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International migration will play an increasing role in the demo-
graphic future of most nations if fertility continues to decline
globally. We developed an algorithm to project future numbers of
international migrants from any country or region to any other.
The proposed generalized linear model (GLM) used geographic and
demographic independent variables only (the population and area
of origins and destinations of migrants, the distance between origin
and destination, the calendar year, and indicator variables to quantify
nonrandom characteristics of individual countries). The dependent
variable, yearly numbers of migrants, was quantified by 43653 re-
ports from 11 countries of migration from 228 origins and to 195
destinations during 1960–2004. The final GLM based on all data
was selected by the Bayesian information criterion. The number of
migrants per year from origin to destination was proportional to
(population of origin)0.86(area of origin)�0.21(population of
destination)0.36(distance)�0.97, multiplied by functions of year and
country-specific indicator variables. The number of emigrants from
an origin depended on both its population and its population
density. For a variable initial year and a fixed terminal year 2004,
the parameter estimates appeared stable. Multiple R2, the fraction
of variation in log numbers of migrants accounted for by the
starting model, improved gradually with recentness of the data:
R2 � 0.57 for data from 1960 to 2004, R2 � 0.59 for 1985–2004, R2 �

0.61 for 1995–2004, and R2 � 0.64 for 2000–2004. The migration
estimates generated by the model may be embedded in determin-
istic or stochastic population projections.

generalized linear model � geography � population density �
spatial interaction model � stochastic population projection

International migration will play an increasing role in the demo-
graphic future of nations if fertility continues to decline in most

countries. In projecting international migration, the United Nations
Population Division (ref. 1, paragraphs 57–59) identified the need for
a demographically plausible, programmable algorithm that automat-
ically projects a zero world balance of net migration and prevents
projected net emigration from completely depleting the population
of any sending country. To meet this need, we propose an algorithm
(based only on demographic and constant geographic variables) for
projecting future numbers of international migrants from any
country or region to any other. It is comparable in transparency and
generality to standard cohort-component methods of projecting
births and deaths. The approach presented here is different from
methods of projecting migrant flows currently practiced in inter-
national demographic institutions, the United States, European
countries, and other developed countries (2–6).

Most theories of international migration draw on social, eco-
nomic and/or political factors to explain migration (4, 7–9), such as
differences among countries in gross domestic product, labor
markets, migration policies, social networks of prior migrants, and
cognitive and behavioral attributes of individuals (3, 10–11). For
multidecadal demographic projections, it seems more difficult to
project such nondemographic variables than it is to project demo-
graphic variables such as fertility and mortality. The proposed
model assumes the availability only of constant geographic variables

and of population sizes that can be projected incrementally in time
by accepted demographic procedures. The model makes possible
both deterministic and stochastic projections of migration and
hence of population.

The intellectual antecedents of the proposed model include
Zipf’s (12, 13) model of intercity migration, which is one of several
‘‘gravity’’ models in the social sciences (6). Zipf (12) aimed to ‘‘show
with supporting data that the number of persons that move between
any twocommunities in theUnitedStateswhoserespectivepopulations
are Pl and P2 and which are separated by the shortest transportation
distance, D, will be proportionate to the ratio, Pl�P2/D, subject to the
effect of modifying factors.’’ Unlike Zipf, we distinguish the number
of people who move from community 1 to community 2 from the
number of people who move from 2 to 1. Taking logarithms of
Pl�P2/D and adding an error term yields a linear model in log-
transformed variables, log(migrants) � a0 � a1 log(ppnorig) � a2
log(ppndest) � a3 log(distance) � error, where ppnorig is the popu-
lation of the origin, ppndest is the population of the destination, and the
error term characterizes random deviations. Here and throughout,
log refers to log10, and ln refers to the natural logarithm loge. Zipf posits
that a1 � 1, a2 � 1, and a3 � �1. We estimate all coefficients from
data using a generalized linear model (GLM) (14).

Zipf (12) treated cities as points of negligible spatial extent. Our
communities are countries or regions and our subject is international
migration. To let the data reveal whether the area of a country
influences its numbers of migrants, we add two terms to the above
equation: log(areaorig), the log area of the origin, and log(areadest), the
log area of the destination. By definition, the population density of the
origin is ppnorig/areaorig, so log(density) � log(ppnorig) �
log(areaorig). If the number of migrants from origin to destination
depends on ppnorig and ppndest and not on their areas, then the
estimated coefficients of log(areaorig) and log(areadest) should be
close to zero. However, if the number of migrants from origin to
destination depends on the population density of the origin and the
population density of the destination, but not on their respective
population numbers per se, then the estimated coefficients of
log(areaorig) and log(areadest) should be nearly the negative of the
respective estimated coefficients of log(ppnorig) and log(ppndest).
The estimated coefficients of the terms for log population and log
area of origin and destination reveal the relative importance of
population per se and population density.

To allow for differences in migratory intensities among origins or
destinations, we let the data reveal whether different origins and
destinations had numbers of migrants different from the numbers
of migrants expected on average from their respective populations,
areas, and distances. We introduced four indicator variables for
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each country that provided data. For example, Australia was a
source of data on numbers of emigrants and immigrants by year.
One indicator variable for Australia, orig.indicator$Australia,
equaled 1 whenever Australia was the origin and equaled 0 if any
other country or area was the origin. A second indicator variable,
dest.indicator$Australia, similarly equaled 1 whenever Australia
was the destination and equaled 0 if any other country or area was
the destination. A third indicator variable, orig.is.datasource$Aus-
tralia, equaled 1 if Australia was the origin and was the source of
the data and otherwise equaled 0. A fourth indicator variable,
dest.is.datasource$Australia, equaled 1 if Australia was the desti-
nation and was the source of the data and otherwise equaled 0.
Similar indicator variables were defined for each country that
provided data on its flows of immigrants and/or emigrants.

To allow for the possibility that migration rates changed over
time and for the simultaneous effects of the other independent
variables (populations, areas, distance, and indicator variables),
we introduced year as an independent variable. We used the
centered variable year minus 1985 to assure the stability of the
model’s estimated intercept.

To summarize in notation similar to that of Zipf’s gravity
model, let P be population, A be area, and D be distance.
Detailed definitions of these variables are given in Methods. Our
‘‘starting’’ model was the logarithmic transformation of model
Eq. 1. This logarithmic transformation guaranteed that the
number of migrants estimated by the model was positive.

migrants from origin to destination [1]

� constant � Porig
a Pdest

b Aorig
c Adest

d Dorig,dest
f �

[10 if origin is Australia; 1 otherwise]g �

[10 if destination is Australia; 1 otherwise]h �

[similar indicator variables for seven other origins and ten

other destinations]coef �

[10 if origin is Australia and Australia is the source of the

data; 1 otherwise]i �

[10 if destination is Australia and Australia is the source of

the data; 1 otherwise]j �

[similar indicator variables for seven other origins and ten

other destinations]coef �

10k�year-1985� �

�lognormal error term exp���� ,

where � 	 N(0,�2) are independent.
This model contains factors of the form [10 if origin is

Australia; 1 otherwise]g. The common logarithm of this expres-
sion is g � [1 if origin is Australia; 0 otherwise], and the
expression in square brackets is an indicator (or dummy) vari-
able. The coefficient g summarizes the nonrandom effects on the
expected number of migrants from Australia (in this case) apart
from those due to calendar year, the populations and areas of
origin and destination, and distance. The indicator variables
quantified how numbers of migrants were affected by nonran-
dom characteristics of individual countries: migratory history,
policy, and statistical completeness; economic, geographic, and
cultural affinities or disparities; and effects of geographical
adjacency not captured by the chosen measure of distance.

We estimated the intercept (log constant) and exponents a, b, c,
d, …, which were linear coefficients in the GLM. We fitted this and
other models to data from 11 countries (Australia, Belgium,
Canada, Denmark, Germany, Italy, the Netherlands, Spain, Swe-
den, the U.K., and the U.S.A.). These countries were selected on
the basis of the quality of their data on international migrants by
year and places of origin and destination from 1960 to 2004. The
data included 228 origins and 195 destinations of migrants. Oceania
was the only destination not also an origin, so 229 countries or
regions in total were named in these data.

Because of the limited quantity and quality of migration data, this
article demonstrates a method and illustrates a modeling approach,
rather than specifying numerical parameters definitively. Parameters
and models will evolve as more and better data become available. The
analysis showed that statistically simple and demographically inter-
pretable modeling accounted for more than half the variation in the
migration data. How much more than half could be accounted for
by this approach with better data remains to be determined.

Results
Descriptive Bivariate Relationships. On average, but with enormous
variability, the log number of migrants increased with increasing log
population of origin (r � 0.43), increasing log area of origin (r �
0.18), increasing log population of destination (r � 0.27), and
increasing log area of destination (r � 0.10) (Fig. 1 A–D). The log
number of migrants decreased, on average but with enormous
variability, with increasing log distance from origin to destination
(r � �0.24) and increased weakly with year (r � 0.01) (Fig. 1 E and
F). Log population and log area were highly correlated (Fig. 1 G
and H) for origins (r � 0.74) and destinations (r � 0.64). Because
these were the two highest-magnitude correlations, collinearity was
not a problem in fitting the GLM. Correlations between year and
log migrants, and between log(ppnorig) and log(distance), were
insubstantial.

Log(ppnorig) and log(ppndest) were negatively correlated
(r � �0.19) (Fig. 1I). This negative correlation could reflect the
absence of data sources among countries with four million or
fewer people, which may account for the absence of data points
in the lower left quadrant of Fig. 1I. The long horizontal and
vertical streaks in Fig. 1I represent the populations of countries
that were data sources as origins and destinations, respectively,
whereas the short diagonal streaks largely reflect population
growth of a given (origin, destination) pair.

Model Selection. The starting linear model was fitted [supporting
information (SI) Table S1] with the dependent variable log(mi-
grants) and with the six independent variables that we call
‘‘basic’’ [year minus 1985, log(ppnorig), log(areaorig), log(ppn-
dest), log(areadest), log(distance)] and all indicator variables
(orig.indicator, dest.indicator, orig.is.datasource, dest.is.data-
source). The Multiple R2 was 0.5693 and the Adjusted R2 was
0.5689 (see Methods).

