−0.75 (−0.91, −0.59)</td>
<td>−1.13 (−1.30, −0.96)</td>
</tr>
<tr>
<td>RMA</td>
<td>−0.91 (−1.01, −0.81)</td>
<td>−0.86 (−1.02, −0.69)</td>
<td>−1.29 (−1.43, −1.15)</td>
</tr>
<tr>
<td>OLS-bisector</td>
<td>−0.91 (−1.01, −0.81)</td>
<td>−0.86 (−1.03, −0.69)</td>
<td>−1.29 (−1.43, −1.15)</td>
</tr>
<tr>
<td>MA</td>
<td>−0.90 (−1.01, −0.80)</td>
<td>−0.84 (−1.01, −0.66)</td>
<td>−1.33 (−1.50, −1.17)</td>
</tr>
</tbody>
</table>

All slopes have $\log(M)$ on the horizontal axis. Parentheses contain 99% confidence intervals. EEH, energetic equivalence hypothesis; TTC, trophic transfer correction. b_1, the slope of ordinary least squares (OLS) regression; RMA, reduced major axis; MA, major axis.

That $b_1 > −3/4$ for most webs shows that larger organisms absorbed more energy from the environment than smaller organisms. Slopes greater than $−3/4$ are consistent with the conservation of energy because diversity typically decreased with increasing M (Section VI). For 127 of the 146 soil webs of this study, the number of taxa in the lower third of the $\log(M)$ range of the web was greater than the number in the middle third, which was in turn greater than the number in the upper third.

B. Testing Linearity

1. *Ordinary Linear Regression*

For each community type (benthic, pelagic, inquiline, riparian, soil, estuarine), Table 2 shows how many sites passed each of the five-component tests for each choice of independent variable $\log(M)$ or $\log(N)$ and how many sites passed five tests or at least four tests.
Using either standard linear model, more webs failed at least one component (respectively, two or more components) of the composite test than would be expected by chance alone if the linear model held (Table S4 of Appendix IV). However, a large majority of webs passed the composite test using log(M) as the independent variable, and a substantial minority passed using log(N). Most webs passed the quadratic coefficient F-test for independent variable log(M), and a smaller majority passed for independent variable log(N).

About one-third as many webs passed the composite test using log(N) as independent variable as passed it using log(M) (Table 2). Among the webs for which the composite test passed with one, but not both, independent variables, the assumptions of the model with independent variable log(M) were 7.3 times more likely to be satisfied (Table S5 of Appendix IV). Whether the composite test passed with independent variable log(M) was independent of whether it passed with independent variable log(N) (Appendix IV).

Results largely (but not completely) confirm the hypothesis that linear relationships between log(N) and log(M) describe web data. The results also confirm the hypothesis of Cohen and Carpenter (2005) that the assumptions of the statistical model of Eq. 1 are better met by (M, N) data from webs generally than the assumptions of the model of Eq. 2.

2. **Symmetric Linear Regression**

Only 46 of 166 webs had log(M) and log(N) distributions that passed both the Jarque–Bera and Lilliefors tests at the 1% level (Appendix III, Tables S2 and S3). Assumptions of model II regression methods were usually violated; webs were not well described by bivariate normal distributions. For this and other reasons (Section VI), we do not rely primarily on symmetric regression results. Our main conclusions do not depend on the choice of regression model.

C. **Reasons for Nonlinearity and Alternative Models**

1. **Lumping of Taxa**

We tested the hypothesis that lumping taxa unevenly across the range of log(M) may have caused some violations of the assumptions of linear models. Bacteria were highly lumped relative to other soil taxa. When the composite test was applied to the Dutch soil webs with bacteria included, using independent variable log(M), none of the 146 soil webs passed more than three of the five component tests. Using log(N), none of the webs passed more than four of the five tests, and only 30 passed four tests exactly. Inclusion of bacteria disrupted linearity because they were much more abundant.
than would be expected from linear regressions through soil fauna. Their apparently excessive abundance was likely partly because they should be considered as multiple taxa (Appendix V).

The riparian webs provide further evidence that uneven lumping may cause violations of linear models. The riparian webs were the most unevenly lumped webs of this study, and were also the least likely to pass the composite test with either choice of independent variable.

When nematode taxa in the 146 soil webs were lumped post hoc (Section III.C.1), the percent of sites passing the composite test with independent variable log(M) decreased with increased lumping. However, more sites passed the composite test with independent variable log(M) than passed with independent variable log(N) for any degree of lumping, supporting the conclusion that the model with independent variable log(M) is more likely to describe web data than the model with independent variable log(N), even when lumping occurs.

In contrast, lumping taxa evenly across the full range of log(M) increased the likelihood that a soil web would pass the composite test with independent variable log(M). Taxa in soil webs (excluding bacteria) were lumped to trophic guilds. Of 146 unlumped webs, 110 passed the composite test while 145 lumped webs passed. The mean number of taxa in unlumped webs was 54.5, whereas the mean number of guilds in lumped webs was 16.2, so decreased statistical power of the composite test for few data played a role in the increased pass rate.

Violations of the assumptions of linear models are less noticeable for smaller or more highly lumped webs. Violations of assumptions that arise from uneven lumping can be strong enough to counterbalance this effect, causing a net decrease in the probability that such a web will pass the composite test. The results of this section support the hypothesis that uneven lumping can cause nonlinearity in web log(N)–log(M) data.

2. Are Some Ecosystem Types Not Linear?

We tested the null hypothesis that the linear model Eq. 1 describes data equally well for all ecosystem types. Webs of nine ecosystem types (organic farm, conventional farm, intensive farm, super-intensive farm, pasture, winter farm, forest, riparian, and inquiline) were sorted into the categories “passing” (M+) and “failing” (M−) with respect to the composite test. The frequency distributions in these categories differed by ecosystem type (Table 4; χ² test, p < 10⁻⁷): organic farms were substantially less likely to pass the composite test with independent variable log(M) than sites of other types. The increased failure rate of organic farms suggests that linear models relating log(M) and log(N) may be less suitable for some ecosystem types.
than others (see also Figure 1E and F). In organic farms, the high availability of nutrients from manure and other organic fertilizers enhances the population sizes of large primary decomposers such as enchytraeids, breaking the linear trend (Mulder et al., 2006). The results of this section reject the hypothesis that the attributes of the association between log(N) and log(M) in webs are independent of ecosystem type.

