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Abstract

Predicting species population density–body mass scaling in community food webs

(henceforth webs) is important for conservation and to understand community structure.

Very different types of scaling have been studied, based on either individuals or species.

The individual size distribution (ISD) describes the distribution of individual-organism body

masses regardless of taxonomy, and contains the same information as the abundance

spectrum. Focusing instead on species, the local size–density relationship (LSDR) plots

population densities vs. mean body masses of species. The distribution of species mean

body masses (the species-mean-size distribution, SMSD) is also important but previously little

studied in webs. We here combine and formalize theory of several authors to predict:

how these three descriptions are related; the forms of the LSDR and ISD; and variation

in scaling among webs. We describe empirically the SMSDs of two pelagic, one estuarine,

and 146 soil webs by power laws and generalizations. We test theory and find it broadly

validated.
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I N T R O D U C T I O N

In macroecology, species population density and body-

mass-specific taxonomic diversity vary with body mass

according to power laws. The scaling of population densities

(N ) against average body masses ( �M ) of species from a

single broad clade like birds or mammals often follows a

power law, N ¼ a �M
b
, and this fact has played a central role

in macroecology (Marquet et al. 2005; White et al. 2007). The

approximate scaling exponent b = )3 ⁄ 4 has been supported

theoretically and empirically (Damuth 1981; Peters 1983;

Nee et al. 1991; West et al. 1997; Brown et al. 2004). Body-

mass-specific taxonomic diversity is also a power law of

body mass: if species data from a clade, gathered globally or

regionally, are grouped by average body mass in bins of

equal width on a log M axis, then the number of species, D,

in each bin depends on the central bin M values by a power

law (Marquet et al. 2005; see also Niklas et al. 2003; who use

linear-scale uniform bins). The exponent b = )3 ⁄ 4 has been

theoretically predicted for this power law as well (Marquet

et al. 2005), but older datasets and different theory support

b = )2 ⁄ 3 for large-mass categories and non-power-law

behaviour for small-mass categories.

By contrast with studies of a single broad clade, whether

at local, regional or global spatial scales, local community

food webs (henceforth webs) comprise all organisms

occurring in a location. In webs, power law relationships

among population density, taxonomic diversity and body

mass are connected to each other and to ecological

processes differently from the ways they are connected in

macroecology. These connections, while important to the

structure of webs, are incompletely understood. Therefore

we here analyse scaling in webs.

Population density–body mass scaling has been studied

intensively for decades in webs using plots of log total

density in log(M ) bins (often called abundance spectra;

Kerr & Dickie 2001). Such plots approximate log frequency

distributions (log probability density functions) of
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individual-organism log body masses, ignoring taxonomy.

The notation M denotes individual body mass or body mass

as a general variable, whereas �M will be used for the mean

body mass of a taxon. The individual size distribution (ISD) is

the probability density function (pdf) of individual-organism

body masses (not log body masses), again ignoring

taxonomy. The ISD is a transformed abundance spectrum

and captures the same information in different form. It is a

power law with exponent k if and only if the abundance

spectrum is linear with slope k + 1 (Theory; Methods;

Andersen & Beyer 2006; White et al. 2008).

A very different type of web population density–body

mass scaling results when the unit is a taxon, rather than an

individual organism: scatter plots of N-vs.- �M or log(N )-

vs.-log( �M ) for web taxa (here called local size-density

relationships (White et al. 2007), or LSDRs) have recently

been studied, sometimes with axes exchanged (Marquet et al.

1990; Cyr et al. 1997; Leaper & Raffaelli 1999; Cyr 2000;

Schmid et al. 2000; Cohen et al. 2003; Reuman & Cohen

2004; Jonsson et al. 2005; Mulder et al. 2005a; Reuman &

Cohen 2005; Woodward et al. 2005; Long et al. 2006;

Reuman et al. 2008). The conceptual and empirical differ-

ences between the LSDR and the ISD were recognized by

Damuth (1994), Jonsson et al. (2005), Jennings et al. (2007),

White et al. (2007) and others. Both relationships were often

but not always approximate power laws for local community

webs, with exponents that differed from each other and that

varied widely by web (Cyr et al. 1997; Cyr 2000; Jonsson

et al. 2005; Jennings et al. 2007; Reuman et al. 2008). Power-

law exponents of the LSDR and ISD are here called the

LSDRE and ISDE.

The frequency distribution of mean taxon body masses in

a web, here called the species-mean-size distribution, or SMSD,

differs from the LSDR and the ISD. Little work has tested

the power law hypothesis for web SMSDs, examined SMSD

exponents (here called SMSDEs), or made clear the

relationships among the SMSD, the ISD, and the LSDR

in webs (but see Jonsson et al. 2005; Rossberg et al. 2008).

LSDRs and SMSDs in webs have been examined

empirically less often than ISDs, but are just as important.

Conservation of species requires understanding relative

species population densities, which are revealed by the

LSDR, rather than relative population densities of size

categories, which are revealed by the ISD. Theory predicts a

power law for web ISDs, and also for N-vs.- �M relationships

for webs aggregated to trophic levels, and gives a formula

for the ISDE (Cyr 2000; Brown & Gillooly 2003; Brown

et al. 2004). Predictions of the theory were verified with

terrestrial arthropods and a marine pelagic system ( Jennings

& Mackinson 2003; Meehan 2006a,b; Meehan et al. 2006).

The theory can be adapted to explain the LSDR if the

SMSD is a power law and the SMSDE is known (Damuth

1994; Cyr 2000; Jonsson et al. 2005). Unsurprisingly, theory

for the ISD (Brown & Gillooly 2003; Brown et al. 2004)

does not apply directly to the LSDR. Empirical LSDREs

vary over a wider range than that predicted for ISDEs

(Reuman et al. 2008).

A broad understanding of body-mass allometry requires

theory to describe and data to test the relationships among

the three types of allometry defined above (White et al.

2007). We here unify, formalize, and test theory to predict

the form of the LSDR and the ISD and the relationship

among them and the SMSD.

To help the reader, we give idealized examples. Consider

webs with a set B of basal species, a set I of intermediate

species, and a set T of top species. Each basal species has

average body mass �M = 1 mg, each intermediate species

has �M = 1 · 104 mg = 10 g, and each top species has
�M = 1 · 108 mg = 100 kg. Assume that population pro-

duction is Pj/Nj
�M

3=4
j for species j (Peters 1983; Brown

et al. 2004); that all species in each trophic level have about

the same log(N ) (i.e. individuals are equally numerous in

each species at a given level); that body mass variation

within species is much smaller than variation among species;

and that each trophic level except basal species consumes all

the production of the level immediately below it and

converts 10% into production available to the next trophic

level, if any. Setting quotients of total productions of

successive trophic levels equal to 10% implies

�M
3=4
Bl

P
l

N Bl

�M
3=4
I m

P
m

N I m

¼
�M

3=4
I m

P
m

N I m

�M
3=4
T n

P
n

N T n

¼ 10: ð1Þ

The quotients of masses are equal to 1 ⁄ 10 000; replacing

these and computing logs gives

logð
X

l

N Bl
Þ � logð

X
m

N I m
Þ

¼ logð
X

m

N I m
Þ � logð

X
n

N T n
Þ ¼ 4:

ð2Þ

If the number D of species in each level is the same (e.g. one

species per level, Fig. 1a), then eqn 2 implies that the

regression slope for the log(N )-vs.-log ( �M ) scatter plot is

)1; this is the LSDRE. Separating species into three equal

bins by log ( �M ), computing log total population density for

each bin, and computing the regression slope of these

quantities against the log(M ) values at the bin centres also

gives )1, an estimate of the abundance spectrum and

therefore of ISDE + 1. The log(D )-vs.-log(M ) scatter plot

(using three bins) is flat (regression slope 0), so SMSDE +

1 = 0 (Theory; Methods) and LSDRE = (ISDE + 1))
(SMSDE + 1) holds.