When the stepwise algorithm with Bayesian information crite-
rion (15) was applied to this starting model, log(areadest) was
eliminated and all other independent variables were retained in the
resulting ‘‘final’’ model (Table 1). To the four significant digits
shown, the Multiple R2 and the Adjusted R2 were unchanged
between the starting and the final models.

When the values of log(migrants) were independently and ran-
domly permuted in each of 100 simulations, the maximum of the 100
simulated multiple R2 values was 0.00147, far smaller than the multiple
R2 value of 0.5693 for the data. Hence, the latter multiple R2 value
could not have been an artifact of the fitting procedure alone.

When all indicator variables were suppressed and only the six
‘‘basic’’ independent variables were retained, the multiple R2 value
dropped to 0.4345 (Table S3). The only notable change in the
coefficients of the six ‘‘basic’’ independent variables was the in-
crease in the coefficient of log(areadest) from 0.0239 to 0.1604. A
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model that omitted the indicator variables would have misleadingly
suggested that log(areadest) was fairly influential. The stepwise
algorithm, however, retained the indicator variables and dropped
log(areadest).

Residuals. In the final model, the interquartile range of the
residuals was �0.4352 to 0.4414 log(migrants), meaning that half
the time, the observed numbers of migrants fell in the interval
from 36.7% to 2.763 times the predicted number of migrants (the
predicted number was 10expected log(migrants)). The smallest and
largest residuals were �3.2449 and 3.2918, corresponding to
cases where the observed number of migrants was 
1,000 times
smaller or larger than the predicted number.

The largest residuals occurred at intermediate fitted values from
0.5 to 3.5, corresponding to predicted numbers of migrants from �3
to 3,000 (Fig. S1A). The scatter of the residuals was clearly not
constant over the range of fitted values. This lack of homoscedas-
ticity justified the use of the Bayesian information criterion for
model selection instead of a probabilistic interpretation of F tests
for omitted variables. The validity of the latter approach assumes
homoscedasticity of residuals and independence of observations.

When the fitted values were 
4 on the log10 scale (corresponding
to 10,000 migrants per year or more), residuals were systematically
negative, indicating fewer reported migrants than predicted. This
pattern could result, among other possible causes, from underre-
porting of large migrant flows or from systematic policies intended
to diminish the largest predicted flows.

Model Coefficients. In the final model (Table 1), the predicted
number of migrants increased by 0.38% � 100.00163 per year, in
addition to the changes in numbers of migrants resulting from
changes over time in log(ppnorig) and log(ppndest). The predicted
number of migrants was proportional to the population of origin
raised to 0.86 and to the population of destination raised to 0.36.
Increases in log(ppnorig) increased log(migrants) more than twice
as much as increases in the log(ppndest). In light of the small
standard errors of these estimates (Table 1), these exponents very
probably differed from the exponents of 1 in Zipf’s (12) gravity
model, even if the distributional assumptions of the linear model
were not precisely met. The predicted number of migrants was
proportional to the distance raised to �0.97, a bit more than three

standard errors from Zipf’s posited exponent of �1. The predicted
number of migrants was proportional to the area of origin to the
power �0.21. Because P0.86A�0.21 � P0.65(P/A)0.21, the number of
migrants increased with both the population of origin (to the power
of 0.65) and the population density of origin (to the power 0.21), and
the population of origin contributed more to the number of
migrants than did the population density of origin.

The indicator variables revealed substantial heterogeneity among
countries in their propensity to send or receive migrants and in their
reporting practices, given the other independent variables. Accord-
ing to its coefficient for orig.indicator, Australia had 13.47 � 101.1295

times as many emigrants as expected. At the opposite extreme,
Belgium had 56% as many emigrants as expected from its other
characteristics. Denmark, Germany, and the Netherlands had ap-
proximately as many emigrants as expected. According to its
coefficient for dest.indicator, Australia had 27.31 times as many
immigrants as expected from its geographic and demographic
characteristics, followed by the U.S.A. and Canada with 13.95 and
7.17 times as many immigrants as expected, respectively. At the
opposite extreme, Belgium had 1.35 times as many immigrants as
expected, the smallest multiple among the countries that provided
data in this study. According to dest.indicator, all reporting coun-
tries had more immigrants than expected on average. The countries
that provided data for this study are countries with the resources to
support effective statistical systems, and such countries are likely to
be attractive destinations of migration.

According to its coefficient for orig.is.datasource, when Australia
reported the number of emigrants from Australia, it reported on
average 50% � 10�0.3038 of the number of emigrants from Australia
that the average country that reported emigration data in this study
would have reported, given Australia’s population and area, the
destination and year, and the propensity to emigrate from Australia
estimated without regard to the source of the data. For example,
Australia reported 3,971 migrants from Australia to the U.K. in 1998,
whereas the U.K. reported 41,800 migrants from Australia to the U.K.
in 1998 (see Methods). Australia reported emigrants leaving perma-
nently. The U.K. reported immigrants staying for 1 year or longer.

At the opposite extreme from low reporters of emigration like
Australia (50%) and Italy (33%), the U.K. reported 22.54 times as
many emigrants as would be expected otherwise, whereas Germany
reported 3.07 times as many. The U.K. data are estimates derived

Fig. 1. Bivariate relationships in interna-
tional migration data, 1960–2004. (A) Log
number of migrants versus log population of
origin. (B) Log number of migrants versus log
area of origin. (C) Log number of migrants
versus log population of destination. (D) Log
number of migrants versus log area of desti-
nation. (E) Lognumberofmigrantsversus log
distance from origin to destination. (F) Log
number of migrants versus year. (G) Log pop-
ulation of origin versus log area of origin. (H)
Logpopulationofdestinationversus logarea
of destination. (I) Log population of origin
versus log population of destination. Each
plot has 43,653 points.

Cohen et al. PNAS � October 7, 2008 � vol. 105 � no. 40 � 15271

SO
CI

A
L

SC
IE

N
CE

S

http://www.pnas.org/cgi/data/0808185105/DCSupplemental/Supplemental_PDF#nameddest=SF1


mainly from a survey of arriving and departing international
passengers; U.K.’s recording of emigration and immigration flows
is equally complete. Australia, by contrast, focuses on entries. These
differences between countries are detected by the statistical analysis
and reflected in the estimated coefficients of the model.

According to its coefficient for dest.is.datasource, when the U.K.
reported the number of immigrants to the U.K., its reports were on
average 31.47 times the number of immigrants that would have been
reported by the average reporting system over all countries in the
study, given the U.K.’s population and area, the destination and
year, and the propensity to immigrate to the U.K. estimated without
regard to the source of the data. At the opposite extreme, Spain and
Italy reported 59% and 58%, respectively, of the numbers of
immigrants expected from other factors.

In general, immigration is better recorded at destinations than
emigration is recorded at origins, in part because migrants often
have more formal incentives to register at their destination than to
deregister at their origin. The estimated coefficients of the indicator
variables (Table 1) are consistent with this belief, although other
interpretations are possible. For example, dest.indicator for Aus-
tralia had coefficient 1.4362, greater than the coefficient 1.1295 of
orig.indicator for Australia. The same inequality, dest.indicator
coefficient 
 orig.indicator coefficient, held for all eight countries
that supplied both immigration and emigration data. Similarly, the
comparable inequality, dest.is.datasource coefficient 
 orig.is.
datasource coefficient, held for all eight countries that supplied
both immigration and emigration data. These inequalities indicated
greater detection (or greater intensity, an alternative interpreta-
tion) of immigration than emigration in every country for which the
comparison could be made.

Parameter Stability: How Much of the Past Is Relevant to the Future?
Estimated coefficients varied systematically as a function of the
time interval from which data were drawn and as a function of the
subset of variables selected from the starting model Eq. 1 (Table
S3). The starting model rather than the final model was used for this
analysis to allow for the possibility that the log area of destination
might become dramatically important for some subset of 1960–
2004. As it turned out, this possibility did not occur.

For each set of independent variables, the most recent five years
(2000–2004) gave the highest multiple R2. Using all variables, all
data from 1960 to 2004 gave a multiple R2 value of 0.57, whereas
the 2000–2004 data gave a multiple R2 value of 0.64 (Table S3). This
higher value of the multiple R2 may be partially due to improved
quality of data in more recent years but may also be due to fewer
external perturbations to migratory flows during 2000–2004 than
during 1960–2004. For example, during the 45-year period of
1960–2004, the Berlin wall and the Soviet Union fell, and Germany
was reunified, whereas no such events marked the 5-year period of
2000–2004, an interval only one-ninth as long. For each set of
independent variables, as the initial year moved forward while the
terminal year was 2004, the multiple R2 value increased. Each set
of independent variables accounted for more variation in log(mi-
grants) when using the data from 1985 to 2004 than by adding
additional data from earlier years.

All estimated coefficients were stabler when using a moving
initial year than when using a moving terminal year. They were least
stable when using moving tranches of 5 or 10 years’ duration (Table
S3). For the starting model with all variables, the standard deviation
0.3877 of the estimated intercept for the five time intervals with
moving terminal year 1960–1984, 1960–1989, 1960–1994, 1960–
1999, and 1960–2004 was larger than the standard deviation 0.2489
of the estimated intercept for the five time intervals with moving
initial year 1965–2004, 1970–2004, 1975–2004, 1980–2004, and
1985–2004. The same inequality held for the standard deviations of
the estimates of the coefficients of all six basic variables when the
five time intervals with moving terminal year were compared with
the five time intervals with moving initial year.