3. Is The Range of Log(M) Related to Linearity?

For data on species of a single broad taxon considered elsewhere, one factor influencing whether log(N)-versus-log(M) relationships are linear is the range of the log(M) values measured. Regionally or globally gathered data sets, which typically exhibit a wider range of log(M) values, appear more likely to be linear (Blackburn and Gaston, 1997; Lawton, 1989). To see if the range of log(M) values and ecosystem type influenced whether a log(N)–log(M) scatter plot of soil web data was well-described by a linear model, a logistic regression model was fitted. Each observation was one scatter plot. The binary response variable indicated whether the scatter plot passed the composite test of linearity with independent variable log(M). The range of log(M) was a statistically significant predictor (likelihood ratio test, $p = 0.001$). Ecosystem type was an important predictor both alone (likelihood ratio test, $p < 0.001$) and in the presence of log(M) range (likelihood ratio test,
Models of whether a soil scatter plot passed or failed the quadratic coefficient F-test (with independent variable $\log(M)$) showed similar results. The results of this section are compatible with the hypothesis that webs with a larger range of $\log(M)$ values are more likely to appear approximately linear on $\log(N)$-versus-$\log(M)$ axes.

4. Testing for Polygonal Relationships

Polygonal relationships did not describe the web data of this study. A polygonal relationship entails heteroskedasticity. The webs of this study seldom failed the absolute residuals F-test of heteroskedasticity with independent variable $\log(M)$ (Table 2). Our positive control (Section III.C) showed that the test could detect polygonal relationships in simulated polygonal data. Of 1000 simulated polygonal communities, the test rejected the hypothesis of homoskedasticity with 99% confidence 211 times (= 21.1%), while only 5 of 146 soil webs (= 3.4%) failed the test. Of 1000 simulated polygonal communities, 994 failed the Lilliefors test, whereas only 3 of 146 real webs failed that test. The polygonal constraint space described our scatter plots less accurately than the model of Eq. 1.

VI. DISCUSSION

We restate our main findings and set them in the context of prior results. Results are broadly of two types: results about linearity of $\log(N)$–$\log(M)$ relationships, testing the assumptions of linear models, and the meaning of these tests concerning allometric relationships in food webs; and results about whether the predictions of two theories hold for taxonomically resolved webs.

In the taxa in a local web, the relationship between $\log(N)$ and $\log(M)$ can often but not universally be described as linear. The usefulness of a linear description varies by ecosystem type, by the range of $\log(M)$ values measured, and by the degree of uneven lumping of species. The model of Eq. 1 describes web data most effectively when all taxa are as well resolved and as evenly resolved as possible. The assumptions of the linear model of Eq. 1 are much more likely to be supported by web data than those of the model of Eq. 2, confirming a hypothesis of Cohen and Carpenter (2005). Assumptions of symmetric regression methods are unlikely to be met.

Previous studies found allometric relationships within a single or a few local webs (Cohen et al., 2003; Cyr et al., 1997b; Jonsson et al., 2005; Marquet et al., 1990; Mulder et al., 2005a; Woodward et al., 2005a). Macroecological studies, empirical (Damuth, 1981; Greenwood et al., 1996; Nee et al., 1991; Peters, 1983) and theoretical (Blackburn and Gaston, 2001),
showed that allometric relationships between N and M hold for populations of species within a single broad taxon or trophic level (Leaper and Raffaelli, 1999, p. 192). Ours may be the first study to demonstrate allometric relationships in a large collection of local webs, except for Cyr et al. (1997b); they used exclusively lake webs.

Slopes b_1 vary widely by web. Most slopes differed substantially from those observed in lake systems by Cyr et al. (1997b) and from those predicted by the EEH and the EEH with a TTC. Whereas these hypotheses predict slopes $\leq -3/4$, so that populations of larger taxa consumed no more energy than populations of smaller taxa, data of this study most commonly showed slopes greater than $-3/4$, so that populations of larger taxa consumed more energy than populations of smaller taxa.

A. Slopes and Predictions of Theory

1. The Energetic Equivalence Hypothesis

The EEH assumes that the total energy used by the population of each species, per unit habitat, does not depend systematically on average body masses (M) of individuals within species (Damuth, 1981). By contrast, multiple factors influence systematically how the energy absorbed by the population of a species in a web varies with species M. For example, populations of larger, higher-trophic-level species may have access to less energy than populations of smaller, lower-trophic-level species, because individuals of higher-trophic-level species eat individuals of lower-trophic-level species, which do not convert all their absorbed energy into production. On the other hand, populations of higher-trophic-level species may absorb as much energy as populations of lower-trophic-level species or more by a variety of mechanisms. Larger predators are often more mobile and can feed in multiple local webs (McCann et al., 2005) or couple multiple energy pathways (Rooney et al., 2006). External energy subsidies may occur at intermediate and higher trophic levels (Pace et al., 2004).

Even in webs that are energetically isolated above trophic level 0, other mechanisms could contribute to absorption of differing amounts of energy by populations of species at different trophic levels. Populations of species at trophic level n may divide the energy pool available to them into fewer (or more) parts than populations of species at trophic level $n-1$ if there are fewer (or more) species at trophic level n than at trophic level $n-1$ (Elton, 1927). Trophic transfer efficiencies may depend on trophic level and hence on M. If trophic transfer efficiencies increase with M, the increase could contribute to the tendency for populations of larger, higher-trophic-level species to absorb more energy than populations of smaller, lower-trophic-level species; and vice versa if trophic transfer efficiencies decrease with M.
The EEH is not valid generally for webs and the results of this study do not agree with the predictions of energetic equivalence.

2. The Energetic Equivalence Hypothesis with Trophic Transfer Correction

The EEH with TTC (Brown and Gillooly, 2003; Brown et al., 2004) had little success predicting correct b_1 slopes for most webs of this study, which were highly resolved webs. The theory had some predictive success in communities aggregated by trophic levels (Meehan, 2006; Meehan et al., 2006) or by body mass categories (Jennings and Mackinson, 2003), where changes in diversity with M are masked by aggregation. Many webs, including the soil webs of this study (Mulder, 2006; Mulder et al., 2005a), cannot sensibly be aggregated to trophic levels because of a high degree of omnivory or a lack of detailed knowledge of trophic relationships.