If the number of species decreases (respectively,

increases) by an order of magnitude for each trophic level

going up (e.g. 100 basal, 10 intermediate, and one top
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species, Fig. 1b; respectively, one basal, 10 intermediate, and

100 top, Fig. 1c), then eqn 2 implies that the log(N )-

vs.-log ( �M ) regression slope, equal to the LSDRE, is )3 ⁄ 4
(respectively, )5 ⁄ 4). The bin-specific log-density-vs.-log(M )

slope, equal to ISDE + 1, is always )1 and the bin-specific

log(D )-vs.-log(M ) slope, equal to SMSDE + 1, is )1 ⁄ 4
(respectively, +1 ⁄ 4). In all cases considered, LSDRE =

(ISDE + 1))(SMSDE + 1) = ISDE)SMSDE. In these

examples and in general, LSDRE and the relative population

densities of species of different average body sizes can be

predicted from the other exponents.

We here formalize the theory illustrated above, synthe-

sizing, elaborating and clarifying ideas of Damuth (1994),

Cyr (2000), Brown & Gillooly (2003), Brown et al. (2004),

Jonsson et al. (2005) and others. In addition, for the first

time, we empirically characterize SMSD from a diverse

collection of food webs as power laws. We test our unified

theory systematically against 146 soil webs from Dutch

agroecosystems, two pelagic webs from Tuesday Lake,

Michigan and the Ythan Estuary web, Scotland, empirically

unifying three types of allometry for webs under one

framework.

T H E O R Y

Theory for individual size distributions

We explain and elaborate the theory of Brown et al. (2004).

See also Cyr (2000), Brown & Gillooly (2003), Jennings &

Mackinson (2003), Jonsson et al. (2005). Denote the ISD by

fI(M ). We do not assume a particular form for fI(M ).

Ecosystem boundaries and physiological limitations ensure

that fI(M ) = 0 for M outside some interval [aI, bI] with

0 < aI < bI. Denote the trophic transfer efficiency or

Lindeman efficiency of the web by a, and denote the

average consumer-to-resource body-mass ratio by b; both

are assumed constant or not systematically varying with M.

We assume b > 1, i.e. that bigger organisms eat smaller

organisms. Population production of organisms in the mass

range R = [M, M + dM], defined as the total growth

biomass plus the total reproduction biomass of these

organisms per unit time, is approximately Prod(M )dM,

where Prod(M ) / fI (M )M3 ⁄ 4 (Peters 1983; West et al. 1997;

Brown et al. 2004). This production is distributed across the

range of body masses in a way that depends on the life

histories of individuals of mass M. Production in the form

of individual growth will occur within or slightly above the

mass range R. Production in the form of reproduction will

occur at or near species minimum masses for the species

with reproductive individuals in R. We assume that

production Prod(M )dM occurs mainly within the mass

range R, or close to it relative to the consumer–resource

mass ratio b. This assumption is more likely to be valid if

most production takes the form of growth, or if variation in

individual body masses within species is small, so that the

minimum sizes of most species are relatively close to their

mean body sizes (Discussion).

Denote by gI(u ) the pdf of u = log(M ), so that log(gI(u ))

is the abundance spectrum. Then

gI ðuÞ ¼ lnð10Þ � fI ðM Þ �M ð3Þ
(Appendix S1; Andersen & Beyer 2006; White et al. 2008).

Log denotes logarithm base 10 and ln denotes natural

logarithm.

Because b does not vary systematically with M, indivi-

duals in the body mass range R eat mainly individuals in the

range R ⁄b = [M ⁄ b, M ⁄b + dM ⁄b]. Because population

production Prod(M ⁄b)dM ⁄ b of the mass category R ⁄ b
occurs mainly within that mass category or close to it, by

making the further assumption that all available production

is consumed we set the production of R equal to a times the

production of R ⁄ b:
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11 
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g 
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0 4 8 
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Figure 1 Illustrative relationships among the local size-density relationship (LSDR; solid lines), the abundance spectrum (dashed lines; the

abundance spectrum slope is the individual size distribution exponent plus 1, or ISDE + 1), and the species-mean-size distribution (SMSD)

in three hypothetical food webs. Dots are basal species (1 in a, c; 100 in b); plus signs are intermediate species (1 in a; 10 in b, c); open circles

are top species (1 in a, b; 100 in c). LSDR exponents (LSDREs) are )1 (a), )3 ⁄ 4 (b), )5 ⁄ 4 (c), whereas all abundance spectrum slopes are )1

(so ISDEs are )2). SMSD exponents (SMSDEs; not shown) are 0 (a), )1 ⁄ 4 (b), and 1 ⁄ 4 (c). In all panels, LSDRE = (ISDE + 1))
(SMSDE + 1) = ISDE)SMSDE.
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M 3=4f I ðM ÞdM ¼ a
M

b

� �3=4

f I

M

b

� �
dM

b
: ð4Þ

Metabolism and production also depend on temperature,

but for the webs of this study, all organisms had body

temperature equal to ambient temperature (although ambi-

ent temperature differed by web). If temperature factors

were included in eqn 4 they would cancel under plausible

assumptions. Eqn 4 reduces (Appendix S1) to

gI ðuÞ / 10
u

logðaÞ
logðbÞ � 3

4

� �� �
¼ M

logðaÞ
logðbÞ � 3

4

� �
; ð5Þ

or equivalently (see eqn 3),

f I ðMÞ / M
lnðaÞ
lnðbÞ � 7

4: ð6Þ

Constants of proportionality are determined by the

requirement that pdfs integrate to 1. The function that

is a power law distribution f tp / Mktp on [atp, btp] and is

ftp = 0 outside [atp, btp] (where ktp can be any real

number and 0 < atp < btp) is called a truncated Pareto

distribution, and is the predicted form of the ISD. The

predicted ISDE is therefore

kI ¼
logðaÞ
logðbÞ �

7

4
: ð7Þ

Eqns 5–7 were empirically supported for systems aggregated

to trophic levels (Meehan 2006a,b; Meehan et al. 2006) and

for a marine fishery ( Jennings & Mackinson 2003).

Theory for the local size-density relationship

Denote by fS ( �M ) the pdf of species average body masses,

which must be zero outside some interval [aS, bS]. We will

demonstrate empirically that

f S ð �MÞ / �M
kS ð8Þ

in [aS, bS] and 0 elsewhere is often an excellent approxima-

tion for web data, although we present no theoretical

explanation for this fact.

The population density or number of organisms in the

mass range R is proportional to fI (M ) · dM and those

organisms are partitioned into a number of species

proportional to fS(M ) · dM. If eqn 8 holds, then the

expected density of a species of average mass �M is predicted

to scale approximately as

N / f I

f S

/ �M
kI�kS ð9Þ

if the range of individual body masses within species is not

too large relative to the range of body masses in the web

(Damuth 1994; Jonsson et al. 2005). Thus, the LSDR is

predicted to follow a power law with LSDRE

kL ¼ kI � kS ¼
logðaÞ
logðbÞ �

7

4
� kS

¼ logðaÞ
logðbÞ �

3

4

� �
� kS þ 1ð Þ

¼ kI þ 1ð Þ � kS þ 1ð Þ

ð10Þ

whenever fS follows a truncated Pareto distribution. Deri-

vations do not depend on any theory that claims to explain

why metabolic rates scale as M3 ⁄ 4, but only on the phe-

nomenology that metabolic rates scale as M3 ⁄ 4.

Ecological interpretations of theoretical predictions

We consider limiting cases of eqns 5–7, 9 and 10 to link

theoretical predictions to ecological intuition. The term

)3 ⁄ 4 in eqn 10 corresponds to the benchmark of

energetic equivalence of species. The energetic equivalence

hypothesis (Damuth 1981) assumes that each species

extracts about the same amount of energy from the

environment, and predicts from this assumption that

species N will depend on �M by a power law with exponent

)3 ⁄ 4. Energetic equivalence holds for our model if a = 1,

corresponding to efficient trophic transfer of energy, and

if about the same number of species occur in each pair of

body mass ranges �R ¼ ½ �M1; �M2� and �R=b ¼ ½ �M1=b; �M2=b�.
Because most individuals of species with �M in �R feed

primarily on individuals of species with �M in �R=b, fewer

(respectively, more) species in �R than in �R=b will mean

more (respectively, less) energy available per species in �R
than in �R=b, given efficient trophic transfer. These

assumptions correspond, respectively, to log(a) = 0 and

kS = )1, so that eqn 10 predicts kL = )3 ⁄ 4 as does the

energetic equivalence hypothesis.