Table 1. The �final� model of log migrants as a function of year,
log population of origin, log area of origin, log population of
destination, log distance, and indicator variables; specification
of the model in R and resulting coefficients and statistics

Call:
lm (formula � logmigrants 	 I (year�1985) � logppnorig �

logareaorig � logppndest � logdistance � orig.indicator �

dest.indicator � orig.is.datasource � dest.is.datasource)

Coefficients Estimate SE t value

(Intercept) �2.5135 0.0886 �28.3730
I (year–1985) 0.0016 0.0003 5.1670
Logppnorig 0.8631 0.0083 103.6400
Logareaorig �0.2103 0.0066 �31.9050
Logppndest 0.3604 0.0089 40.7010
Logdistance �0.9685 0.0102 �94.5470
orig.indicatorAustralia 1.1295 0.0436 25.8900
orig.indicatorBelgium �0.2557 0.0404 �6.3300
orig.indicatorDenmark �0.0441 0.0409 �1.0760
orig.indicatorGermany 0.0699 0.0409 1.7080
orig.indicatorItaly 0.1844 0.0401 4.5960
orig.indicatorNetherlands 0.0250 0.0408 0.6120
orig.indicatorSweden 0.1602 0.0473 3.3840
orig.indicatorUnited Kingdom 0.2486 0.0397 6.2580
dest.indicatorAustralia 1.4362 0.0558 25.7360
dest.indicatorBelgium 0.1314 0.0524 2.5090
dest.indicatorCanada 0.8557 0.0457 18.7160
dest.indicatorDenmark 0.2560 0.0523 4.8980
dest.indicatorGermany 0.5875 0.0502 11.7020
dest.indicatorItaly 0.7551 0.0493 15.3090
dest.indicatorNetherlands 0.4805 0.0509 9.4480
dest.indicatorSpain 0.6400 0.0470 13.6210
dest.indicatorSweden 0.2528 0.0696 3.6340
dest.indicatorUnited Kingdom 0.6284 0.0491 12.7910
dest.indicatorUnited States of

America
1.1444 0.0457 25.0180

orig.is.datasourceAustralia �0.3038 0.0633 �4.8010
orig.is.datasourceBelgium 0.4595 0.0626 7.3410
orig.is.datasourceDenmark 0.2340 0.0642 3.6450
orig.is.datasourceGermany 0.4872 0.0613 7.9500
orig.is.datasourceItaly �0.4761 0.0630 �7.5620
orig.is.datasourceNetherlands 0.2112 0.0645 3.2750
orig.is.datasourceSweden �0.0733 0.0658 �1.1140
orig.is.datasourceUnited

Kingdom
1.3529 0.0682 19.8440

dest.is.datasourceAustralia �0.0317 0.0719 �0.4420
dest.is.datasourceBelgium 0.5479 0.0716 7.6510
dest.is.datasourceCanada 0.1462 0.0638 2.2930
dest.is.datasourceDenmark 0.2687 0.0721 3.7270
dest.is.datasourceGermany 0.5646 0.0674 8.3730
dest.is.datasourceItaly �0.2356 0.0687 �3.4280
dest.is.datasourceNetherlands 0.4550 0.0718 6.3360
dest.is.datasourceSpain �0.2294 0.0678 �3.3850
dest.is.datasourceSweden 0.1258 0.0831 1.5140
dest.is.datasourceUnited

Kingdom
1.4979 0.0762 19.6680

dest.is.datasourceUnited
States of America

NA NA NA

Residual standard error: 0.6957 on 43610 degrees of freedom
Multiple R2: 0.5693, Adjusted R2: 0.5689
F statistic: 1,372 on 42 and 43,610 DF, nominal P value: � 2.2e-16

Because the assumption of independence among observations was
implausible, conventional measures of statistical significance were proba-
bly inapplicable. The destination.is.data.source parameter for the U.S. is
labeled NA because one of the destination.is.data.source variables must
be eliminated to prevent a singularity in estimating the coefficients. See SI
Text for details.
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Discussion
We assembled annual data on immigrants and emigrants from 11
countries’ sources and combined them with data on the populations
and areas of 228 origins and 195 destinations and the distances
between origins and destinations. These 43,653 reports did not
suffice to cover the 228 � 195 � 44,460 possible origin-destination
pairs in a single year and offered very sparse coverage over 45 years.
A simple GLM was able to account for more than half the variation
in log(migrants). Despite the present limitations of data, this approach
may improve on existing demographic procedures for projecting inter-
national migration and may motivate the collection of better data.

The bivariate relations among variables demonstrated the
need for a multivariate model. For example, the number of
migrants increased with the population of origin and the pop-
ulation of destination, but the population of origin and the
population of destination were negatively correlated. Only a
multivariate model could reveal how the number of migrants
depended on the populations of origin and of destination jointly.

In the final GLM, the coefficients of log(ppnorig) and log(ppn-
dest) were both positive and �1. If either coefficient had been
negative, then the estimated number of migrants could have
diverged to infinity as the population of origin or destination
became smaller. Because the coefficients were �1, the numbers
of migrants did not increase in proportion to ppnorig or ppndest.

The GLM served two distinct purposes: understanding and
prediction. For scientific understanding, we eliminated superfluous
independent variables to obtain the most economical model, then
interpreted the values of the coefficients in the model. For predic-
tion, we sought as much predictive power as possible by adding
variables that gave the highest coefficient of determination, pro-
vided that the parameter estimates did not become unstable
(sensitive to the inclusion or exclusion of a small number of data
points and/or other predictor variables). The starting and final
models considered here balanced interpretability and predictive
ability. Other models are discussed in SI Text (Table S2).

The principal problems with this method were the lack of data
and the lack of comparability (discrepancies between countries in
definitions and measurements) where the data existed (Methods).
Most countries lack a system to record migration flows. Many do
not publish their information on migration. The data did not
consistently distinguish moves from movers (6); individuals who
crossed borders multiple times may have been interpreted as
multiple migrants.

Comparisons with Some Related Studies. The 2003 Technical Panel
on Assumptions and Methods of the Social Security Administration
(16) suggested assuming that the number of net migrants to the U.S.
will grow, at least in the long run, in direct proportion to the size
of the U.S.A. population. The coefficients in the final model (Table
1) suggested, by contrast, that immigration to the United States is
expected to grow in proportion to the population of the United
States raised to the power 0.36, times independent multiplicative
effects of the calendar year. The final model also anticipates
changing log(migrants) as a result of population growth in countries
of origin. Likewise, according to the final model, emigration from
the United States should be expected to grow in proportion to the
population of the United States raised to the power 0.86, times
multiplicative effects that depend on year and country-of-
destination populations.

If countries’ populations changed by a factor of � 
 0, holding
constant all other variables and GLM coefficients, the number of
migrants would be multiplied by a factor of �a�b because
(��ppnorig)a(��ppndest)b � �a�b�ppnoriga�ppndestb, where a � b is
the sum of the coefficients of log(ppnorig) and log(ppndest). In the
final model (Table 1), a � b � 1.22; so if ppnorig and ppndest both
doubled, the predicted number of migrants from origin to desti-
nation would increase by a factor of 21.22 � 2.34. For moving time

intervals in the starting model with all variables (Table S3), a � b
tended to increase with the moving initial year or moving final year
or tranche. For example, for data in the time intervals 1980–2004
and 1985–2004, a � b � 1.26 and 1.30, respectively.

Bijak et al. (17) projected migratory flows among 27 European
countries by multiplying the initial emigration rates by an overall
trend (mobility increasing by 0.5% yearly) and temporal effects of
labor market policies. For comparison, our final model estimated
that the global number of migrants rose by 100.00163 � 1.0038 �
0.4% per year in the data of 1960–2004, apart from the multipli-
cative effects of population growth or decline and the indicator
variables of the countries or regions of origin and destination. This
agreement in estimates is remarkable considering the difference in
methods, data, and context (Europe versus the globe). Raymer (18)
reconstructed the migratory flows for the European Union using a
different log-linear model with multiplicative components.

Some migration models are based on transition probability matri-
ces (6). In such models, the number of immigrants is independent
of the destination’s population and proportional to a weighted sum
of the populations of origins or of the fractions of global population
in different origins. The GLMs estimated here suggest that each
destination’s number of immigrants is a nonlinear function of the
populations of both origin and destination and of other variables.

Use in Population Projection. The projected number of migrants can
be embedded in a population projection algorithm, initially ignoring
age structure and then incorporating it. The initial goal is, given a
vector of country population sizes P(t) with elements P(i,t) for
country i at time t, to compute the population vector P(t�1) at the
next time step. The GLM can estimate the number of migrants
M(i,j,t) from country i to country j between t and t�1. Let M(i,i,t) �
0 for all i (despite some countries’ reporting positive numbers of
migrants from the country to itself). The matrix M(t) with elements
M(i,j,t) is called the migration matrix at time t. It will be assumed
that M(i,j,t) obtained from the GLM approximates the number
of people who were in country i at time t and in country j (�i) at
time t � 1.

The number of emigrants from country i between t and t�1,
denoted E(i,t), is then E(i,t) � �jM(i,j,t). The vector E(t) with
elements E(i,t) is called the emigration vector at time t. The number
of immigrants to country i between t and t � 1, denoted I(i,t), is
I(i,t) � �hM(h,i,t). The vector I(t) with elements I(i,t) is called the
immigration vector at time t. The number of net migrants to country
i between t and t � 1, denoted N(i,t), is N(i,t) � I(i,t) � E(i,t). The
vector N(t) with elements N(i,t) will be called the net migration
vector at time t. Then populations of countries or regions can be
projected as

P�i,t � 1� � P�i,t� � N�i,t� � B�i,t� � D�i,t�, [2]

where B(i,t) is the number of births and D(i,t) is the number of
deaths projected for country i from separate models of fertility
and mortality.

It has been assumed thus far that the elements of the migration
matrix would be the predicted values 10expected log(migrants) produced
by the GLM, yielding a deterministic population projection. A
stochastic (Monte Carlo) method would be to sample numerically
from the distribution of residuals for given values of the indepen-
dent variables. Then the number of migrants from an origin to a
destination would become a random variable, and a population
projection that incorporated the migration matrix would become a
probabilistic ensemble of projections.

The migration matrix at time t depends on the indicator variables,
which are estimated from data up to and including t. Given P(t�1)
from Eq. 2, the simplest approach to computing the migration
matrix at time t � 1 would be to keep the coefficients of the
indicator variables constant and to update only the population
vector P(t � 1). A more sophisticated approach would be to
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examine trends over time in the coefficients of the indicator
variables and to extrapolate those trends forward to obtain updated
coefficients for the indicator variables of future migration matrices.