To explain slopes of highly resolved webs, using the theory of Brown and Gillooly (2003) and Brown et al. (2004) as a starting point, future theory should incorporate changes in diversity and trophic generality (the number of resource species per consumer species) with M, so that webs with different patterns of changing diversity or trophic generality with M are predicted to have different slopes.

To improve future data on M–N relationships in webs, the strength and nature of external interactions should be assessed and the contribution of external interactions to log(N)-versus-log(M) slope should be estimated. Web ecologists have often studied webs that are relatively isolated, such as lake and island webs, to justify neglect of fluxes into and out of the web. But even apparently isolated webs sometimes interact strongly with other systems (Knight et al., 2005; Pace et al., 2004). As pointed out in Section V.C.2, external subsidies may have caused departures from linearity in the organic farm soil webs of this study.

B. Examples of Ecological Errors from Unsupported Models

1. Use a Model with Supported Assumptions

Ecologically incorrect conclusions can follow from a statistical model with assumptions not supported by data; we provide examples here using the data of this study. Since the total biomass density of a species with average body mass M and population density N is $M \times N$, lines of equal biomass on log–log plots of the relationship between N and M have slope -1. Most b_1
values were greater than -1, suggesting that log biomass typically increased with increasing log(M). However, most b_2 values were also greater than -1, suggesting that log biomass typically increased with increasing log(N): the mean of all b_2 values was -0.7499, the standard deviation was 0.3039, and only 21 of the slopes b_2 were less than -1. These results appear contradictory: since log(M) and log(N) were negatively related, it does not appear sensible that biomass can increase both with increasing log(M) and with increasing log(N). Which conclusion is unfounded? For each web, 99% confidence intervals of the b_1 and b_2 values were computed. These confidence intervals were statistically defensible only for the webs that passed the composite test with independent variable log(M) for b_1, and independent variable log(N) for b_2. Of the 121 webs that passed the composite test with independent variable log(M), 111 ($= 91.7\%$) had b_1 99% confidence intervals that lay entirely above -1, and none had b_1 confidence intervals that lay entirely below -1. Of 45 webs that passed the composite test with independent variable log(N), 24 ($= 53.3\%$) b_2 confidence intervals lay entirely above -1, and 6 ($= 13.3\%$) lay entirely below. Of 33 webs that passed the composite test with both log(M) and log(N), 27 had b_1 confidence intervals entirely above -1 and none had confidence intervals entirely below -1; 14 had b_2 confidence intervals entirely above -1 and 5 had b_2 intervals entirely below -1. Therefore, the conclusion that log biomass increased with log(M) was more strongly supported than the conclusion that log biomass increased with log(N), which was based on a model with unsupported assumptions. Only testing the assumptions of linear models led to this understanding; reliance on only the model with independent variable log(N), without testing its assumptions, would have caused inaccurate conclusions.

Although the mean b_2 value for the webs of this study was -0.7499, notably close to $-3/4$, we attach no significance to this fact. The slopes b_2 are for the regression with independent variable log(N). Slopes of -0.75 have occurred empirically and theoretically for regressions with independent variable log(M).

2. Do Not Invert Ordinary-Least-Squares Slopes

The slopes b_1 were very different from the inverse slopes $1/b_2$ (Figure 2B and D) and the frequency distribution of b_1 was very different from the distribution of $1/b_2$ (Wilcoxon rank–sum test, $p < 10^{-10}$). For example, only the Ythan Estuary had b_1 less than -1. In contrast, only 21 ($21/166 = 12.6\%$) of the inverses $1/b_2$ were greater than -1. It is well known (e.g., Snedecor and Cochran, 1967, pp. 172, 175) that $b_1 \times b_2 = r^2 \leq 1$, where r is the correlation coefficient between log(M) and log(N). When $b_1 < 0$ and $b_2 < 0$, as in all of our
examples, then $0 > b_1 = r^2/b_2 \geq 1/b_2$ with strict inequality unless $r^2 = 1$ (which never occurs in noisy data). Consequently, the slope b_1 is systematically larger than $1/b_2$. The minimum over all of our webs of $b_1 - 1/b_2$ was 0.0465, the mean of $b_1 - 1/b_2$ was 1.0861 and the maximum was 9.5055. Algebraically solving $\log(M) = b_2 \log(N) + a_2$ for $\log(N)$ would produce systematically biased estimates of the slope of the dependence of $\log(N)$ on $\log(M)$, and can lead to incorrect general statements about local ecological communities.

3. Connections with Population Production and Consumption

The ecologically important quantities population production (P) and population consumption (C) can be approximated using allometric formulas $P \propto NM^\eta$ and $C \propto NM^\nu$ (Peters, 1983). These formulas were used in models to predict biomass or energy flux from resource species to consumer species in a web (Reuman and Cohen, 2005). To substitute a relationship between M and N into these formulas so that the result after substitution depends on one variable only, one must express M as a function of N, or vice versa. Only statistically defensible relationships between M and N should be used. For webs, allometric expressions of N as a function of M are more likely to be statistically defensible than allometric formulas of M as a function of N.

C. Discussion of Methods

1. Other Factors in the Choice of Model

Causality and relative error in variables should both affect the choice of model. We argue that for most available web data, neither factor provides a generally convincing argument for a particular model. Testing of model assumptions will often be a valid reason to choose the standard linear model with $\log(M)$ as the independent variable for webs. Improved web data will allow empirical assessments of causation and the error in variables, which can then guide selection of the most appropriate statistical model.

Feigelson and Babu (1992) state, “If it is known independently of the data set under consideration that one variable physically depends on the other, . . . then there is a preference to use OLS($Y|X$) with Y as the dependent variable.” For studies of $\log(M)$ and $\log(N)$ in webs, there is no clear reason to believe causality in either direction, but also no clear reason to believe there is no causal relation between $\log(N)$ and $\log(M)$. The relationship is likely
complex. Animal ecologists often assume that M causes N, since M is not a very plastic character for many animal species. However, plant ecologists often use N as the independent variable in regressions; crowding can clearly affect individual growth and size in plant communities (Lonsdale, 1990). Crowding and food limitation also likely affect body size for animals of indeterminate growth, which occur in many webs of this study. In webs that contain plants and animals, causation does not indicate what linear model to use.