Corrections to this baseline case correspond to other

terms in eqn 10. The term log(a) ⁄ log(b), a correction for

the inefficiency of trophic transfer of energy, is negative: less

efficient trophic transfer (smaller a) contributes to a more

negative LSDRE (a steeper LSDR and less abundant large-
�M species relative to small- �M species; Cyr 2000). The effects

of inefficient trophic transfer on LSDR are magnified for

webs with low b. Such webs have many inefficient trophic

links over a fixed range of �M .

The term kI + 1 of eqn 10 is a correction for power-law

increases or decreases in species diversity with log(M ). If

diversity decreases with increasing log(M ), this term may

cancel log(a) ⁄ log(b) so that energetic equivalence holds and

LSDRE = )3 ⁄ 4 even if trophic transfer is inefficient. In

that case, the reduced energy available to large- �M top

predators is partitioned among fewer species, so that the

total energy available per species is the same as for basal

species. LSDRE is determined by the competing influences

of trophic transfer losses and changes in species diversity
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with �M . LSDRE can be greater than, less than, or equal to

)3 ⁄ 4, whereas ISDE + 1 is not greater than )3 ⁄ 4. The unit

of analysis for the LSDR and SMSD theory presented here

has been species. The analysis applies equally to species and

to higher taxonomic levels.

M E T H O D S

Testing theory

Theory predicts that: (1) ISD is a power law; (2) LSDR is a

power law whenever the SMSD is a power law; (3)

ISDE + 1 = log(a) ⁄ log(b))3 ⁄ 4 (eqn 7); (4) LSDRE +

SMSDE + 1 = log(a) ⁄ log(b))3 ⁄ 4 (eqn 10). We tested (1)

and (2) by comparing the power law hypotheses against

more general alternative models.

To test (3) and (4), ISDE + 1 and LSDRE + SMSDE +

1 were estimated, with confidence intervals, and results were

compared with log(a) ⁄ log(b))3 ⁄ 4. For the Tuesday Lake

and Ythan Estuary webs, which have highly resolved trophic

data, log(b) was the mean of logð �M c= �M r Þ over all trophic

links, where �M c and �M r denote the mean body masses of

the consumer and resource taxa (Appendix S6). If the

confidence intervals of ISDE + 1 (respectively, LSDRE +

SMSDE + 1) contained log(a) ⁄ log(b))3 ⁄ 4 for a in a

reasonable range (10–30%), prediction (3) [respectively,

(4)] was not rejected. Highly resolved trophic data were

unavailable for the soil webs, so log(a) ⁄ log(b) was

unknown, but was very likely to be negative. Prediction

(3) [respectively, (4)] was rejected for a soil web only if the

confidence intervals of ISDE + 1 (respectively,

LSDRE + SMSDE + 1) lay entirely above )3 ⁄ 4.

Statistical estimators of exponents and hypothesis tests

Data for each system included a list of taxa and the mean body

mass ( �M ) and population density (N ) of each taxon. For each

web separately, we tested the hypothesis that the LSDR was a

power law and estimated the exponent by fitting the models

log(N ) = b · log ( �M ) + a and log(N ) = e · log ( �M )2 +

d · log ( �M ) + c using ordinary least squares regression.

The models were compared with an F-test. If the latter model

explained significantly more variation in log(N ) (1% level),

the power law form of the LSDR was rejected. The slope b of

the linear model was the LSDRE.

If f S ð �M Þ / �M
kS on [aS, bS] and 0 elsewhere, then the pdf

of �u = log ( �M ) is

gS ð�uÞ / 10�uðksþ1Þ ð11Þ
on [log(aS), log(bS)] and 0 elsewhere (Appendix S1). The log

of this expression can be called the diversity spectrum. The

exponent in eqn 11 is linear in �u. A quadratic generalization

of the truncated Pareto distribution has pdf

G S ð�uÞ / 10cS��uþgS��u2 ð12Þ

on [log(aS), log(bS)] and 0 elsewhere. For each web sepa-

rately, we fitted the truncated Pareto distribution and this

generalization using maximum likelihood, the method rec-

ommended by White et al. (2008) (see also Aban et al. 2006).

Simple numeric optimization was required (Appendices S2

and S3). The two models were compared by the likelihood

ratio test. If eqn 12 was a significantly better fit (1% level),

the power law form of the SMSD was rejected.

If gS < 0, GS is a normal distribution in �u with standard

deviation r2 = )1 ⁄ (2 · ln(10) · gS) and mean l = r2 ·
ln(10) · cS, truncated at log(aS) and log(bS). We therefore

compared the truncated Pareto distribution to an alternative

that includes a (truncated) log-normal distribution, often

used to characterize body mass distributions.

The maximum likelihood estimator of kS was biased for

the sample sizes of this study (n = 30 to 96 taxa), so we

developed a bias-corrected estimator of kS for comparisons

with theory. Simulations indicated that the new estimator

was essentially unbiased for n ‡ 30 and for kS in the range

of our webs (Appendix S2).

Confidence intervals for LSDRE, SMSDE, and

LSDRE + SMSDE + 1 were estimated by resampling.

For each web, 5000 resamplings with replacement were

taken from the empirical joint (N, �M ) distribution of the

web. For each resampling, as many points were selected

as taxa in the web. LSDRE, SMSDE, and LSDRE +

SMSDE + 1 were calculated for each resampling. These

confidence intervals of LSDRE + SMSDE + 1 captured

any covariance of LSDRE and SMSDE. Confidence

intervals of LSDRE and SMSDE could have been calculated

without resampling, but resampling was the simplest way to

get confidence intervals for the sum.

Individual-organism M data were unavailable for the

webs of this study, so the ISDE could not be estimated

by a method with a strong probabilistic foundation

without making precise assumptions about how individ-

ual-organism M was distributed within taxa. Instead, we

used our assumption, revisited in the Discussion, that

individual-organism M did not vary too much within taxa

relative to the range of M values in a whole web.

ISDE + 1 was then estimated by a commonly used

method based on separating data into bins of uniform

width on a log scale. Each web�s range of logð �MÞ values

was divided evenly into 10 bins, and the log total

population density of all organisms with logð �MÞ in each

bin was regressed against log-scale bin centers. ISDE + 1

was the slope of this regression. Confidence intervals of

ISDE + 1 were derived from this regression. The power-

law form of the ISD was rejected only if linearity of this

regression was rejected. This estimator of ISDE + 1 may

have been biased toward 0 (Appendix S5).
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For comparison with our bin-based estimator, we

adapted to the context of the available data a method

recommended by White et al. (2008) based on fitting the

theoretical cumulative distribution function (cdf) of a

truncated Pareto distribution to an empirically estimated

cdf (see also Johnson et al. 1994, p. 580). Results using

the cdf-based method were qualitatively very similar to

those from the binning method (Appendix S5). We

focused primarily on bin-based results in the main text

because those methods were more intuitive, and because

results were similar for both methods. ISD results were

approximate but sufficient for testing the theory, also

approximate.

Data

All webs and methods by which data were gathered are

described in Appendix S6 and (Hall & Raffaelli 1991;

Carpenter & Kitchell 1993; Cohen et al. 2003; Mulder et al.

2003; Jonsson et al. 2005; Mulder et al. 2005a,b). The 146 soil

webs were sampled from five types of active-management

farms (organic, conventional, intensive and super-intensive

farms, and pastures), as well as from winter farms (arable

fields untreated at the time of sampling) and unmanaged

Scots pine plantations (here called forests) in the Netherlands.

General methods

Computations used Matlab version 7.4.0.287 (R2007a) and

the Matlab optimization toolbox (The Mathworks, Inc.,

Natick, MA, USA). We set 1% significance to detect flagrant

violations of theory.