To obtain an age-specific net migration vector, one could apply
age-specific models of migration patterns for different countries
and regions to E(i,t) and to I(i,t) (19–21) and combine that with the
projected age-specific fertility and mortality vectors as in Eq. 2.

This method of projecting international migration in combination
with cohort-component methods of projecting fertility and mortality
solves the two problems identified by the United Nations Popula-
tion Division (1). First, the global sum of net migrants is guaranteed
to be 0 when the numbers of emigrants, immigrants, and net
migrants are derived from a migration matrix (22). Second, net
emigration should not completely deplete the population of any
sending country for realistic model parameters. In all models
considered here, the exponents of the populations of origin and
destination are positive and the predicted number of emigrants is
a small fraction of the population of origin. Consequently, the
projected number of emigrants from an origin declines to 0 as its
population declines to 0. Likewise, if the destination’s population
declines, the models predict that fewer people will migrate there.
This feature of the model depends on realistic parameter values and
may not hold in all mathematically possible cases. If the coefficients
of the model were unrealistic and gave an unrealistically large
number of emigrants, then it is possible that the origin population
could be depleted.

Open Research Questions. Many open questions remain. Why did the
area of the destination influence the numbers of migrants much less
than the area of origin? How well would the proposed models work
for migration within a country, taking account of international
migration? For a given origin-destination pair, were the residuals
correlated over time or independent as the error term in the model
assumed?

International migrants are mainly younger individuals of working
age and their families. Migratory flows of elderly individuals may
also be important. Would the fit of the models be improved by
replacing total population size with a weighted average that em-
phasized age groups most prone to migrate, or by a simple index
such as the proportion of the population age 20–34 years? Age-
structure seems likely to matter to migration increasingly as all
countries undergo population aging (23).

What is the long-run behavior of the projection model Eq. 2
assuming constant birth rates and death rates and constant coef-
ficients in Eq. 1? For example, when, if ever, does there exist a fixed
vector P of population size by country and a stable growth rate �
such that limt3 � P(t)/�t � P? If this case arises, how does � depend
on the parameters of the basic model Eq. 2? What irreducibility

conditions on the migration matrix assure the uniqueness of P?
When the migration matrix is reducible, could different ‘‘ergodic
sets’’ of countries (sets of countries linked through migration flows)
have different fixed vectors P of population size by country and
different stable growth rates �? Under what conditions on the
coefficients of log(ppnorig) and log(ppndest) can country popula-
tions snowball to infinity (in finite time or with infinite time) or
vanish? How sensitive to the initial conditions P(i,0) are each
country’s proportion of world population P(i,t)/�h/P(h,t) for large t,
where the summation runs over all countries? How sensitive are
country-specific population growth rates P(i,t�1)/P(i,t), for large t,
to initial conditions? In short, what ergodic theorems hold (24)?

Methods
Data. All 43,653 data records are provided in Dataset S1. Each record contains 12
variables: a unique serial number, the year in the Western calendar (1960–2004),
thenameof thecountryor regionoforiginofmigrants, the logpopulationof the
origin in that year, the name of the country or region of destination of migrants,
the log population of the destination in that year, the log number of migrants
from origin to destination in that year, the log area (square kilometers) of the
origin, the log area (square kilometers) of the destination, the log great circle
distance (kilometers) from the capital of the origin to the capital of the destina-
tion, the source of the migration data, and “neighbor” (see SI Text). Records for
which the value of any variable was missing were excluded.

Each country’s definitions of what constituted a migrant, of the origin or
destination of a migrant, and of the accounting year were used (Table S4).
Differences among definitions and in the effectiveness of collecting migration
data led to hundreds of discrepancies when both the origin and the destina-
tion reported migration data in the same year. In SI Text, sources are listed and
methods of collecting migration data are discussed.

Data Analysis. A GLM was fitted to a starting model with dependent variable
log(migrants) and with all six basic independent variables [year minus 1985,
log(ppnorig), log(areaorig), log(ppndest), log(areadest), and log(distance)] and
all indicator variables (orig.indicator, dest.indicator, orig.is.datasource, dest.is-
.datasource).ThestepwiseregressionalgorithmstepAICwasappliedtothis linear
model to obtain a final model. Details of data management and statistical
software are in SI Text.
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SI Results
Starting Model. The starting linear model was fitted (Table S1)
with dependent variable logmigrants and with the six ‘‘basic’’
independent variables and all indicator variables (orig.indicator,
dest.indicator, orig.is.datasource, dest.is.datasource). In this
model, under the implausible assumption of independent obser-
vations and the false assumption of homoscedasticity, log area of
destination had a coefficient that differed from 0 with 0.01 � P �
0.05. All other variables (treating the indicator variables as four
matrix blocks, not as vectors for individual countries) had
coefficients that differed from zero with P � 0.001. Because the
assumptions on which they are based are unjustified or incorrect,
all p values are regarded as nominal rather than credible.
Software calls were written in R. The tabulations of results are
a ‘‘summary’’ of the output of the functions ‘‘lm’’ (R stats
package) or ‘‘stepAIC’’ (R MASS package).

Models with More Independent Variables Than the Starting Model. A
variable called ‘‘neighbor’’ was constructed to see whether
geographical adjacency influenced the number of migrants. Two
countries or other geographical units were defined to be geo-
graphically adjacent if it was possible (in principle, disregarding
political or military barriers, and disregarding rivers but not
oceans) to walk across a border from one to another. An
adjacency matrix of 228 rows (labeled by countries of origin) and
195 columns (labeled by countries of destination) was filled with
the element 1 if the corresponding row country and column
country were geographically adjacent and with the element 0
otherwise. For each line of data giving the number of migrants
from an origin to a destination, the value of the variable
‘‘neighbor’’ for that line was looked up in the adjacency matrix:
neighbor(origin, destination) � 1 if origin and destination were
geographically adjacent, � 0 otherwise. The addition of ‘‘neigh-
bor’’ to the starting model increased multiple R2 very slightly
from 0.5693 to 0.5709. The stepwise elimination algorithm
stepAIC ranked the variables of this enlarged model (based on
the increment to BIC resulting from eliminating each variable in
succession) in increasing order of importance as log(areadest)
(least important), year, neighbor, log(ppndest), dest.is.
datasource, orig.indicator, orig.is.datasource, log(areaorig), dest.
indicator, log(distance) and log(ppnorig) (most important).
Thus, ‘‘neighbor’’ ranked among the less important variables. Its
coefficient indicated that being geographically adjacent in-
creased the predicted number of migrants by a factor of
100.2660910 � 1.8454 when the influence of all other variables was
taken into account. Thus, geographical adjacency less than
doubled the predicted number of migrants.

The starting model and the final model allowed for multipli-
cative interactions of the basic variables on the original scale of
measurement because, for example, log(ppnorig�ppndest) �
log(ppnorig) � log(ppndest). Such products are captured by
terms linear on the logarithmic scale. When we added to the
starting model an indicator variable for all 228 origins (not only
for the 8 origins from which we obtained data), we obtained a
very substantially improved multiple R2 but the estimated coef-
ficients of the basic variables and indicator variables were large,
apparently erratic, and uninterpretable. The results were similar
when we added an indicator for all 195 destinations (not only for
the 11 destinations from which we obtained data). The estimated
coefficients from such apparently over-fitted models seemed not

to provide a reliable basis for projecting numbers of migrants.
The number of estimated parameters for the model that included
indicators for all 228 origins was 265 (1 intercept, 6 area and
population predictors plus year, 22 destination and destination-
.is.data.source indicators, 8 origin.is.data.source indicators, and
228 origin indicators), and the number of estimated parameters
for the model that included indicators for all 195 destinations was
229 (1 intercept, 6 area and population predictors plus year, 16
origin and origin.is.data.source indicators, 11 destination.is.
data.source indicators, and 195 destination indicators). Both
values were above the rule-of-thumb cutoff of the square root of
the number of data points (436531/2 � 208.9) for the recom-
mended maximum number of independent variables in a linear
model, indicating that the larger models are over-fitted.

Other models not reported in detail here had interactions
between some or all of the ‘‘basic’’ variables, for example,
between log(ppnorig) and log(ppndest). We were not able to
interpret interaction terms such as log(ppnorig)�log(ppndest)
and did not pursue such models.

We considered three models in greater detail. In the first such
model, in addition to the independent variables in the starting
model, log(ppnorig) interacted with both indicator variables for
destinations, namely, dest.indicator and dest.is.datasource, and
log(ppndest) interacted with both indicator variables for origins,
namely, orig.indicator and orig.is.datasource. This model al-
lowed the exponent of the population of origin to differ for each
destination per se and each destination as a data source. It
allowed the exponent of the population of destination to differ
for each origin per se and for each origin as a data source.

The addition of these 38 independent variables raised the
multiple R2 to 0.5861 compared with the starting model’s
multiple R2 of 0.5693, an increase of �0.02 (Table S2). The
coefficient of log(ppnorig) (that is, the exponent of the popu-
lation of origin) rose to nearly 1.24 while the coefficient of
log(ppndest) (the exponent of the population of destination) fell
from positive to �0.64. As pointed out in the main Discussion,
these values outside the interval from 0 to 1 could lead to
undesirable behavior of the model. The coefficients for the
destination indicators for Denmark and Germany rose to �6 and
declined to below �6, respectively, corresponding to factors of
one million and one millionth. Many of the estimated coeffi-
cients for orig.is.datasource and dest.is.datasource became even
more extreme.

To the first model just considered, in the second model we also
added the interactions between year minus 1985 and each of the
indicator variables, orig.indicator, dest.indicator, orig.is.data-
source and dest.is.datasource. These additional terms repre-
sented the possibility that each origin or destination (per se or as
a data source) changed in time at a rate distinct from the
time-associated global average rate of change. While the mul-
tiple R2 increased slightly to 0.5975 (Table S2), some coefficients
estimated for the ‘‘basic’’ variables became highly unstable. For
example, the coefficient of log(ppnorig) rose to 8.14. All of the
coefficients of orig.is.datasource fell below �29.