Taper and Marquet (1996) considered several possible causal pathways linking $\log(M)$, $\log(N)$, and log species average metabolism in communities. By comparing data of Sugihara (1989, his Figure 2) to their theoretical predictions, Taper and Marquet supported the hypothesis that $\log(M)$ causes $\log(N)$ in communities of birds. Birds are animals of determinate growth; the conclusion of Taper and Marquet may or may not apply to webs. A good topic for future research would be to apply the methods of Taper and Marquet (1996) and Shipley (2000) to independently measured species M, N and average metabolism data in webs, and to investigate possible causal pathways among these variables for webs. It may also be useful to develop new statistical models that reflect causality from $\log(M)$ to $\log(N)$ for determinate growers, and causality from $\log(N)$ to $\log(M)$ for indeterminate growers within the same web.

The independent variable in an ordinary linear regression should be measured without error. At a minimum, it should be measured more accurately than the dependent variable. Empirical estimates of the error in the $\log(M)$ and $\log(N)$ measurements of this study were not available, and are rarely available for webs. Error in M is expected to be less than error in N for mobile species, whereas N may be measured more accurately than M for stationary taxa, and especially for plants with complex root systems. Cohen and Carpenter (2005) discussed the relative uncertainties in estimates of M and N in Tuesday Lake. Taper and Marquet (1996) concluded that for bird communities, error in M is very small, but their data included no plants, and they did not estimate error in N, which may also have been small. Since both mobile and rooted species are often included in food webs, error in measured variables provides no a priori argument for any model of web data. Relative errors should be considered in future when choosing a model if the researcher has this information.

Two additional reasons we used the OLS model with independent variable $\log(M)$ here are, first, for comparability between our slopes and slopes of other studies (Cyr et al., 1997b) that used OLS regression with independent variable $\log(M)$; and second, to make our slopes appropriate for comparison to predictions of theories (EEH and EEH with TTC) that explained N as caused by M.

2. Lumping

Leaper and Raffaelli (1999) showed that taxonomic resolution can affect \(\log(N) \)-versus-\(\log(M) \) slope in webs; they advocated using webs with evenly resolved taxa. Uneven taxonomic resolution probably did not cause the variability in slopes shown in Figure 2A and C because the variability occurred among the soil webs alone, and these were all lumped according to the same methods.

D. Recommendations and Future Directions

1. Recommendations

We offer some recommendations to researchers who study or use allometric relationships between \(M \) and \(N \) in webs. First, to avoid unjustified inferences, the assumptions of ordinary linear regression models should be tested before using the models. \(\log(M) \) should be used as the default independent variable for linear models. Contrary to the practice of Cohen et al. (2003), Jonsson et al. (2005), Mulder et al. (2005a), and Woodward et al. (2005a), \(\log(M) \) should be put on the horizontal axis of scatter plots of \(\log(N) \) versus \(\log(M) \) for webs unless evidence is available on causality or relative error in variables; or the webs meet assumptions of the model with independent variable \(\log(N) \) but do not meet the assumptions of the model with independent variable \(\log(M) \); or comparison is made with a theory that posits \(N \) as causal.

Statistical models other than ordinary linear regression models may sometimes be necessary, for example, linear models with non-normal residual distributions (if the Jarque–Bera or Lilliefors tests are violated); linear models with residual distributions of nonconstant variance (if the absolute residual \(F \)-test is violated); or nonlinear models (if the quadratic coefficient \(F \)-test or the Durbin–Watson test are violated). Several authors comment on the consequences of using models with violated assumptions, and possible alternative linear models, including Underwood (1997) and Martin et al. (2005).

For future empirical work on \(M–N \) allometry in webs, taxa should be resolved as evenly (and as finely) as possible. Estimates of the density of the population of each taxon should be based on enough observations to prevent the artifactual horizontal lines seen in Appendix VI. Estimates of the errors from sampling or measurement in \(M \) and \(N \) should be reported. Information about energy fluxes across the boundaries of the web should be obtained.
2. Future Directions

Our results raised several questions for future research. First, what mechanisms cause the common linear relationships between \(\log(N) \) and \(\log(M) \) in webs? The mechanisms underlying the EEH cannot be a complete explanation. If total species population energy consumption \(C \) depends on \(M \) in a web according to

\[
\log(C) = s \log(M) + k
\]

then metabolic theory would suggest the linear relationship

\[
\log(N) = \left(s - \frac{3}{4} \right) \log(M) + a_1
\]

(Savage et al., 2004). The EEH with TTC claims that

\[
s = \log(\alpha)/\log(\beta)
\]

But why should \(\log(C) \) depend linearly on \(\log(M) \)? Second, what mechanisms cause departures from linearity on plots of \(\log(N) \) versus \(\log(M) \) for webs? Third, what are the ecological causes of variation in the slope of the \(\log(N) \)-\(\log(M) \) relationship when linearity holds?

Departures from linearity and variations in slope might be explained by departures from linearity and variations in slope for \(\log(C) \)-versus-\(\log(M) \) plots, but such an explanation, if valid, would in turn require explanation. As pointed out by Jonsson et al. (2005) and above here, \(\log(C) \) varies with \(M \) even in a web that is energetically isolated above trophic level 0 first because trophic transfer efficiencies are less than 100% (so the total energy pool available to higher trophic levels is less than that available to lower trophic levels) and second if the energy available at each level of \(M \) is divided among a varying number of taxon populations. The net effects of at least these two competing factors should be systematically explored in future work.