R E S U L T S

Individual size distributions

Theory predicted a truncated Pareto ISD. This hypothesis

could not be rejected for our webs, with a few exceptions. A

truncated Pareto distribution was statistically rejected using

bin-based methods only for the Ythan Estuary, and using

cdf-fitting methods (Appendix S5) only for the Ythan

Estuary and two forests (Table S1). For the Ythan Estuary,

however, the best-fitting generalized distribution was almost

indistinguishable from a truncated Pareto (Fig. 2c); the

difference was considered unimportant and was ignored. A

truncated Pareto distribution was visually a poor description

of the ISDs of organic farms ID 222–232 (e.g. Fig. 2e),

although it could not be rejected statistically, probably only

because power was low.

Excluding organic farms ID 222–232, which probably

had non-truncated-Pareto ISDs, only forests had ISDEs

that falsified the quantitative predictions of theory (eqn 7).

For the Tuesday Lake and Ythan Estuary webs, for

reasonable values of a, both bin-based and cdf-fitting

confidence intervals of ISDE + 1 contained log(a) ⁄ log(b)

)3 ⁄ 4 (Fig. 3, Fig. S6). For all soil webs except five forests,

bin-based confidence intervals of ISDE + 1 contained

values less than )3 ⁄ 4. For all soil webs except 13 forests

and super-intensive farm ID 157, cdf-fitting confidence

intervals of ISDE + 1 contained values less than )3 ⁄ 4
(Table S1). Mean ISDE + 1 values by ecosystem type were

less than or close to )3 ⁄ 4, except for forests (Fig. 4), using

either bin-based or cdf-fitting estimates. We argue in

Appendix S5 that our bin-based estimator of ISDE + 1

may have been biased toward 0, so true values of ISDE + 1

may have been smaller than those reported in Fig. 4.

Species-mean-size distributions

All non-forest webs and one forest (ID 169) had truncated

Pareto SMSD. For ID 169 and all non-forests except super-

intensive farm ID 158 and pasture ID 192, the null-

hypothesis that the SMSD was truncated Pareto could not

be rejected in favour of the generalized distribution of eqn

12 (Figs 2 and 4; Table S2). The best-fitting generalized

distribution for IDs 158 and 192 did not differ much from a

truncated Pareto distribution; the difference was considered

unimportant and was ignored. Truncated Pareto distribu-

tions were excellent descriptions of SMSDs for non-forests

and ID 169 (e.g. Fig. 2).

In contrast, all forests except ID 169 had truncated log

normal SMSD. The null-hypothesis of a truncated Pareto

SMSD was rejected for those webs (Table S2). The best-fitting

generalized distributions differed substantially from a trun-

cated Pareto (Fig. 2), and had negative quadratic coefficient,

implying a truncated normal distribution. The generalized

distribution was an excellent description of all SMSDs of this

study (e.g. Fig. 2). Quadratic coefficients of the generalized

distribution were never significantly positive for any web.

All truncated Pareto SMSDs had SMSDE < )1 (corre-

sponding to decreasing taxonomic diversity in log-scale-

uniform bins of increasing logð �M Þ), except the Ythan Estuary

and forest ID 169. Truncated Pareto SMSDs had SMSDEs

that differed by ecosystem type (Figs 2, 4; Table S2).

Local size–density relationships

Power-law LSDR could not be statistically rejected for our

webs, except for organic farms ID 222–232, four forests,

three winter farms, and super-intensive farm ID 158 (Figs 2

and 4; Table S2; Reuman et al. 2008). The departure from

power law behaviour of farm ID 158 was very minor and

was ignored. Three of four forests with non-power-law

LSDR had non-truncated-Pareto SMSD (Table S2); these

webs do not falsify the prediction of theory that the LSDR
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will be a power law because that prediction presupposes that

the SMSD is a power law. Organic farms ID 222–232 had

non-power law LSDR because enchytraeids (potworms)

were more abundant than would have been expected from a

power law (Fig. 2). Enchytraeid populations in those farms

were promoted by organic fertilizer inputs (Mulder 2006;

Mulder et al. 2006; Reuman et al. 2008). We cannot explain

why one forest (ID 169) and three winter farms (IDs 201,

213, 217) had non-power-law LSDR.

All webs that had power-law LSDR and SMSD had

confidence intervals of LSDRE + SMSDE + 1 containing

theoretically predicted or possible values, except one.

Tuesday Lake and the Ythan Estuary had confidence

intervals containing log(a) ⁄ log(b))3 ⁄ 4 for reasonable values

of a (Fig. 3). Of soil webs with power-law SMSD and

LSDR, only super-intensive farm ID 157 had confidence

intervals entirely above )3 ⁄ 4 (Table S2). Means by

ecosystem type of LSDRE + SMSDE + 1 were less than

or very close to )3 ⁄ 4 (Fig. 4).

LSDRE < ISDE + 1 was predicted when SMSDE +

1 > 0, and LSDRE > ISDE + 1 was predicted when

SMSDE + 1 < 0 (eqn 10). SMSDE + 1 was positive only

for the Ythan Estuary and forest ID 169, for which

LSDRE < ISDE + 1 held. For 139 of the 147 webs with

SMSDE + 1 < 0, LSDRE > ISDE + 1 held. Of the 8

remaining webs, six were organic farms (ID 222–225, 228,

232) and two were winter farms (ID 212 and 236). The

correction SMSDE + 1 for systematic changes in diversity

with M clearly contributed to variation in LSDRE in the

webs of this study.

We tested to what degree the model LSDRE = ISDE-

SMSDE explained variation in data, compared with the null

models LSDRE = k [where k was estimated from data as

k = mean(LSDRE)] and LSDRE = ISDE + 1 (which cor-

responds to omitting the correction for systematic changes

in diversity). Using all 149 sites, the sum of squares

of LSDRE ) mean(LSDRE), here called SS, was 3.10, the

sum of squares of LSDRE ) (ISDE + 1) was 7.57, and the

sum of squares of LSDRE ) ISDE + SMSDE, here called

SSE, was 1.25. The model LSDRE = ISDE ) SMSDE

therefore explained 1)SSE ⁄ SS = 59.6% of the variation in

LSDRE, although it had 0 degrees of freedom, less than the

model LSDRE = k (which had one degree of freedom).

Taxonomic resolution

The SMSD and LSDR are supposed to describe allometric

relationships for species, but only the Tuesday Lake data
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Figure 3 Tests of eqn 7 (a, c, e) and eqn 10 (b, d, f) using data

of Tuesday Lake 1984 (a, b) and 1986 (c, d), and the Ythan Estuary

(e, f). Heavy solid horizontal lines are point estimates of ISDE + 1

(a, c, e) or LSDRE + SMSDE + 1 (b, d, f). Dashed horizontal

lines are 99% confidence intervals of these values. Diagonal lines

are log(a) ⁄ log(b) )3 ⁄ 4, predicted by eqns 7 and 10 to equal y-axis

values for the true value of log(a). Predicted values fell within

confidence intervals and close to point estimates for reasonable

values of a. Vertical lines are labelled with benchmark a-values.

Figure 2 One site from each of the ecosystem categories (see titles). Straight lines in top panels are ordinary least squares (OLS) regressions

through taxa (the LSDR). Second panels show log total population density in log(M ) bins and abundance spectra (slope = ISDE+1) as

estimated by OLS regression. Third panels show the estimated log probability density function (pdf) of log taxon mean body masses (the

taxonomic diversity spectrum; eqn 11), which has slope s = SMSDE+1; the estimated SMSD is proportional to �M
s�1

. Straight lines in the

top three panels are dashed and accompanied by the appropriate best-fitting quadratic model if that model was a significantly better fit (1%

level; Methods). S is LSDRE + SMSDE + 1, predicted by theory to equal log(a) ⁄ log(b))3 ⁄ 4 (eqn 10). The slope of the line in each panel is

b; R2 is the squared correlation coefficient. Fourth and fifth panels are probability plots comparing data to, respectively, the best-fitting

truncated-Pareto (tp) SMSD and the best-fitting quadratic generalized truncated-Pareto (gtp; Methods). They show the expected values of the

order statistics (O.S.) of logð �MÞ under the best-fitting distribution (tp and gtp, respectively) vs. ranked taxon log mean body masses. P-values

on bottom panels are from a likelihood ratio test comparison of the tp and gtp SMSDs. An F or P appears in the lower left of the top panel

(respectively, second panel) according to whether eqn 7 (respectively, eqn 10) was falsified by each web or not (see Methods, Testing

theory). In the organic farm (E), enchytraeids were plotted with x symbols.
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were uniformly resolved to species. To investigate whether

imperfect taxonomic resolution could have caused inaccu-

racies in results based on the other webs of this study, we

artificially lumped Tuesday Lake data to several levels of

resolution, recomputed exponents and retested theory with

lumped webs (unpublished results, Reuman, D.C., and

Schittler, D.N.). For Tuesday Lake, all exponents and

theories were insensitive to various kinds of lumping

(including even and uneven lumping across the body mass

range of the system) down to a surprisingly low level of

resolution, much lower than the resolution of the other

webs of this study.