We also considered a third model that contained all of the
independent variables of the starting model and in addition the
interactions between year minus 1985 and all of the indicator
variables. The addition of these 38 independent variables raised
the multiple R2 to 0.5817 compared with the starting model’s
multiple R2 of 0.5693 (Table S2). None of the parameter
estimates seemed unstable or unreasonable but the increase in
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descriptive power of the GLM seemed small compared with the
increase in the number of independent variables.

The three extensions of the starting model considered above
slightly increased descriptive power (Table S2) at the price of
large numbers of additional independent variables and, in some
cases, of instability in the estimated coefficients.

Models with Fewer Independent Variables than the Starting Model.
To see how much demographic and geographic variables mat-
tered in accounting for the number of migrants, we fitted a model
with none of the ‘‘basic’’ independent variables except year
minus 1985. The independent variables in this model were year
minus 1985, the four indicator variables, and the interactions
between year minus 1985 and the indicator variables (for a total
of 78 estimated parameters, including the intercept). For this
model, multiple R2 was 0.3371 and the estimated coefficients
were not apparently unstable.

When we fitted a GLM that did not include year minus 1985
or the four indicator variables, but did include the five remaining
‘‘basic’’ independent variables, multiple R2 was 0.4345 (Table
S3). The five demographic and geographic variables (popula-
tions of origin and destination, areas of origin and destination,
distance from origin to destination) better described variation in
logmigrants than did the independent variables year minus 1985
together with the four indicator variables and the interactions
between year minus 1985 and the four indicator variables (78
parameters including intercept).

The 2 models considered in the 2 previous paragraphs have
disjoint sets of independent variables and the same dependent
variable log(migrants). The union of these 2 disjoint sets of
independent variables was considered in the third model de-
scribed above. When the interactions between year minus 1985
and the four indicator variables were added to the starting
model, multiple R2 was 0.5817 (Table S2), which is considerably
less than 0.3371 � 0.4345 � 0.7716. The demographic and
geographic ‘‘basic’’ variables were not orthogonal to year and the
indicator variables. Both kinds of independent variables con-
tributed substantially to the fits achieved by the starting and final
models.

For each of the 29 time intervals considered in Table S3, the
multiple R2 ranked as follows according to the independent
variables included: all variables in the starting model � only
‘‘year minus 1985’’ omitted � only indicators omitted � ‘‘year
minus 1985’’ and indicators omitted. The first and last inequal-
ities are automatic. The middle inequality is unsurprising be-
cause there were many indicator variables and only one variable
for year.

SI Discussion
These models assume that population sizes vary continuously
and that time changes discretely. Both assumptions differ from
reality. Real population sizes change by at least one individual
and real time changes continuously. These differences in dis-
cretization between the model and reality are negligible when
populations are large enough and numbers of migrants are small
relative to populations.

SI Methods
Data. Eleven countries (Australia, Belgium, Canada, Denmark,
Germany, Italy, the Netherlands, Spain, Sweden, the United
Kingdom and the United States of America) reported 29735
records of migration in which the reporting country was the
destination of the migrants, and eight countries (the above 11
excluding Canada, Spain and the United States of America)
reported 13918 records of migration in which the reporting
country was the origin of the migrants. Reported numbers of
migrants from a country or region to itself were excluded.
Records of 0 migrants were also excluded.

Population data were from the United Nations (1). The main
source of migration data was ref. 2, but additional migration data
came from refs. 3–5.

For most countries, land area was based on estimates from the
Food and Agriculture Organization (FAO) compiled by the
United Nations Statistics Division (http://unstats.un.org/unsd/
cdb/cdb�advanced�data�extract.asp; accessed May 2008). For
several countries where land area was not available but total area
(including water bodies) was provided by the UN Statistical
Division, total area was used instead of land area. Estimates of
land area for Czechoslovakia, Yugoslavia and the USSR, which
no longer exist as national entities, were taken from the United
Nations Demographic Yearbook 1990, when all three existed as
countries. The total land area of Central America was calculated
by the United Nations Population Division. The total land area
of the European Union was taken from the on-line CIA World
Factbook 2006 at www.cia.gov/library/publications/the-world-
factbook (accessed August 20, 2006). For composites of multiple
countries (including African Commonwealth; Bangladesh, India
and Sri Lanka; Caribbean Commonwealth; and United Kingdom
and Ireland), an area was computed as the sum of the land areas
of the component countries.

Estimating the distance entailed certain assumptions. For
Bolivia, which has two capital cities, La Paz and Sucre, Sucre was
arbitrarily chosen. For Yemen, which moved its capital city to
Sanaa after reunification of the country in 1990, the later city was
arbitrarily chosen. For regions that included multiple countries,
a capital of one of the countries was chosen to represent the
region (for Bangladesh, India and Sri Lanka, New Delhi was
chosen; for Oceania, the capital of Samoa was chosen; for Great
Britain and Ireland, London was chosen). The capital was chosen
to approximate both geographic and demographic centrality, but
other choices could have been made. For each chosen city, a
longitude and latitude were determined from public sources.
Public sources frequently disagreed on the longitude and latitude
(to a precision of degrees and minutes) of the selected cities.
Where multiple sources were available, the most commonly used
values were accepted for latitude and longitude. The longitude
and latitude values were converted to radians (lon1, lat1) for city
1 and (lon2, lat2) for city 2 with south as negative and west as
negative relative to Greenwich and entered into the following
formula for the great-circle distance on a sphere:

Distance (km) � 6372.795*arccos(sin(lat1)*sin(lat2) �

cos(lat1)*cos(lat2)*cos(lon2�lon1)).

The formula is exact for spherical geometry. The Earth is an
oblate spheroid, with polar radius 6356.912 km and equatorial
radius 6378.388 km. The ratio of the equatorial to polar radius
is 1.0034. The formula used to calculate great-circle distance uses
the average great-circle radius of the Earth. The error intro-
duced by this approximation is likely to be �0.34%. This error
is smaller than that introduced by several other assumptions. In
particular the error is probably smaller than the assumption that
the great-circle distance between capital cities is the distance
relevant for international migrants, particularly when countries
adjoin like the USA and Mexico.

For a great majority of countries or regions, the latitude and
longitude in radians were checked against a worksheet prepared
independently by Uwe Deichmann at the World Bank and kindly
sent to JEC November 3, 2005. In general, there was excellent
agreement, to within the error of locating the center of the cities.
After distances were calculated, they were compared with a
database of distances at http://dss.ucsd.edu/�kgledits/
capdist.html, accessed November 24, 2005, ‘‘Distance Between
Capital Cities.’’ Again, for the pairs of countries selected, the
agreement between the online database and the distances cal-
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culated here was good compared with the imprecision in the
location of cities and the radius of the Earth.

Countries use varied systems to collect data on migration
flows, e.g., residence permits (Canada, the United States),
border collection (Australia, the United Kingdom) and national
population registers (several European countries). These
sources were built not to gather reliable statistics but for
administrative reasons closely related to the control of interna-
tional migration. Statistics derived from the issuance of resi-
dence permits, for instance, reflect administrative procedures
and documents rather than actual entries. They provide infor-
mation on legally resident foreigners but do not capture inflows
or outflows of citizens, outflows of foreigners or the movement
of undocumented migrants. Border statistics reflect actual
moves but gathering information from large volumes of people
subject to different degrees of control (depending on citizenship,
port of entry, etc.) poses numerous challenges; for example, the
status of persons arriving and departing is based on documents
(passports, visas) which often do not reflect their actual stay.
Population registers record arrivals and departures of both
nationals and foreigners. In most countries, foreigners must have
a valid residence permit to register; thus, in principle, undocu-
mented migrants are not included in statistics based on registers.
However, this regulation is not strictly applied in many countries.
Those in charge of registration may not be fully apprised of the
legal requirements to be met for foreigners to register. Whether
foreigners are recorded or not often depends on the type of
accommodation they occupy, rather than on their legal status:
those settling in normal housing usually register, while those
staying in government hostels or other group residence may not.
In fact, population registers have been used in various European
countries to estimate the magnitude of undocumented migra-
tion.† Therefore, population registers are the most comprehen-
sive sources of information on international migration flows.
Their main drawback is that the rules for registration and
deregistration vary considerably among countries (Table S4).

Not all of the information from registers and other adminis-
trative sources is published. The publications and secondary data
sources available often provide information on the entries and
exits of foreigners only. Among the countries included in this
study, only Germany, Sweden and the United Kingdom publish
information on the movement of nationals. In the German case,
included among nationals are individuals of German origin
(Aussiedler) ‘‘repatriating’’ to Germany.

Countries differ in the criteria they use to classify migrants.
Some countries (the Netherlands, Denmark) classify migrants by
country of citizenship. Others (Australia, Canada, United States
of America) classify migrants by country of birth, not country or
region of origin or destination. However, more and more coun-
tries are publishing data by origin and destination, so compara-
bility should improve in the future.

Most countries lack a system to register migratory flows contin-
uously or do not publish the information that emanates from it. The
countries that generated the data are all in the developed world, and
most are members of the European Union. These are currently
among the few countries in the world that record flows of people
entering and leaving the country. On 11 July 2007, the European
Parliament adopted a regulation intended to improve and harmo-
nize its migration registration systems (http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri�OJ:L:2007:199:0023:0029:EN:
PDF). This regulation postdates the data analyzed here.

Efforts are under way e.g., in Latin America, Eastern Asia and
Eastern Europe to improve the availability of data on interna-
tional migration flows. Information for several Central Ameri-

can and various Asian countries is available on the web (for
instance, Sistema de Información Estadística sobre las Migraciones
en Mesoamérica–SIEMMES at http://163.178.140.43, accessed
June 14, 2008). However, the quality and completeness of the
data in most of these countries are still unsatisfactory.

Origins were not necessarily mutually exclusive. For example,
the European Union was identified as an origin along with
countries that are members of the European Union. The United
Kingdom was named as an origin along with the United King-
dom and Ireland as an origin. Similar overlaps occurred among
the destinations. Moreover, not all origins or destinations existed
as countries throughout 1960–2004, such as Yugoslavia and
Bosnia-Herzegovina.