ACKNOWLEDGMENTS

J.E.C. and D.C.R. thank Priscilla K. Rogerson for assistance. J.E.C. thanks William T. Golden and family for hospitality during this work, which was supported by NSF grants DEB-9981552 and DMS-0443803. D.C.R. thanks Ben Shoval for hospitality during this work. Ch.M. thanks the RIVM Directorate (QERAS S860703), The Netherlands Research School of Sedimentary Geology, and the EC Environment Programme for continuous support. The authors thank Pablo A. Marquet, Hal Caswell, Andrew Beckerman, and anonymous reviewers for helpful constructive criticism.
APPENDIX I. HOW AND WHY LINEARITY TESTS DIFFER FROM THOSE OF COHEN AND CARPENTER

A. Testing the Assumption of Linearity of Conditional Expectation

To test the assumption of linearity of conditional expectation $E(y|x)$, Cohen and Carpenter (2005) used a test based on the confidence intervals of the quadratic term in the best-fit of the regression model

$$y = cx^2 + bx + a + \epsilon \quad (14)$$

Here and throughout, it is assumed that ϵ is normally distributed with mean 0 and with variance independent of the independent variable (x in this equation), and that different realizations of ϵ are identically and independently distributed. The test of Cohen and Carpenter (2005) was equivalent to the quadratic coefficient F-test (Section III.B). They also used a test based on the corrected Akaike Information Criterion (AICc). We prove here that their AICc-based test can be equivalent to the quadratic coefficient F-test if critical values are chosen to make the two tests have critical regions of equal probability.

The AICc-based test of Cohen and Carpenter (2005) computes the quantity

$$AIC_c(\text{linear}) = n \log \left(\frac{\sum_{i=1}^{n} l_i^2 / n}{n} \right) + \frac{6n}{n - 4} \quad (15)$$

where the l_i are the residuals from the least-squares best fit to data of the linear model

$$y = bx + a + \epsilon \quad (16)$$

and n is the number of data points. The quantity

$$AIC_c(\text{quadratic}) = n \log \left(\frac{\sum_{i=1}^{n} q_i^2 / n}{n} \right) + \frac{8n}{n - 5} \quad (17)$$

is also computed, where the q_i are the residuals from the least-squares best fit of Eq. 14. If the difference

$$\Delta = AIC_c(\text{linear}) - AIC_c(\text{quadratic}) \quad (18)$$

is much larger than zero, then linearity of conditional expectation is considered not to hold. The AIC_c and this AIC_c-based test do not provide information on statistical significance; the magnitude of Δ provides guidance on whether to reject linearity. We now prove that choosing the right threshold value of Δ for the test makes it equivalent to the quadratic coefficient F-test, so that the AIC_c-based test is a legitimate test of a hypothesis and provides information on
statistical significance. In so doing, we also show that the AICc-based test is redundant, which is why we have not used it in this study.

Simplifying the above expression gives

$$\Delta = n \log \left(\frac{\sum f_i^2}{\sum q_i^2} \right) + \left(\frac{6n}{n-4} - \frac{8n}{n-5} \right)$$

(19)

The F-statistic from the quadratic coefficient F-test is

$$F = \left(\frac{\sum f_i^2}{\sum q_i^2} \right) \left(n - 3 \right) - n + 3$$

(20)

so F and Δ are related by the formula

$$\alpha_1 \log \left(\frac{F - \beta_1}{\alpha_2} \right) + \beta_2 = \Delta$$

(21)

where α_1, α_2, β_1, and β_2 depend only on n, and the α_i are greater than 0. So Δ is a monotonically increasing function of F.

Given a threshold value Δ_T for the AICc-based test, there is a critical value F_c such that $\Delta > \Delta_T$ if and only if $F > F_c$. So rejection of the null hypothesis of linearity of conditional expectation based on the AICc-based test with threshold Δ_T is the same as the rejection of the same hypothesis based on the quadratic coefficient F-test with critical value F_c.

B. Testing the Assumption of Homoskedasticity of Residuals

Cohen and Carpenter (2005) tested the homoskedasticity of the residuals r from the best-fitting line as follows. They fitted the linear model

$$r = b\hat{y} + a + \epsilon$$

(22)

and the quadratic model

$$r = e\hat{y}^2 + d\hat{y} + c + \epsilon$$

(23)

with data, and computed the 99% confidence intervals of b, e, and d. Here \hat{y} denotes the expected values of the dependent variable predicted by the best-fitting linear model Eq. 16. If all of these confidence intervals contained 0 then the residuals were called homoskedastic, and if one or more of the confidence intervals failed to contain 0, homoskedasticity of the residuals was rejected. This test is equivalent to the quadratic coefficient F-test (Section III.B). We explain the details of this equivalence.

First define the function $F(r; 1; \hat{y})$ to take the value “pass” if an F-test does not reject the null hypothesis that the linear coefficient in the model Eq. 22 is zero, with 99% significance, and “fail” otherwise. The notation indicates the dependent variable, r, of a model before the first semicolon; it
indicates the allowed independent variables in a constrained model after the first semicolon; and it indicates an additional independent variable after the second semicolon. An F-test is performed to see if the model with the additional variable included explains a significant amount of variation in the dependent variable beyond what is explained by the constrained model.

Let $F(r; 1, \hat{y}; \hat{y}^2)$ be “pass” if an F-test does not reject the null hypothesis that the quadratic term in the model Eq. 23 is zero (and “fail” otherwise), and let $F(r; 1, \hat{y}^2; \hat{y})$ similarly test whether the linear term in the same model is zero. Then these three tests are equivalent to the questions of whether b, e, and d, respectively, have 99% confidence intervals containing 0.

But $F(r; 1; \hat{y})$, $F(r; 1, \hat{y}; \hat{y}^2)$, and $F(r; 1, \hat{y}^2; \hat{y})$ are the same as $F(r; 1; x)$, $F(r; 1, x; x^2)$ and $F(r; 1, x^2; x)$, respectively, since \hat{y} is a linear function of x. The test $F(r; 1; x)$ will always equal “pass.” If RSS_c, RSS_l, and RSS_q are the sums of squared residuals from the best-fitting constant, linear, and quadratic models of r versus x, and if RSS_{q-1} is the sum of squared residuals from the best-fitting model of the form $r = cx^2 + a + e$, then the statistics

$$F_e = \frac{RSS_l - RSS_q}{RSS_q/(n-3)}$$

and

$$F_d = \frac{RSS_{q-1} - RSS_q}{RSS_q/(n-3)}$$

can be compared to the F-distribution $F(1, n-3)$ to find the values of $F(r; 1, x; x^2)$ and $F(r; 1, x^2; x)$, respectively. But $RSS = RSS_c$, so $RSS_{q-1} \leq RSS_l$, so $F_d \leq F_e$. This means that $F(r; 1, x; x^2) = “fail”$ whenever $F(r; 1, x^2; x) = “fail,”$ and $F(r; 1, x^2; x) = “pass”$ whenever $F(r; 1, x; x^2) = “pass.”$ So the test of Cohen and Carpenter (2005) amounts to $F(r; 1, x; x^2)$, which is the quadratic coefficient F-test.