D I S C U S S I O N

We synthesized, elaborated, and formalized theoretical ideas

of Damuth (1994), Cyr (2000), Brown & Gillooly (2003),

Brown et al. (2004), Jonsson et al. (2005) and others on body
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Figure 4 Histograms of scaling exponents for soil webs. Tick marks below the horizontal axis are individual web exponents. For the LSDRE,

all webs were included for which a power law form for the LSDR was not statistically rejected (Methods). The super-intensive farm ID 158

was also included because its departure from power-law behaviour was minor. ISDs could not be statistically distinguished from power laws

for soil webs using bin-based methods (Methods), but for some organic farms (ID 222–232) a power law was visually a poor description (e.g.

Fig. 2e). These farms also had non-power law LSDRs. They are distinguished with open histogram bars and smaller marks. The mean (Mn) of

ISDE + 1 does not include them. ISDE histograms use bin-based estimates (but see Fig. S6). SMSDEs were included whenever a power law

SMSD could not be statistically rejected in favour of a generalized distribution (Methods). The super-intensive farm ID 158 and the pasture

ID 192 were also included because the best-fitting generalized distribution, while a better fit, differed little from a power law. Histograms of

LSDRE + SMSDE + 1 included sites for which power laws described LSDR and SMSD, as well as farms ID 158 and ID 192. MnOR denotes

the mean with the right-most outlier point removed. Vertical lines demarcate )3 ⁄ 4. The number n in each panel is the number of sites

included. The total number of sites of each type is in parentheses at left.
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mass allometry in local community food webs and system-

atically tested theory for a large and diverse collection of

webs. Theory was broadly validated. Exceptions provided

additional ecological insight. Although many theories

explained relative population densities or biomasses of

trophic levels or size categories in assemblages or webs

(Kerr 1974; Silvert & Platt 1980; Lurie et al. 1983; Borgmann

1987; Han & Straskraba 2001; Andersen & Beyer 2006;

Pope et al. 2006), the integrated theory tested here predicted

relative population densities of both mass categories and

highly resolved taxa and explained web-to-web variation in

relative densities. The theory required SMSD as input. We

provided the first power-law description of SMSDs for a

large collection of webs. Our results integrated three types

of allometry theoretically and empirically.

Theory revisited

The theory of Brown et al. (2004) assumed that species

could be aggregated into distinct trophic levels not

overlapping in body mass; then the population production

of each level was distributed exclusively over a range of

body masses vulnerable to predation from the next level,

making it natural to set a times the production of one

trophic level equal to the production of the next higher

trophic level. To avoid assuming trophic levels, we assumed

that production of a mass category R = [M, M + dM ] was

distributed mainly over nearby (relative to the average

consumer-resource mass ratio b) parts of the web�s range of

body masses; we then related the production of consumers

and resources by Prod(R ) = aProd(R ⁄b) (eqn 4). If only a

fraction, q, of Prod(R ⁄b) (e.g. the growth component) had

body mass vulnerable to consumption by individuals in R,

one could set Prod(R ) = a · q · Prod(R ⁄b), but further

modification would be needed to reflect production from

other mass categories occurring in R ⁄b, for instance if the

size at birth or hatching of a larger species fell in R ⁄b.

An elaborated theory of ISD could use mass-dependent

production kernels and feeding kernels, so that both

production and feeding of organisms in R would be

distributed over a range. Existing diet and life-history data

and theory may suffice to construct such a model for a

marine system (e.g. Charnov & Gillooly 2004; Andersen &

Beyer 2006). The assumptions of the ISD theory (eqn 6)

and Brown et al. (2004) probably do not hold for marine and

other systems dominated by indeterminate growers. Inde-

terminate growers (e.g. fish) can pass though multiple

trophic levels as they grow, and the investment of large

individuals in reproduction (which represents production in

small mass categories) can be larger than their investment in

growth. Describing production and feeding kernels for

organisms in R in a way that depends only on M and not on

the species composition of R may also be more tractable for

marine systems, which are heavily size-structured. The

theory of Brown et al. (2004) has been supported by data

from a marine system (Jennings & Mackinson 2003), though

assumptions of the theory were violated. Other mechanisms

make the same predictions for marine systems (e.g.

Andersen & Beyer 2006).

For estimates of the LSDR, we assumed that the variation

in individual-organism M within taxa was much smaller than

among taxa. That assumption is far from true for systems

dominated by indeterminate growers, so the LSDR theory is

also not expected to apply to those systems. For marine and

other systems, models should be developed and compared

with data (currently rare) that explicitly relate M distributions

within taxa to M distributions in whole webs and distribu-

tions of characteristic taxon body masses. Andersen & Beyer

(2006) take important steps in this direction starting from

different hypothesized mechanisms.

Our theory was useful when it predicted accurately

because it illuminated potential mechanisms and when it

failed because it provided a benchmark from which to

measure deviations. Theoretical predictions about the ISD

were within the likely margin of error of available ISD

estimators, except for forests and some organic farms.

Violations of theory by some organic farms were explained

by subsidies, but forests had higher ISDEs than predicted,

for unknown reasons. How were observed population

densities of large-M organisms in soils under pine-plantation

supported? Some form of external subsidy may have played

a role, but fertilizers were not added. Other possible

explanations included increasing trophic transfer efficiency

or increasing consumer–resource body-mass ratios with

increasing M (Brose et al. 2006) or a web not primarily body-

mass structured. All of these possibilities violated model

assumptions, and may need to be included in future

modelling. In addition, the theory of this study predicted

only the expected dependence of taxon densities N on mean

body mass �M . Understanding the variation of individual taxa

from the trend remains a challenge.

Species-mean-size distributions

In our data, SMSDs were often truncated Pareto distribu-

tions with SMSDE < )1, corresponding to a linear diversity

spectrum of slope SMSDE + 1 < 0. In related but distinct

macroecological research, Hutchinson & MacArthur (1959)

and May (1978) theorized that the global or regional

diversity spectrum of a clade should have an approximately

linear right tail with slope )2 ⁄ 3. Blackburn & Gaston (1994)

and Loder et al. (1997) supported rough linearity for the

right tail with slopes varying across clades and scales.

Marquet et al. (2005) found linearity across all size bins of a

diversity spectrum for South American mammals, with slope

about )3 ⁄ 4. Histograms of log ( �M ) of mammal species from
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local communities were approximately uniform, correspond-

ing to flat diversity spectra (Brown & Nicoletto 1991). Our

study differed from the above studies and provided novel

results by examining all or most taxa from local commu-

nities, rather than clade-specific datasets. Theoretical expla-

nations for web diversity spectra and variation in web

SMSDEs should be developed, perhaps through models that

draw species from clade-specific regional pools described by

macroecological diversity spectra.

Some conclusions of Jonsson et al. (2005) about the

SMSD of Tuesday Lake agreed with our study; others

differed superficially because some methods of Jonsson et al.

(2005) were less probabilistically refined. Jonsson et al.