Data Analysis. Data were arranged using Microsoft Excel 2002
SP3 and were analyzed statistically using R, Version 2.6.1, a free
open-source statistical analysis system. The function stepAIC
selects a linear model generated by the function lm from a
specified hierarchy of linear models using a penalty function that
rewards goodness of fit and penalizes the number of parameters
fitted to obtain that fit. Because of the large number of data
points, we used the Bayesian Information Criterion (15), which
sets the multiple of the number of degrees of freedom used for
the penalty to k � ln(43653) � 10.684, rather than the original
Akaike Information Criterion, which sets the multiple of the
number of degrees of freedom used for the penalty to k � 2.

Four indicator variables were matrices of 43653 rows. The
matrix orig.indicator had 8 columns, one for each country that
reported numbers of emigrants. For example, orig.indica-
tor$Australia had 1 in data records where Australia was the
origin, even when that record’s migration data were reported by
another country, e.g., U.K. The 11-column matrix dest.indicator
similarly specified migrants’ destinations. The 8-column matrix
orig.is.datasource specified if a country reported itself as the
origin. For example, in orig.is.datasource$Australia, an element
was 1 if Australia was the origin and Australia reported the
migration data in this data record; if either of these conditions
failed, orig.is.datasource$Australia was 0. The 11-column matrix
dest.is.datasource specified which country reported itself as the
destination.

With one exception, the multiple R2 is used throughout the
article. For comparing models with varying numbers of variables,
the adjusted R2 could be used, where Radj

2 � 1 � (1 � R2)(n �
1)/(n � k � 1), n being sample size and k being the number of
variables (without the constant). Here, n � 43,653 and for the
starting model k � 43, so the maximum of (n � 1)/(n � k � 1)
among the models considered in the main article is 1.000986,
which is trivially different from 1 considering the range of
variation of R2. Consequently, we used the multiple R2.

Table 1 omitted the estimates for dest.is.datasource for the
United States of America because the sum of all of the dest.
is.datasource vectors for individual reporting countries was
necessarily equal to the constant vector used to estimate the
intercept. One of the country vectors had to be dropped to avoid
a singularity. However, the information in the vector for the
United States of America entered the overall averages for this
indicator and was therefore reflected in the remaining estimates.

A plot of Cook’s distance versus leverage revealed no outlying
data points that unduly influenced the fit of the model (Fig.
S1(b)).

Do the Data or the Methods Produce the Fit? Does the final model’s
multiple R2 reflect over-fitting of too many independent vari-
ables? The data could be fitted perfectly if the model had as
many independent variables as data points. A rule of thumb that
a linear model should not have more independent variables than
the square root of the number of data points is reassuring

†Recaño J, Domingo A, XXV Population Conference of the International Union for the
Scientific Study of Population (IUSSP), July 18–23, 2005, Tours, France.
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because (43653)1/2 � 208.9 whereas the final model has 44
independent variables.

For a more definitive answer, in each of 100 simulations, the
values of the dependent variable log(migrants) were indepen-
dently and randomly permuted. This randomized version of
log(migrants) was then fitted to the final model using the
unmodified data for the independent variables. From each such
fit, the multiple R2 was recorded. (The adjusted R2 was always
smaller by definition.)

Parameter Stability: How Much of the Past Is Relevant to the Future?
To examine how coefficients varied as a function of the time
interval from which data were drawn and as a function of the
variables included in the model, the starting model and three
subsets of its variables were fitted to temporal subsets of the data
selected in four different ways. The starting model differs from
the final model only in including the independent variable
log(areadest).

For each of four subsets of variables [namely, (i) all variables;
(ii) “year minus 1985’’ omitted; (iii) indicator variables omitted,
and (iv) ‘‘year minus 1985’’ and indicator variables omitted], four
sets of time intervals were considered. In total, there were 29
time intervals: (i) fixed initial year 1960 and moving terminal
year from 1984 to 2004 in 5-year steps; (ii) five-year non-
overlapping tranches 1960–1964, 1965–1969, …, 2000–2004; (iii)
overlapping 10-year tranches 1955–1964 (no data were available
1955–1959 so this first tranche covered five years only), 1960–
1969, 1965–1974, …, 1995–2004; and (iv) intervals with initial
year ranging from 1960 to 1985 in five-year steps and fixed
terminal year 2004.

For each subset of variables and for each time interval, seven
numbers were recorded in Table S3: the intercept, the coefficients
of log(ppnorig), log(areaorig), log(ppndest), log(areadest), and
log(distance), and the multiple R2. Where ‘‘year minus 1985’’ was
not excluded, its coefficient was also recorded.

1. United Nations (2005) World Population Prospects: The 2004 Revision (United Nations,
New York).

2. United Nations (2006) International Migration to and from Selected Countries (POP/
DB/MIG/FL/Rev.2005).

3. Eurostat (2000) European Social Statistics. Migration. 2000 Edition (Eurostat, Luxem-
bourg).

4. Migration Policy Institute (2004) Migration Information Source. Global Data Center.
Available at www.migrationinformation.org. Accessed December 2004.

5. United Nations Statistics Division (2004) Demographic Yearbook Database. Available
at unstats.un.org/unsd/demographic/products/dyb/dyb2.htm. Accessed December
2004.

Cohen et al. www.pnas.org/cgi/content/short/0808185105 4 of 9

http://www.pnas.org/cgi/data/0808185105/DCSupplemental/Supplemental_PDF#nameddest=ST3
http://www.pnas.org/cgi/content/short/0808185105


-1 0 1 2 3 4 5

-4
-2

0
2

4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

2558525584

235082350623505

a

Fig. S1. Regression diagnostics for the ‘‘final’’ model (Table 1). (a) Residuals as a function of the fitted value of log number of migrants. (b) Cook’s distance
versus leverage: all points fell below the line labeled ‘‘1’’ so none was identified as an outlier.
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Figure S1. (continued)
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Table S1. Starting model

Call:

lm(formula = logmigrants ~ I(year - 1985) + logppnorig + logareaorig +

    logppndest + logareadest + logdistance + orig.indicator +

    dest.indicator + orig.is.datasource + dest.is.datasource)

Residuals:

      Min        1Q    Median        3Q       Max

-3.245622 -0.435633  0.004541  0.441538  3.293094

Coefficients: (1 not defined because of singularities)

                                             Estimate     SE     t value  Pr(>|t|)

(Intercept)                                -2.4756833  0.0904315 -27.376  < 2e-16 ***

I(year - 1985)                              0.0017356  0.0003197   5.429 5.69e-08 ***

logppnorig                                  0.8631499  0.0083278 103.647  < 2e-16 ***

logareaorig                                -0.2102357  0.0065929 -31.888  < 2e-16 ***

logppndest                                  0.3377718  0.0140278  24.079  < 2e-16 ***

logareadest                                 0.0239225  0.0115069   2.079 0.037626 *

logdistance                                -0.9702149  0.0102759 -94.416  < 2e-16 ***

orig.indicatorAustralia                     1.1302088  0.0436250  25.907  < 2e-16 ***

orig.indicatorBelgium                      -0.2562171  0.0403891  -6.344 2.26e-10 ***

orig.indicatorDenmark                      -0.0445711  0.0409475  -1.088 0.276383

orig.indicatorGermany                       0.0693162  0.0408962   1.695 0.090096 .

orig.indicatorItaly                         0.1841866  0.0401293   4.590 4.45e-06 ***

orig.indicatorNetherlands                   0.0244522  0.0408387   0.599 0.549342

orig.indicatorSweden                        0.1597280  0.0473343   3.374 0.000740 ***

orig.indicatorUnited Kingdom                0.2479750  0.0397223   6.243 4.34e-10 ***

dest.indicatorAustralia                     1.4041046  0.0579072  24.248  < 2e-16 ***

dest.indicatorBelgium                       0.1489444  0.0530437   2.808 0.004988 **

dest.indicatorCanada                        0.8247913  0.0480852  17.153  < 2e-16 ***

dest.indicatorDenmark                       0.2636449  0.0523936   5.032 4.87e-07 ***

dest.indicatorGermany                       0.5996103  0.0505373  11.865  < 2e-16 ***

dest.indicatorItaly                         0.7664657  0.0496232  15.446  < 2e-16 ***

dest.indicatorNetherlands                   0.5003483  0.0517456   9.669  < 2e-16 ***

dest.indicatorSpain                         0.6420857  0.0469944  13.663  < 2e-16 ***

dest.indicatorSweden                        0.2413032  0.0698006   3.457 0.000547 ***

dest.indicatorUnited Kingdom                0.6416269  0.0495353  12.953  < 2e-16 ***

dest.indicatorUnited States of America      1.1356594  0.0459375  24.722  < 2e-16 ***

orig.is.datasourceAustralia                -0.3000476  0.0633136  -4.739 2.15e-06 ***

orig.is.datasourceBelgium                   0.4600040  0.0625941   7.349 2.03e-13 ***

orig.is.datasourceDenmark                   0.2354601  0.0642053   3.667 0.000245 ***

orig.is.datasourceGermany                   0.4853263  0.0612965   7.918 2.48e-15 ***

orig.is.datasourceItaly                    -0.4767394  0.0629507  -7.573 3.71e-14 ***

orig.is.datasourceNetherlands               0.2118823  0.0644958   3.285 0.001020 **

orig.is.datasourceSweden                   -0.0734164  0.0657672  -1.116 0.264297

orig.is.datasourceUnited Kingdom            1.3506823  0.0681858  19.809  < 2e-16 ***

dest.is.datasourceAustralia                -0.0333185  0.0718665  -0.464 0.642925

dest.is.datasourceBelgium                   0.5482645  0.0716074   7.657 1.95e-14 ***

dest.is.datasourceCanada                    0.1462815  0.0637547   2.294 0.021770 *

dest.is.datasourceDenmark                   0.2685861  0.0720724   3.727 0.000194 ***

dest.is.datasourceGermany                   0.5659672  0.0674291   8.394  < 2e-16 ***

dest.is.datasourceItaly                    -0.2357825  0.0687124  -3.431 0.000601 ***

dest.is.datasourceNetherlands               0.4557637  0.0718021   6.347 2.21e-10 ***

dest.is.datasourceSpain                    -0.2291943  0.0677617  -3.382 0.000719 ***

dest.is.datasourceSweden                    0.1273124  0.0830541   1.533 0.125311

dest.is.datasourceUnited Kingdom            1.4992516  0.0761564  19.686  < 2e-16 ***

dest.is.datasourceUnited States of America         NA         NA      NA       NA