C. Testing the Assumption of Normality of Residuals

We did not use quantile–quantile plots, as Cohen and Carpenter (2005) did, to examine visually the assumption of normally distributed residuals because we had too many webs to present these plots for all of them.

D. Testing the Assumption of Homoskedasticity of Absolute Residuals

The absolute residuals F-test (Section III.B) was not equivalent to the method Cohen and Carpenter (2005) used. They tested homoskedasticity of the absolute values of the residuals r from the best-fitting line as follows. They
fitted the linear model

\[|r| = b\hat{y} + a + \varepsilon \] \hspace{1cm} (26)

and the quadratic model

\[|r| = e\hat{y}^2 + d\hat{y} + c + \varepsilon \] \hspace{1cm} (27)

with data, and computed the 99% confidence intervals of \(b, e, \) and \(d. \) If all of these confidence intervals contained 0, then the absolute residuals were called homoskedastic, and if one or more of the confidence intervals failed to contain 0, homoskedasticity of the absolute residuals was rejected.

To compare the test of Cohen and Carpenter to the absolute residuals \(F \)-test, the following simulation was run 10,000 times. One hundred independent, uniformly distributed numbers between 0 and 1 were generated, making values of the independent variable \(x. \) The model \(y = 3x + 1 + 0.5\varepsilon \) was used to generate 100 corresponding \(y \) values, where \(\varepsilon \) was standard normal (mean 0, variance 1). A best-fitting line and the absolute residuals \(|r| \) of the simulated data from the line were generated. Homoskedasticity of these absolute residuals was tested using the absolute residuals \(F \)-test, and by examining the confidence intervals of \(b, e, \) and \(d \) in Eqs. 26 and 27, and a “pass” or “fail” result was generated using each test.

Of 10,000 simulations, the absolute residuals \(F \)-test rejected homoskedasticity of absolute residuals 90 times, and the test based on confidence intervals rejected homoskedasticity 203 times. Cohen and Carpenter’s test was more stringent, making more Type I errors (203 compared to 90). The expected number of Type I errors in 10,000 tests when operating at 99% confidence is 100. The number of rejections 90 is not significantly different from 100 at the 95% level, but the number of rejections 203 is significantly different from 100 with \(p < 10^{-10} \) (comparing to a binomial distribution with parameters \(N = 10,000 \) and \(P = 0.01 \)). On this basis, the absolute residuals \(F \)-test is a better test.

APPENDIX II. TESTING THE COMPOSITE TEST OF LINEARITY

To evaluate the composite tool (Section III.B) for testing the assumptions of the linear regression model, we extracted summary information from the data so that our evaluation would pertain to our use of the tool. For each collection of webs separately (Tuesday Lake webs, Dutch soil webs with bacteria excluded, Lake Neuchâtel webs, the Broadstone Stream web, Sumatra Savannah webs, and the Ythan Estuary web), for the OLS regressions with log(\(M \)) as the independent variable, we computed the median
Table S1 Number of simulations (of 10,000) passing tests of the assumptions of the linear models at the 1% level

<table>
<thead>
<tr>
<th></th>
<th>Quad. coef.</th>
<th>J.-B. test</th>
<th>Lilliefors test</th>
<th>Abs. resids. F-test</th>
<th>D.-W. test</th>
<th>Two tests</th>
<th>Three tests</th>
<th>Four tests</th>
<th>All five tests</th>
<th>At least four tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL, IM</td>
<td>9900</td>
<td>9854</td>
<td>9963</td>
<td>9906</td>
<td>9864</td>
<td>1</td>
<td>19</td>
<td>472</td>
<td>9508</td>
<td>9980</td>
</tr>
<tr>
<td>TL, IN</td>
<td>9901</td>
<td>9887</td>
<td>9967</td>
<td>9909</td>
<td>9873</td>
<td>0</td>
<td>15</td>
<td>433</td>
<td>9552</td>
<td>9985</td>
</tr>
<tr>
<td>NS, IM</td>
<td>9909</td>
<td>9873</td>
<td>9957</td>
<td>9924</td>
<td>9876</td>
<td>0</td>
<td>24</td>
<td>413</td>
<td>9563</td>
<td>9976</td>
</tr>
<tr>
<td>NS, IN</td>
<td>9893</td>
<td>9859</td>
<td>9970</td>
<td>9899</td>
<td>9881</td>
<td>1</td>
<td>17</td>
<td>461</td>
<td>9521</td>
<td>9982</td>
</tr>
<tr>
<td>LN, IM</td>
<td>9904</td>
<td>9825</td>
<td>9947</td>
<td>9905</td>
<td>9957</td>
<td>1</td>
<td>19</td>
<td>421</td>
<td>9559</td>
<td>9980</td>
</tr>
<tr>
<td>LN, IN</td>
<td>9897</td>
<td>9860</td>
<td>9961</td>
<td>9894</td>
<td>9965</td>
<td>2</td>
<td>15</td>
<td>387</td>
<td>9596</td>
<td>9983</td>
</tr>
<tr>
<td>BS, IM</td>
<td>9903</td>
<td>9901</td>
<td>9973</td>
<td>9901</td>
<td>9867</td>
<td>0</td>
<td>18</td>
<td>419</td>
<td>9563</td>
<td>9982</td>
</tr>
<tr>
<td>BS, IN</td>
<td>9907</td>
<td>9903</td>
<td>9975</td>
<td>9875</td>
<td>9875</td>
<td>0</td>
<td>13</td>
<td>439</td>
<td>9548</td>
<td>9987</td>
</tr>
<tr>
<td>SS, IM</td>
<td>9902</td>
<td>9986</td>
<td>9869</td>
<td>9902</td>
<td>10000</td>
<td>0</td>
<td>14</td>
<td>313</td>
<td>9673</td>
<td>9986</td>
</tr>
<tr>
<td>SS, IN</td>
<td>9907</td>
<td>9990</td>
<td>9882</td>
<td>9891</td>
<td>10000</td>
<td>0</td>
<td>10</td>
<td>310</td>
<td>9680</td>
<td>9990</td>
</tr>
<tr>
<td>YE, IM</td>
<td>9918</td>
<td>9822</td>
<td>9957</td>
<td>9910</td>
<td>9852</td>
<td>0</td>
<td>16</td>
<td>509</td>
<td>9475</td>
<td>9984</td>
</tr>
<tr>
<td>YE, IN</td>
<td>9929</td>
<td>9835</td>
<td>9963</td>
<td>9889</td>
<td>9841</td>
<td>0</td>
<td>14</td>
<td>515</td>
<td>9471</td>
<td>9986</td>
</tr>
<tr>
<td>Min. %</td>
<td>98.93</td>
<td>98.22</td>
<td>98.69</td>
<td>98.75</td>
<td>98.41</td>
<td>0.00</td>
<td>0.10</td>
<td>3.10</td>
<td>94.71</td>
<td>99.76</td>
</tr>
<tr>
<td>Mean %</td>
<td>99.06</td>
<td>98.83</td>
<td>99.49</td>
<td>99.00</td>
<td>99.04</td>
<td>0.00</td>
<td>0.16</td>
<td>4.24</td>
<td>95.59</td>
<td>99.83</td>
</tr>
<tr>
<td>Max. %</td>
<td>99.29</td>
<td>99.90</td>
<td>99.75</td>
<td>99.24</td>
<td>100.00</td>
<td>0.02</td>
<td>0.24</td>
<td>5.15</td>
<td>96.80</td>
<td>99.90</td>
</tr>
</tbody>
</table>