(2005) confirmed for Tuesday Lake the prediction of Cohen

(1991) that if �M i is the mean mass of the ith-heaviest taxon,

then �M i / ib. For Pareto-distributed �M i , this is expected, so

their results support ours. A falloff from the trend �M i / ib

at large �M i is expected for truncated-Pareto �M i ; Jonsson

et al. (2005) observed a falloff. By visual inspection of a

histogram of log ( �M ) values, Jonsson et al. (2005) suggested

that a log-hyperbolic distribution of �M may better account

for large values than a log-normal distribution, but here we

showed that a truncated Pareto distribution can do the same.
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Appendix S1: Details of the derivation of the theory 21 

22 Eq. 4 reduces immediately to 

Eq. S1  7/4II β
α
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where the last equality follows by making the substitutions u=log(M) and du=dM/(M*ln(10)). Since 

this holds for any s and t, we know the first and last integrands are equal, so 

Eq. S4  . )(ug)(Mf*M*ln(10) II =

An analogue of Eq. S4 holds for fS and gS, too, by the same reasoning. Eq. S2 becomes 
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Eq. S5 means the value of the abundance spectrum, , at u is (u))log(gI ⎟⎟
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⎛
3/4β
αlog  plus its value at u-

log(β). One functional form satisfying this requirement is log(gI(u)) linear in u with slope 

log(α/β3/4)/log(β) = log(α)/log(β) – 3/4, from which Eqs. 5-7 follow. 
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Eq. 4 and Eq. S5 are recursive relationships that determines the structure of fI and gI over the 

interval [βn*aI, βn+1*aI] in terms of its structure over the interval [βn-1*aI, βn*aI]. Irregularities in fI and 

gI over [aI, β*aI] are predicted to propagate through the ISD, superimposed on the general trend of Eqs. 

6 and S5. In practice, random variation will mitigate this effect. The effect still may be visible, when 

relatively well-defined trophic levels exist, in the form of within-trophic-level relationships between 

density and body mass that differ from overall patterns and are superimposed on the general trend (e.g., 

Brown & Gillooly 2003; Jonsson et al. 2005). In summary, Eq. S5 implies that the overall pattern of 

the abundance spectrum will be a line, but periodic departures from this trend may be observed. 
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Appendix S2: Fitting the truncated Pareto distribution 

Aban et al. (2006) gave the maximum likelihood estimator (MLE) of the exponent λtp of a truncated 

Pareto distribution with unknown truncation parameters atp and btp as the solution of an equation that 

can be easily solved numerically. Although the equation need not always have a solution, Aban et al. 

(2006) proved that it has a solution with probability tending to 1 as sample size increases, and they 

proved that the solution is unique when it exists. A solution existed for each of the mean body-mass 

distributions of the webs of this study. The standard theorems about asymptotic properties of MLEs do 

not apply to the MLE of λtp because regularity conditions of the theorems are not satisfied. But Aban et 

al. (2006) proved that the MLE of λtp is a consistent estimator of λtp, and that it is asymptotically 

normal and unbiased. 

 For comparisons with theory, it is important to use an unbiased estimator of λtp. But the MLE of 

λtp is biased for small sample sizes (Fig. S2). We corrected for this bias. For atp = 1, log(btp) ranging 

from 2 to 9.5 in increments of 0.5, n (the sample size) ranging from 10 to 100 in increments of 5, and 

λtp ranging from  -6 to 6 in increments of 0.1, we generated points from the truncated Pareto 

distribution and computed the MLE of λtp. This was repeated 500 times for each combination of btp, n 

and λtp. Bias of the MLE was estimated for each parameter combination. The function 

-1.3814*(λtp+1)/n0.83428 explained 98.5% of the variation in the estimated bias. The parameters of this 

function were determined by nonlinear least-squares regression. This suggests the bias-corrected 

estimator , where  is the MLE. We reran the same simulations with the 

bias-corrected estimator in place of the MLE and found (e.g., Fig. S2) that the bias-corrected estimator 

had very low bias for n ≥ 30 and λtp between -6 and 6 (which amply covered the range of values in this 

study). The variance of the bias-corrected estimator is a factor of 1+1.3814/n0.83428 greater than the 

variance of the MLE, a modest increase for n ≥ 30. The mean squared error of the bias-corrected and 

MLE estimators are about the same (Fig. S2). 

83428.0
tptp n/)1λ̂(*3814.1λ̂ ++ tpλ̂

 The uniformly minimum variance unbiased estimator (UMVUE) of λtp, derived by Beg (1983), 

equals -θ-1 where 
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y is the minimal data point, z is the maximal one, t is the sum of the data, n is the number of data 

points, xCy is the binomial coefficient, and the sums are from j = 0 to 

74 

⎣ ⎦)yz/()nyt(j −−=  where ⎣ ⎦  

represents rounding toward -∞. For large enough n and λtp bigger than about -1.5 the UMVUE cannot 

be computed using most commonly available computing packages (including Matlab and R). The 

alternating summands in the numerator and denominator of θ can be larger than 10300, but the sums 

themselves can be many orders of magnitude smaller. Since most computational software only stores 

the most significant 15-20 decimal digits of each variable in computer memory, cancellation of very 

large summands leads to erroneous results. The UMVUE could be computed efficiently using an 

arbitrary-precision arithmetic package such as the GMP package available for the C programming 

language (gmplib.org). Overcoming the numeric hurdles intrinsic in the UMVUE formula was beyond 

the scope of this study. 
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For large sample sizes, the MLE of λtp is essentially unbiased and is recommended. For small 

sample sizes, the MLE, if substantially biased, can be corrected or the UMVUE can be used if some 

numeric hurdles are overcome. The bias-corrected estimate and the UMVUE are more useful for 

studies of taxon mean trait distributions than for studies of individual-organism trait distributions, since 

the latter will typically involve larger sample sizes.  

An untruncated Pareto distribution has pdf given by a power law on [ap, ∞) and equal to 0 

elsewhere. Fitting a Pareto distribution is simpler than fitting a truncated Pareto distribution (Johnson et 

al. 1994; Aban et al. 2006; White et al. 2008). The exponent of a truncated Pareto distribution is 

sometimes estimated by ignoring the upper truncation: a Pareto distribution is fitted and the exponent is 

taken as an estimate of the exponent of the best-fitting truncated Pareto distribution (Page 1968). For 

some parameters this approximation is reasonable. But tests showed that the approximation introduces 

error for the data of this study (Appendix S4), so we did not use it.  

  

Appendix S3: Fitting a generalized truncated Pareto distribution 

We denoted the pdf of our generalized truncated Pareto distribution by Fgtp(x), which is equal to 0 

outside [agtp, bgtp]. The truncation points 0 < agtp < bgtp were taken to be unknown parameters. The 

distribution was described (Methods) by giving the pdf of w=log(x), which is  

on [log(agtp), log(bgtp)] and 0 elsewhere.  

2
gtpgtp w*ηw*γ

gtp 10)w(G +∝
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We used an MLE of the parameters of the generalized truncated Pareto distribution. It is easy to 

see that the MLEs of agtb and bgtb are the minimum and maximum data points, respectively. We 

optimized the log likelihood function over the other two parameters, starting separately from each of 

five different initial parameter pairs using the Nelder-Mead simplex algorithm (Nelder & Mead 1965). 

One of the initial parameter pairs set γgtp equal to the bias-corrected MLE of the parameter λtp of the 

truncated Pareto distribution and set ηgtp equal to 0. 

 

Appendix S4: Pareto versus truncated Pareto distributions 

Three probability distributions are considered in this appendix. A Pareto distribution has probability 

density function (pdf)  on [ap, ∞) and 0 elsewhere, where the constant of proportionality is 

determined by the requirement that a pdf integrate to 1. Here, λp < -1 is required so that  can be 

rescaled to integrate to 1, and ap > 0 is assumed unknown. A truncated Pareto distribution, introduced 

in the main text, has pdf  on [atp, btp] and 0 elsewhere, where λtp is an arbitrary real number 

and 0 < atp < btp are assumed unknown. A power function distribution has pdf on (0, bpf] 

and 0 elsewhere, where λpf > -1 is required so that  can be rescaled to integrate to 1, and bpf > 0 is 

unknown.  

pλ
p x(x)f ∝

tp x(x)f ∝

pλx

pfλx

tpλ

pf (x)f ∝

pfλx

Maximum likelihood estimators (MLE) and uniformly minimum variance unbiased estimators 

(UMVUE) of λp, λtp, and λpf are available, but not all of these estimators are equally easy to compute. 