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6957 on 43609 degrees of freedom

Multiple R2: 0.5693,     Adjusted R2: 0.5689

F statistic:  1341 on 43 and 43609 DF,  P value: < 2.2e-16

The dependent variable is logmigrants. The independent variables are year minus 1985, logppnorig, logareaorig, logppndest, logareadest, logdistance,
orig.indicator, dest.indicator, orig.is.datasource, and dest.is.datasource. Residuals are observed logmigrants minus expected logmigrants based on the fitted
model.
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Table S2. Multiple R2 of the starting model and the three extensions of it

No interactions of time with
indicator variables

Interactions of time with
indicator variables

No interactions of origin population with destination
indicator variables or of destination population
with origin indicator variables

0.5693 [starting model (Table S1)] 0.5817 (third additional model)

Interactions of origin population with destination
indicator variables and of destination population
with origin indicator variables

0.5861 (first additional model) 0.5975 (second additional model)
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Table S3. Parameters in the starting model for varying subsets of independent variables and for data from varying intervals of time. Subsets of 

variables: (a) All variables. (b) Only ‘year minus 1985’ omitted. (c) Only indicators omitted. (d) ‘year minus 1985’ and indicators omitted. Time 

intervals: (1) Fixed initial year 1960, final year moving from 1984 to 2004. (2) Five-year tranches, moving from 1960-1964 to 2000-2004. (3) 

Ten- year tranches, moving from 1955-1964 to 1995-2004. (4) Moving initial year from 1960 to 1985, fixed terminal year 2004. The number of 

data lines in each time interval is given for (a) All variables, and is not repeated for the other subsets of variables. 
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(a) All variables.
(1) Fixed initial year 1960, final year moving from 1984 to 2004. 
Moving.terminal.year 1984 1989 1994 1999 2004
Number of data lines 18389 24262 30930 39522 43653
(Intercept) -1.5692 -1.7743 -1.9703 -2.3783 -2.4757
year-1985 -0.0040 -0.0024 0.0002 0.0002 0.0017
logppnorig 0.8291 0.8482 0.8551 0.8582 0.8631
logareaorig -0.2364 -0.2384 -0.2309 -0.2169 -0.2102
logppndest 0.2314 0.2419 0.2683 0.3262 0.3378
logareadest 0.0547 0.0563 0.0424 0.0277 0.0239
logdistance -0.9454 -0.9458 -0.9443 -0.9628 -0.9702
Moving.terminal.year.R^2 0.5635 0.5709 0.5730 0.5733 0.5693
(2) Five-year tranches, moving from 1960-1964 to 2000-2004. 
5.year.tranche 1964 1969 1974 1979 1984 1989 1994 1999 2004
Number of data lines 1788 2422 3977 4740 5462 5873 6668 8592 4131
(Intercept) 0.6396 0.0603 -2.0670 -1.4210 -1.6516 -2.4278 -2.6442 -3.4927 -3.6341
year-1985 0.0245 0.0295 -0.0119 -0.0067 -0.0177 0.0234 -0.0004 -0.0025 0.0308
logppnorig 0.4060 0.5945 0.8875 0.8628 0.8470 0.8991 0.8659 0.8544 0.8215
logareaorig -0.0434 -0.1480 -0.2727 -0.2736 -0.2348 -0.2435 -0.2054 -0.1658 -0.1384
logppndest 0.0785 0.2117 0.3389 0.2398 0.2027 0.2820 0.3682 0.5151 0.4856
logareadest 0.1055 0.0559 0.0119 0.0528 0.0599 0.0470 -0.0148 -0.0597 -0.0701
logdistance -0.5583 -0.7514 -1.0990 -1.0465 -0.9198 -0.9487 -0.9292 -0.9699 -0.9450
5.year.tranche.R^2 0.5589 0.6859 0.5743 0.5696 0.5600 0.6082 0.6046 0.6072 0.6373
(3) Ten- year tranches, moving from 1955-1964 to 1995-2004.
10.year.tranche 1964 1969 1974 1979 1984 1989 1994 1999 2004
Number of data lines 1788 4210 6399 8717 10202 11335 12541 15260 12723
(Intercept) 0.6396 0.0848 -1.7217 -1.7296 -1.5223 -2.0310 -2.6079 -3.1522 -3.7839
year-1985 0.0245 0.0203 -0.0084 -0.0081 -0.0017 0.0023 0.0098 -0.0070 0.0254
logppnorig 0.4060 0.5286 0.8270 0.8788 0.8541 0.8739 0.8837 0.8650 0.8493
logareaorig -0.0434 -0.1078 -0.2393 -0.2744 -0.2537 -0.2388 -0.2222 -0.1807 -0.1573
logppndest 0.0785 0.1743 0.2930 0.2847 0.2233 0.2427 0.3305 0.4551 0.5131
logareadest 0.1055 0.0707 0.0287 0.0348 0.0553 0.0603 0.0137 -0.0309 -0.0644
logdistance -0.5583 -0.6998 -0.9921 -1.0697 -0.9777 -0.9358 -0.9392 -0.9713 -0.9757
10.year.tranche.R^2 0.5589 0.6325 0.6025 0.5681 0.5625 0.5827 0.6009 0.5983 0.6059
(4) Moving initial year from 1960 to 1985, fixed terminal year 2004.
Moving.initial.year 1960 1965 1970 1975 1980 1985
Number of data lines 43653 41865 39443 35466 30726 25264
(Intercept) -2.4757 -2.5530 -2.6551 -2.7354 -2.9372 -3.1787
year-1985 0.0017 0.0022 0.0038 0.0052 0.0060 0.0080
logppnorig 0.8631 0.8755 0.8796 0.8759 0.8760 0.8776
logareaorig -0.2102 -0.2155 -0.2168 -0.2100 -0.1985 -0.1892
logppndest 0.3378 0.3492 0.3631 0.3671 0.3861 0.4244
logareadest 0.0239 0.0196 0.0153 0.0148 0.0072 -0.0119
logdistance -0.9702 -0.9861 -0.9968 -0.9852 -0.9753 -0.9829
Moving.initial.year.R^2 0.5693 0.5737 0.5715 0.5748 0.5783 0.5877  
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(b) Only ‘year minus 1985’ omitted. 
(1) Fixed initial year 1960, final year moving from 1984 to 2004. 
Moving.terminal.year.noyear 1984 1989 1994 1999 2004
(Intercept) -1.4725 -1.7102 -1.9767 -2.3838 -2.5360
logppnorig 0.8289 0.8471 0.8554 0.8585 0.8670
logareaorig -0.2340 -0.2361 -0.2312 -0.2172 -0.2138
logppndest 0.2191 0.2316 0.2695 0.3274 0.3513
logareadest 0.0626 0.0634 0.0416 0.0269 0.0141
logdistance -0.9514 -0.9499 -0.9439 -0.9624 -0.9671
Moving.terminal.year.noyear.R^2 0.5630 0.5706 0.5730 0.5733 0.5691
(2) Five-year tranches, moving from 1960-1964 to 2000-2004. 
5.year.tranche.noyear 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) 0.0388 -0.4972 -1.9124 -1.3619 -1.5829 -2.3981 -2.6471 -3.5210 -3.1545
logppnorig 0.4080 0.5992 0.8891 0.8624 0.8457 0.8999 0.8659 0.8542 0.8249
logareaorig -0.0444 -0.1514 -0.2729 -0.2733 -0.2342 -0.2441 -0.2054 -0.1657 -0.1395
logppndest 0.0822 0.2165 0.3367 0.2388 0.1996 0.2858 0.3682 0.5148 0.4893
logareadest 0.1035 0.0520 0.0129 0.0533 0.0621 0.0449 -0.0147 -0.0595 -0.0726
logdistance -0.5540 -0.7517 -1.0998 -1.0470 -0.9197 -0.9489 -0.9292 -0.9699 -0.9461
5.year.tranche.noyear.R^2 0.5576 0.6846 0.5741 0.5695 0.5594 0.6073 0.6046 0.6072 0.6364
(3) Ten- year tranches, moving from 1955-1964 to 1995-2004.
10.year.tranche.noyear 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) 0.0388 -0.4128 -1.5908 -1.6259 -1.5065 -2.0379 -2.5806 -3.2146 -3.4969
logppnorig 0.4080 0.5346 0.8291 0.8789 0.8537 0.8744 0.8863 0.8637 0.8565
logareaorig -0.0444 -0.1129 -0.2386 -0.2736 -0.2534 -0.2392 -0.2239 -0.1796 -0.1605
logppndest 0.0822 0.1849 0.2877 0.2800 0.2222 0.2442 0.3351 0.4528 0.5254
logareadest 0.1035 0.0619 0.0321 0.0374 0.0560 0.0591 0.0104 -0.0281 -0.0712
logdistance -0.5540 -0.6868 -0.9944 -1.0719 -0.9778 -0.9357 -0.9399 -0.9723 -0.9798
10.year.tranche.noyear.R^2 0.5576 0.6298 0.6021 0.5677 0.5625 0.5827 0.6002 0.5979 0.6028
(4) Moving initial year from 1960 to 1985, fixed terminal year 2004.
Moving.initial.year.noyear 1960 1965 1970 1975 1980 1985
(Intercept) -2.5360 -2.6142 -2.7371 -2.8045 -2.9618 -3.1598
logppnorig 0.8670 0.8802 0.8876 0.8852 0.8836 0.8845
logareaorig -0.2138 -0.2194 -0.2226 -0.2163 -0.2037 -0.1934
logppndest 0.3513 0.3635 0.3833 0.3878 0.4019 0.4369
logareadest 0.0141 0.0092 0.0003 -0.0010 -0.0052 -0.0214
logdistance -0.9671 -0.9836 -0.9945 -0.9837 -0.9745 -0.9830
Moving.initial.year.noyear.R^2 0.5691 0.5733 0.5705 0.5734 0.5770 0.5863  
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(c) Only indicators omitted. 
(1) Fixed initial year 1960, final year moving from 1984 to 2004. 
Moving.terminal.year.noindicator 1984 1989 1994 1999 2004
(Intercept) -4.6175 -4.6936 -4.7396 -4.7681 -4.7955
year-1985 -0.0079 -0.0068 -0.0044 -0.0051 -0.0031
logppnorig 0.8756 0.8895 0.8886 0.8626 0.8609
logareaorig -0.2332 -0.2306 -0.2152 -0.1849 -0.1767
logppndest 0.5415 0.5408 0.5447 0.5594 0.5582
logareadest 0.1410 0.1451 0.1431 0.1484 0.1604
logdistance -0.7821 -0.7929 -0.7981 -0.8244 -0.8390
Moving.terminal.year.noindicator.R^2 0.4192 0.4317 0.4334 0.4328 0.4355
(2) Five-year tranches, moving from 1960-1964 to 2000-2004. 
5.year.tranche.noindicator 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) -3.1777 -5.8939 -4.2080 -3.9826 -4.4213 -4.9961 -4.8138 -4.7483 -6.6734
year-1985 0.0319 0.0238 -0.0110 -0.0101 -0.0165 0.0205 -0.0305 -0.0129 0.1056
logppnorig 0.7191 0.9297 0.8331 0.8671 0.8846 0.9326 0.8788 0.7567 0.8670
logareaorig -0.2745 -0.2914 -0.1709 -0.2397 -0.2301 -0.2283 -0.1563 -0.0603 -0.1343
logppndest 0.4562 0.6577 0.5131 0.5614 0.5306 0.5376 0.5697 0.6180 0.6231
logareadest 0.1754 0.1810 0.1753 0.0958 0.1074 0.1571 0.1264 0.1498 0.1553
logdistance -0.4620 -0.5838 -0.9102 -0.9022 -0.7864 -0.8215 -0.8060 -0.9017 -0.9726
5.year.tranche.noindicator.R^2 0.3628 0.4393 0.4033 0.4491 0.4390 0.4734 0.4465 0.4392 0.4899
(3) Ten- year tranches, moving from 1955-1964 to 1995-2004.
10.year.tranche.noindicator 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) -3.1777 -5.0997 -5.1361 -4.0959 -4.1998 -4.6928 -5.0153 -4.7847 -5.3505
year-1985 0.0319 0.0107 -0.0097 -0.0106 -0.0074 -0.0023 0.0041 -0.0186 0.0282
logppnorig 0.7191 0.8398 0.8811 0.8527 0.8763 0.9097 0.9047 0.8101 0.7891
logareaorig -0.2745 -0.2809 -0.2139 -0.2098 -0.2349 -0.2283 -0.1909 -0.1026 -0.0807
logppndest 0.4562 0.5711 0.5562 0.5405 0.5458 0.5360 0.5537 0.5983 0.6128
logareadest 0.1754 0.1838 0.1926 0.1308 0.1015 0.1340 0.1421 0.1407 0.1667
logdistance -0.4620 -0.5383 -0.7961 -0.9034 -0.8385 -0.8065 -0.8134 -0.8624 -0.9205
10.year.tranche.noindicator.R^2 0.3628 0.4050 0.4108 0.4279 0.4433 0.4563 0.4576 0.4413 0.4529
(4) Moving initial year from 1960 to 1985, fixed terminal year 2004.
Moving.initial.year.noindicator 1960 1965 1970 1975 1980 1985
(Intercept) -4.7955 -4.8089 -4.7075 -4.7743 -4.9000 -5.0065
year-1985 -0.0031 -0.0029 -0.0018 -0.0006 0.0006 0.0021
logppnorig 0.8609 0.8637 0.8564 0.8575 0.8540 0.8447
logareaorig -0.1767 -0.1731 -0.1665 -0.1656 -0.1522 -0.1342
logppndest 0.5582 0.5647 0.5635 0.5688 0.5699 0.5784
logareadest 0.1604 0.1583 0.1528 0.1507 0.1571 0.1649
logdistance -0.8390 -0.8558 -0.8697 -0.8651 -0.8589 -0.8716
Moving.initial.year.noindicator.R^2 0.4355 0.4402 0.4423 0.4473 0.4481 0.4514  