The abbreviations in the first column are: TL, Tuesday Lake; NS, Netherlands soil with bacteria excluded; LN, Lake Neuchâtel; BS, Broadstone Stream; SS, Sumatra Savannah; YE, Ythan Estuary; IM, independent variable was log(M); IN, independent variable was log(N). The abbreviations in the first row are: Quad. coef. F-test, quadratic coefficient F-test; J.-B. test, Jarque–Bera test; Abs. resids. F-test, Absolute residuals F-test; D.-W. test, Durbin–Watson test. No simulations passed fewer than two of five tests at the 99% level. If the nominal 1% level were correct, then columns 2, 3, 4, 5, and 6 should all report a number of tests passed not significantly different from 9900 (between 9874 and 9925 for 99% confidence).
slope, S_M; median intercept, I_M; median of standard deviations of residuals, σ_M; and median (rounded to the nearest integer) number of taxa, T_M. Likewise, the median values S_N, I_N, σ_N, and $T_N= T_M$ were computed for each collection using the OLS regressions with independent variable log(N). The set P_M of all observed log(M) values was computed for each collection, as was the set P_N of all observed log(N) values in each collection. Repeats were eliminated from the sets P_M and P_N.

Then, for each collection, $T_M x$-values were randomly chosen from P_M with replacement. Pairs of (x, y) data were generated using the model

$$y = S_M x + I_M + \varepsilon$$

(28)

where the values ε were independently chosen from a normal distribution of mean zero and standard deviation σ_M. The five tests (Section III.B) of the assumptions of the standard linear model Eq. 16 were applied to these simulated data. Pass versus fail indicators for a 1% nominal significance level were recorded. This experiment was repeated 10,000 times for each collection. The number of runs that passed each test at the 1% level was recorded in Table S1, as well as the number that passed none of the five tests, exactly one of the tests, exactly two of the tests, etc. The experiment was repeated 10,000 more times for each collection using the values S_N, I_N, σ_N, and T_N.

For each collection and each choice of independent variable, the proportion of 10,000 runs passing all five tests was between 94.71% and 96.80%, with a mean value of 95.59%. The proportion of 10,000 runs passing at least four tests was always between 99.76% and 99.90%, with a mean of 99.83%.

APPENDIX III. SYMMETRIC LINEAR REGRESSION

Table S2 Number of webs (of 166) passing tests of normality of the distributions of log(M) and log(N)

<table>
<thead>
<tr>
<th>Data</th>
<th>Test</th>
<th>Number webs passing</th>
<th>Percent webs passing %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(M)</td>
<td>Jarque–Bera</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td>Log(M)</td>
<td>Lilliefors</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Log(M)</td>
<td>Both tests</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>Log(N)</td>
<td>Jarque–Bera</td>
<td>154</td>
<td>93</td>
</tr>
<tr>
<td>Log(N)</td>
<td>Lilliefors</td>
<td>113</td>
<td>68</td>
</tr>
<tr>
<td>Log(N)</td>
<td>Both tests</td>
<td>112</td>
<td>67</td>
</tr>
<tr>
<td>Both marginals</td>
<td>Both tests</td>
<td>46</td>
<td>28</td>
</tr>
</tbody>
</table>
APPENDIX IV. ADDITIONAL RESULTS OF LINEARITY TESTING

Whether the composite test passed with independent variable $\log(M)$ was independent of whether it passed with independent variable $\log(N)$ (Table S5, $R = 0.006$, $p = 0.94$). That the composite test with independent variable $\log(M)$ passed independently of the composite test with independent variable $\log(N)$ shows that intuition based on deterministic relationships does not always carry through to statistical models. Cohen and Carpenter (2005) give an artificial example (pp. 148–150) to illustrate how linear model assumptions can be violated with one choice of independent variable but not with the other.

Table S3
The mean and maximum differences among the three symmetric linear regression slopes

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\text{RMA–OLS-bisector}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\text{MA–OLS-bisector}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\text{RMA–MA}</td>
<td>$</td>
</tr>
</tbody>
</table>

RMA and OLS-bisector took similar values, but MA values differed substantially.