Simple formulas for the MLE and the UMVUE of λp were given by Johnson et al. (1994, p. 582-583). 

Since a power function distribution becomes a Pareto distribution under the transformation w = 1/x, 

these estimators can easily be transformed to obtain an MLE and a UMVUE of the parameter λpf. An 

MLE and a UMVUE of the truncated Pareto parameter λtp are also available, but are much more 

difficult to compute (Beg 1983; Aban et al. 2006; see also Appendix S3).  

In the main text, we argued that the truncated Pareto distribution is more appropriate for 

describing body mass data because of ecological and physiological limitations on the range of possible 

masses. The truncated Pareto distribution is also more appropriate if sampling methods precluded 

detection of masses outside of some range. Perhaps because of the difficulty of estimating λtp, the 

Pareto and power function distributions are sometimes used instead of the truncated Pareto distribution 

in cases where data were most likely bounded above (e.g., earthquake intensities, body sizes). Page 

(1968) suggested this approximation in cases where the largest data point is more than 100 times the 
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smallest data point. We explored in several ways the possibility that error can be introduced by fitting 

Pareto and power function distributions to data from finite systems or from the truncated Pareto 

distribution (i.e., we explored when using an estimate of λp as an estimate of λtp can cause error). 

First, for each of several values of λtp spanning the range -7 to 5, we independently generated 

100 data points from a truncated Pareto distribution with atp = 1 and btp = 1000, and estimated λtp with 

the UMVUE of λp for the Pareto distribution. We denote this estimator λ1. We also estimated λtp by 

fitting a power function distribution, again using a UMVUE. We denote this estimator λ2. We also used 

a third estimator, here denoted λ3, of the truncated-Pareto parameter λtp, equal to λ1 or λ2 according to 

whether the maximum likelihood of the data was greater for a Pareto distribution or a power function 

distribution, respectively. The experiment was repeated 5000 times for each value of λtp and the bias, 

variance, and mean squared error of each estimator was plotted against λtp (Fig. S1A). All three 

estimators were substantially biased for λtp close to -1. Since λ1 was always less than -1, it was heavily 

biased for λtp > -1. Since λ2 was always greater than -1, it was heavily biased for λtp < -1. λ3 was 

bimodal for λtp close to -1 (Fig. S1B). λ1 is an unbiased estimator of λp, and λ2 is an unbiased estimator 

of λpf, but neither is an unbiased estimator of λtp, nor is λ3. 

A substantial fraction of datasets of size 100 with points drawn independently from a truncated 

Pareto distribution with atp = 1, btp = 1000 and λtp not close to 0 will not span 2 orders of magnitude. 

Since Page (1968) suggested that the estimator λ1 could be used as an approximation of λtp when the 

largest data point is more than 100 times the smallest data point, to further test the suggestion, we 

repeatedly generated 100 independent points from a truncated Pareto distribution with atp = 1, btp = 

1000, λtp = -1.1 until we had 5000 datasets each spanning at least two orders of magnitude. The mean 

value of λ1 for these datasets was -1.3268, showing substantial bias for λtp close to 1 even for datasets 

covering a wide range. 

Finally, we compared the values of λ1, λ2, and λ3 estimated for the SMSDs of the webs of this 

study to those of the bias-corrected MLE described in Methods and Appendix S3, here called λ4. The 

median, 95th and 99th percentiles, and the maximum of |λ1 – λ4| over our 149 webs were 0.0105, 0.1915, 

0.2283, and 0.3955. The same percentiles for |λ2 – λ4| were 0.3453, 0.4050, 0.4645, and 0.4783. The 

same percentiles for |λ3 – λ4| were 0.0105, 0.1915, 0.2266, 0.2312. The Akaike Information Criterion, 

corrected for small sample size (AICc; Burnham & Anderson 2002, p. 66) was computed for each type 

of distribution and for each of our 149 webs. The AICc for the truncated Pareto minus the AICc for the 

Pareto was never greater than 2, but was less than -2 in 54 of 149 webs, supporting the choice of the 
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189 

truncated Pareto as a generally better description of the data of this study. The AICc for the truncated 

Pareto minus the AICc for the power function distribution was less than -2 for all 149 webs.  

In summary: λ1 is a biased estimator of λtp when λtp is not substantially less than -1; λ2 is a 

biased estimator of λtp when λtp is not substantially greater than -1; λ3 is a biased estimator of λtp when 

λtp is close to -1; and λ1, λ2, and λ3 can be poor approximations of λ4, which is an essentially unbiased 

estimator of λtp for a wide range of biologically reasonable λtp values (Appendix S3). Our estimates λ4 

took values less than, greater than, and often close to -1, so the tests of this appendix justify the 

computational effort required to compute λ4. The estimators λ1, λ2, and λ3 of λtp should be used, as 

suggested by Page (1968), only when one can be confident that λtp is substantially less than -1 

(respectively, greater than -1, far from -1). For data that may have been bounded above, one should 

consider carefully the decision to use a Pareto distribution in place of a truncated Pareto distribution; 

comparison of the two distributions using the AICc can be helpful in making this decision. The data of 

this study are at least as well described by the truncated Pareto distribution as by either the Pareto or 

power function distributions, according to the AICc.  

 

Appendix S5: Estimating the individual size distribution exponent 

 

Bias of common bin-based estimators 

We plotted the bias, variance, and mean squared error of a commonly used method of estimating λtp, 

based on separating data into log-scale-uniform bins. For each λtp from -7 to 5 in increments of 0.1, 

5000 datasets, d, of size 100 were drawn (each point independently) from a truncated Pareto 

distribution with atp = 1 and btp = 1000. For each dataset, λtp was estimated by dividing the interval 

[log(min(d)), log(max(d))] into 10 equal bins, computing the log number of points in each bin, 

regressing against log-scale bin centres (excluding empty bins), and subtracting 1 from the regression 

slope. Bias, variance, and mean squared error were plotted against λtp (Fig. S3). The estimator was 

biased toward -1. The process was repeated using 500 datasets of size 1000 for each λtp. Bias patterns 

were similar but reduced. The method used in the main text to estimate ISDE from taxon M  and N 

data (Methods) is an intuitive adaptation of the above method. Although it is not possible to 

quantitatively estimate the bias, variance, or mean squared error of the adapted estimator without 

making assumptions about distributions of individual-organism M within taxa, the adapted method may 

190 

191 

192 

193 
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194 

195 

196 

197 

198 

199 

have patterns of bias similar to the method it is based upon: the ISDEs we report may be closer to -1 

than true ISDEs.  

 

Cdf-fitting method 

Bin-based methods have been criticized for their bias and variance and for the arbitrary choices they 

involve, such as the number of bins used White et al. (2008). Preferred methods such as the UMVUE 

and the MLE (Appendix S3) cannot be adapted to estimate the ISDE from taxon mean body masses M  

and population densities N without making assumptions about distributions of individual-organism M 

within taxa. UMVUE and MLE formulas refer to minimum and maximum observed individual body 

masses (Appendix S3; Aban et al. 2006), unknown if only the taxon means 

200 

201 

202 

M  were recorded. We 

adapted the cdf-fitting method recommended by White et al. (2008) (see also Johnson et al. 1994, p. 

580) to the context of the available data in order to compare cdf-based estimates to bin-based estimates 

of the ISDE.  