Table S3.doc  4 



Joel E. Cohen, Marta Roig, Daniel C. Reuman, Cai GoGwilt  9/25/2008 

Table S3.doc  5 

(d) ‘year minus 1985’ and indicators omitted.
(1) Fixed initial year 1960, final year moving from 1984 to 2004. 
Moving.terminal.year.noindicatororyear 1984 1989 1994 1999 2004
(Intercept) -4.4567 -4.5718 -4.6697 -4.6913 -4.7476
logppnorig 0.8677 0.8810 0.8814 0.8502 0.8531
logareaorig -0.2227 -0.2197 -0.2065 -0.1714 -0.1683
logppndest 0.5282 0.5279 0.5351 0.5454 0.5503
logareadest 0.1502 0.1549 0.1510 0.1617 0.1669
logdistance -0.7918 -0.8019 -0.8043 -0.8333 -0.8443
Moving.terminal.year.noindicatororyear 0.4169 0.4293 0.4320 0.4303 0.4345
(2) Five-year tranches, moving from 1960-1964 to 2000-2004. 
5.year.tranche.noindicatororyear 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) -3.9305 -6.3303 -4.0678 -3.8993 -4.3575 -4.9600 -5.0374 -4.8988 -5.1105
logppnorig 0.7239 0.9317 0.8343 0.8667 0.8838 0.9331 0.8783 0.7557 0.8683
logareaorig -0.2772 -0.2929 -0.1708 -0.2393 -0.2299 -0.2288 -0.1552 -0.0595 -0.1309
logppndest 0.4562 0.6582 0.5133 0.5610 0.5298 0.5386 0.5682 0.6169 0.6015
logareadest 0.1748 0.1800 0.1741 0.0963 0.1073 0.1566 0.1290 0.1508 0.2015
logdistance -0.4600 -0.5828 -0.9105 -0.9027 -0.7870 -0.8216 -0.8059 -0.9020 -0.9708
5.year.tranche.noindicatororyear.R^2 0.3606 0.4384 0.4031 0.4489 0.4385 0.4727 0.4448 0.4389 0.4771
(3) Ten- year tranches, moving from 1955-1964 to 1995-2004.
10.year.tranche.noindicatororyear 1964 1969 1974 1979 1984 1989 1994 1999 2004
(Intercept) -3.9305 -5.3236 -4.9437 -3.9898 -4.1491 -4.6910 -4.9975 -4.9424 -4.9999
logppnorig 0.7239 0.8441 0.8780 0.8536 0.8746 0.9095 0.9052 0.8041 0.7875
logareaorig -0.2772 -0.2845 -0.2096 -0.2089 -0.2339 -0.2280 -0.1914 -0.0971 -0.0796
logppndest 0.4562 0.5717 0.5482 0.5413 0.5439 0.5358 0.5543 0.5924 0.6052
logareadest 0.1748 0.1800 0.1967 0.1292 0.1029 0.1342 0.1414 0.1481 0.1822
logdistance -0.4600 -0.5339 -0.8007 -0.9048 -0.8384 -0.8068 -0.8133 -0.8656 -0.9206
10.year.tranche.noindicatororyear.R^2 0.3606 0.4043 0.4103 0.4271 0.4429 0.4563 0.4575 0.4388 0.4488
(4) Moving initial year from 1960 to 1985, fixed terminal year 2004.
Moving.initial.year.noindicatororyear 1960 1965 1970 1975 1980 1985
(Intercept) -4.7476 -4.7777 -4.6998 -4.7733 -4.8987 -4.9955
logppnorig 0.8531 0.8578 0.8536 0.8567 0.8545 0.8459
logareaorig -0.1683 -0.1671 -0.1637 -0.1650 -0.1526 -0.1352
logppndest 0.5503 0.5593 0.5616 0.5683 0.5702 0.5789
logareadest 0.1669 0.1625 0.1546 0.1512 0.1569 0.1648
logdistance -0.8443 -0.8591 -0.8711 -0.8654 -0.8587 -0.8711
Moving.initial.year.noindicatororyear.R^ 0.4345 0.4394 0.4420 0.4473 0.4481 0.4513  
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Table S4. Data sources and definitions

Country Type of source
Classification by

country of
In-migrants duration

of stay
Out-migrants duration

of stay
Citizenship
of migrants

Australia Border collection Birth Permanent residence* Permanent departures† All
Belgium Population register Previous/intended

residence
3 months or longer One year or longer Foreigners

Canada Residence permits Birth Permanent residence* Foreigners
Denmark Population register Citizenship 3 months or longer Permanent departures Foreigners
Germany‡ Population register Previous/intended

residence
3 months or longer 3 months or longer All

Italy Population register Previous/intended
residence

3 months or longer§ Permanent departures All

Netherlands Population register Citizenship 4 months or longer¶ 8 months or longer¶ Foreigners
Spain‡ Population register Previous residence 3 months or longer§ All
Sweden Population register Previous/intended

residence
1 year or longer 1 year or longer All

U.K. Border collection
and survey

Previous/intended
residence

1 year or longer 1 year or longer All

U.S. Residence permits birth Permanent residence* Foreigners

*Includes persons who obtain permanent residence permits, regardless of their actual entry date and of their intended period of stay.
†Until 1984, data refer to former settlers departing. Since 1985, data refer to permanent departures.
‡German criteria for the duration of stay vary, depending on the regulations of the federal states (Länder). Migrants are required to notify the authorities each
time they cross national boundaries. Thus the statistics report migrations rather than migrants.

§Foreigners intending to stay in the country for at least three months as well as citizens returning after having resided abroad.
¶Up to September 1994, included persons intending to stay for 6 months or longer and to leave for one year or longer.
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