Figure S1: Histograms of OLS-bisector, MA, and RMA slopes of the webs of this study. (OLS, ordinary least squares; MA, major axis; RMA, reduced major axis.) Standard deviations were 0.15 for the OLS-bisector slopes, 0.27 for the MA slopes, and 0.17 for the RMA slopes.
Bacteria were always much more abundant in the soil webs of this study than would be expected from the line log\((N) = b_1 \log(M) + a_1\) that best fitted the nonbacterial taxa. We conjecture this pattern was at least partly due to the high degree of lumping of the bacteria. If log\((N)_{b,e}\) was the expected log abundance of bacteria according to the regression line through the nonbacterial taxa, and if log\((N)_{b}\) was the actual log abundance of the bacteria, then log\((N)_{b} - \log(N)_{b,e}\) had mean 6.59 across all 146 soil webs, with minimum value 4.22 and maximum 10.28. Raising 10 to log\((N)_{b} - \log(N)_{b,e}\) values showed that bacteria were on average (arithmetic mean) 1.88 \times 10^8 times more abundant than expected from the log–log regression line through the other species populations, with minimum factor of over-abundance 1.68 \times 10^4 and maximum factor 1.92 \times 10^{10}. Bacteria would have had to be divided

Table S4 Number of webs that passed multiple tests (1% level) of the assumptions of the standard linear models

<table>
<thead>
<tr>
<th></th>
<th>Passed all tests</th>
<th>Failed at least one</th>
<th>Failed at least two</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indep. var. log((M))</td>
<td>121 (≈73%)</td>
<td>45 (≈27%)</td>
<td>9 (≈5%)</td>
</tr>
<tr>
<td>Indep. var. log((N))</td>
<td>45 (≈27%)</td>
<td>121 (≈73%)</td>
<td>88 (≈53%)</td>
</tr>
<tr>
<td>Expected</td>
<td>≈158–159 (95–96%)</td>
<td>≈7–8 (4–5%)</td>
<td>≈0–1 (0–1%)</td>
</tr>
</tbody>
</table>

Number of webs (of 166) that passed all five tests of the assumptions of the linear regression model (second column), failed at least one test (third column), and failed at least two tests (fourth column). The last row shows the expected number of webs that would pass if a linear model was true.

Table S5 Pass and fail rates of the composite test for each choice of independent variable

<table>
<thead>
<tr>
<th></th>
<th>(M) passed</th>
<th>(M) failed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N) passed</td>
<td>33 (27.27%, 73.33%)</td>
<td>12 (26.67%, 66.67%)</td>
</tr>
<tr>
<td>(N) failed</td>
<td>88 (72.73%, 72.73%)</td>
<td>33 (73.33%, 27.27%)</td>
</tr>
</tbody>
</table>

Number of webs (of 166) that fell into each of the four categories formed by passing or failing the composite test with independent variables log\((M)\) and log\((N)\). The first numbers in each set of parentheses sum to 100% down the columns; the second numbers in each set of parentheses sum to 100% across the rows. \(X_{1,1}^2 = 0.0061, p = 93.8\%\).

APPENDIX V. ABUNDANCE AND DIVERSITY OF BACTERIA

Bacteria were always much more abundant in the soil webs of this study than would be expected from the line log\((N) = b_1 \log(M) + a_1\) that best fitted the nonbacterial taxa. We conjecture this pattern was at least partly due to the high degree of lumping of the bacteria. If log\((N)_{b,e}\) was the expected log abundance of bacteria according to the regression line through the nonbacterial taxa, and if log\((N)_{b}\) was the actual log abundance of the bacteria, then log\((N)_{b} - \log(N)_{b,e}\) had mean 6.59 across all 146 soil webs, with minimum value 4.22 and maximum 10.28. Raising 10 to log\((N)_{b} - \log(N)_{b,e}\) values showed that bacteria were on average (arithmetic mean) 1.88 \times 10^8 times more abundant than expected from the log–log regression line through the other species populations, with minimum factor of over-abundance 1.68 \times 10^4 and maximum factor 1.92 \times 10^{10}. Bacteria would have had to be divided
into between 1.88×10^2 and 2.72×10^8 equally abundant subtaxa for these subtaxa to have residuals from the regression model Eq. 1 (based on the nonbacterial taxa) that were not in the upper 0.5% tail of normally distributed ϵ. The use of 16S ribosomal ribonucleic acid sequencing to define taxa of Archaea and Eubacteria would likely reveal 20 or more major groups of Prokarya and thousands of taxa (Fitter et al., 2005; Noguez et al., 2005; Torsvik et al., 2002). This level of resolution may be sufficient to bring bacterial abundance per taxon into line with the expectation $\log(N)_{b,e}$, but it might also be a finer classification than the genus or family level classification that was used for Eukarya such as nematodes.

APPENDIX VI. LIMITATIONS OF THE DATA

Sample sizes of populations of some taxa in riparian and some soil webs were limited. As a result, horizontal lines appeared when $\log(N)$ was plotted as a function of $\log(M)$ because populations of many taxa had the same N value (e.g., Figure 1F). If n_i organisms of taxon t_i were observed in an area of size A, then the estimate for N_i, the population density of t_i, was n_i/A. If the area A was not large, then by chance alone n_i could have the same low value for several uncommon taxa t_i, causing several equal N_i estimates. Some hyphal-feeding nematodes in our soil webs were counted only once (Mulder et al., 2003a, 2005c). In the riparian zone webs, the area A chosen was adjusted to one of the three levels appropriate for the size and biology of each of three broad taxonomic groups. This procedure led to the three visible lines in Figure S2A, one line for each choice of A. Horizontal trends may have affected the probability with which some scatter plots passed the composite test for one or both choices of independent variable. Furthermore, oversampling of larger soil invertebrates has been reported previously (e.g., Ulrich et al., 2005).

Possible vertical lines could also affect linear regressions for some webs, although they are not expected to do so for the data of this study. Vertical lines correspond to multiple taxa having the same log average individual body mass, and may result from M measurements of insufficient precision, or low-precision M estimates derived from literature.

For soil webs, fungal mycelia and detritus were omitted from relationships between $\log(M)$ and $\log(N)$. Detritus and fungi were either impossible to define as “individuals” (Mulder et al., 2005a) or difficult to measure, so N could not be measured for these taxa. The broken hyphae of fungal mycelia (Mulder et al., 2003b) and fungal spores (Mulder et al., 2005b) were
measured in other studies. Similarly, detritus was omitted from the Ythan Estuary web.

![Graph A](continued)
diluted bacterial samples and counted colony forming units in categories according to colony appearance (Section IV). Bacterial abundances were then back-calculated according to the dilution used. The results fell near the relationship between log(M) and log(N) expected from the other taxa. Genetic information may resolve bacterial taxa more finely and provide different log(N)-versus-log(M) scatter plots.

REFERENCES

Mulder, Ch. (2006) Driving forces from soil invertebrates to ecosystem functioning: The allometric perspective. *Naturwissenschaften* 93, 467–479.