203 

204 

205 

206 

If mean body masses of taxa in a web are sorted in ascending order, 1M , …, nM , then  207 

Eq. S8  
∑

∑

=

−

=
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1j
ji

iemp

N

NwN
)M(ϕ  208 

is an empirical approximation of the cdf of the ISD at iM , where w is taken to be 0.5. A 

straightforward adaptation of the cdf-fitting method would numerically minimize the summed squared 

differences, at the 

209 

210 

iM , between this empirical cdf and the theoretical cdf of the ISD, under the 

assumptions that the ISD is a truncated Pareto distribution with parameters λtp, atp, and btp. The 

theoretical cdf is  

211 

212 

213 

Eq. S9  1λ
tp

1λ
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215 for λtp ≠ -1 and  

Eq. S10 
ln(a)ln(b)
ln(a)ln(M))(Mtheor −

−
=ϕ  216 

217 

218 

for λtp = -1. However, the empirical cdf of Eq. S8 is often a statistically poor target to which to match a 

theoretical cdf. If the population density of one or a few taxa is a substantial portion of the total 
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219 

220 

221 

222 

223 

224 

225 

226 

227 

population density of all taxa in a system (a common occurrence in webs), then the values of Eq. S8 

will cluster close to 0 and 1 (Fig. S4). In that case, the best fit of Eq. S9 with Eq. S8 is determined 

primarily by a few taxa. It may be possible to transform the empirical and theoretical cdfs to mitigate 

this problem, but any of several transformations could be used, arbitrarily, with different results. For 

these reasons, we did not use this straightforward adaptation of the cdf-fitting method. 

We developed a natural generalization of the cdf-fitting method that circumvents the problems 

stated in the previous paragraph without requiring arbitrary choices. “Cdf-fitting” in the main text 

refers to the improved method we now describe. The theoretical cdf of a truncated Pareto ISD with 

parameters λtp, atp, and btp is 

Eq. S11 

∫

∫
=
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)(Mϕ . 228 

229 We defined a generalized theoretical cdf  

Eq. S12 
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(M)ϕ , 230 

231 where h(t) = ts. This can be reduced to a simple formula. If s = 1, Eq. S12 is the proportion of biomass 

in the system with body mass less than M. An empirical approximation of the generalized cdf at iM  is 

given by 

232 

233 

Eq. S13 
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235 where w = 0.5. For any fixed s, it is straightforward to minimize numerically the summed squared 

differences, at the iM , between the empirical and theoretical generalized cdfs.  236 

We selected s to minimize variation in the quantities s
iiMN , thereby optimizing the evenness of 237 

)M( i
gen
empϕ  over the range [0, 1] and making the empirical generalized cdf a statistically reasonable 

target to compare to the theoretical generalized cdf. A natural choice for s was -b, where 

238 

239 
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εa)Mlog(*blog(N) ++=  is the ordinary least squares best fit. This choice minimizes var(ε), equal to 240 

))Mvar(log(N -b  (Fig. S4). We estimated IDSEs for all webs of this study by generalized-cdf fitting 

using this procedure.  

241 
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270 

 For each web of this study, confidence intervals of the generalized-cdf estimate of the ISDE 

were computed by the resampling scheme of Methods, using 500 resamplings instead of 5000. A 

quadratic generalization of the truncated Pareto distribution (like Eq. 12, but using individual body 

masses instead of taxon means) was also fitted by the generalized-cdf method, and the resampling 

scheme (here using 100 resamplings instead of 5000) was used to determine approximate confidence 

intervals of the quadratic coefficient. The hypothesis that the ISD was a truncated Pareto distribution 

was rejected if these confidence intervals did not contain 0. All ISDE results obtained by 

generalized-cdf fitting are in Table S1, alongside the same results obtained by binning. R2 (over all 149 

webs) between bin-based and generalized-cdf estimates of ISDEs was 83.4% (Fig. S5). The main 

results of this study were qualitatively similar regardless of whether ISDE was estimated by binning or 

by generalized-cdf fitting (Fig. S6). 

 

Probabilistically grounded estimators 

Individual-organism M data, though presently rare for webs, could enable probabilistically grounded 

estimates of the ISDE and more exacting tests of the ISD theory of this study. Different sampling 

methods are often used for different species or size ranges within a web, so even when individual M 

data are available, it may be impossible to view measured values as random samples from the ISD, and 

therefore inappropriate to use the MLE or UMVUE. A probabilistically grounded estimator of the 

ISDE based on realistically obtainable web data is a useful topic for future research. It may be 

necessary to model the distribution of organism M values within taxa, an important challenge in itself. 

 

Appendix S6: Data 

The two pelagic webs were from Tuesday Lake, a mildly acidic lake in Michigan, U.S.A. (Carpenter & 

Kitchell 1993; Cohen et al. 2003; Jonsson et al. 2005, which contains the full data). In 1984 and 

separately in 1986, all taxa found in the non-littoral epilimnion of Tuesday Lake (except parasites and 

bacteria) were resolved to species. Three fish species were removed and another was introduced in 

1985. About 50% species turnover occurred between 1984 and 1986. Only taxa connected to the webs 

were included for this study (50 species in 1984, 51 in 1986). Six unconnected species were found in 
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each year. M  was measured in kg fresh mass. N was in individuals per m3 of the non-littoral 

epilimnion, where all trophic interactions occurred. 

271 

272 

273 

274 

The estuarine web was in the Ythan Estuary, Scotland (Hall & Raffaelli 1991). Of the 91 taxa 

observed, 73 were species and half of the rest were genera. Particulate organic matter, a resource for 

some taxa in the Ythan Estuary, was omitted from this study because M  and N estimates were 

difficult to obtain. 

275 

M  was in g fresh mass per individual; population density was absolute numbers of 

individuals in the whole estuary (the unit were numbers per area A, where A was the area of the 

estuary). The full data will be published elsewhere (Schittler, Reuman, Raffaelli & Cohen, in 

preparation). 

276 

277 

278 

279 

All taxa observed in the rhizosphere of the 146 Dutch agroecosystems were measured for M  

and N except fungi and protists. Of 169 nematode, 186 microarthropod, and 17 oligochaete taxa 

identified in any of the 146 soil webs, approximately 78% of the nematodes, 83% of the 

microarthropods, and 100% of the oligochaetes were genera; the rest were families. Bacterial 

280 

281 

282 

M  and 

N considered all bacteria as one taxon (Mulder et al. 2005a; Mulder et al. 2005b); these data were 

omitted because this level of resolution was very different from that used for other taxa. Units of 

283 

284 

M  

were μg dry mass and units of N were individuals per m2. 

285 

M  and N were from direct measurement, 

but the 

286 

M  values for each taxon were assumed to be the same at all sites (Mulder et al. 2005a; Mulder 

et al. 2005b). Samples were from the top 10 cm of soil. For possible access to the soil web data, contact 

C.M., who intends to publish the webs at a future date.  

287 

288 

289 

The theory of this study used a fixed value of β, but rc M/M  varied within each of the Tuesday 

Lake and Ythan Estuary webs. To test theory, a representative value of β was needed for each web. We 

chose the central value β=mean(log(

290 

291 

rc M/M )) of each web’s distribution of rc M/M  because the 292 

rc M/M  were closer to a log-normal distribution than to a normal distribution for all three webs. 

Mean(log(

293 

rc M/M )) was more representative of a typical trophic link in each web than 

log(mean(

294 

rc M/M )). The latter was unduly influenced by a few links with large rc M/M , which 

represented feeding relationships that may have been uncommon. There is no reason to believe that 

links with large 

295 

296 

rc M/M  have influence on patterns of relative population density in webs in proportion 297 
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to their large influence on log(mean( rc M/M )). Mean(log( rc M/M )) and ))M/Mmean(log( rc10  were 

respectively closer to the medians of the distributions of log(

298 

rc M/M ) and rc M/M  than were 

log(mean(

299 

rc M/M )) and mean( rc M/M ). 300 

301 

302 

303 

304 

305 

306 

 

Appendix S7: Other theories and mechanisms 

It is possible to interpret theory in Brown et al. (2004; pp. 1785-1786, their Eq. 13) and Jennings & 

Mackinson (2003) so that predictions do not agree with our theoretical predictions or data (comments 

of an anonymous referee). However, if so interpreted, predictions of those theories would also disagree 

with the data presented in the same studies. Eq. 13 of Brown et al. (2004) read, in part: 

Eq. 13  
3/4-)])/log([log(

0
0 M

MNN
βα

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , 307 

308 

309 

where N was called the “total number of organisms of a given size” (Brown et al. 2004, p. 1785), and 

N0 and M0 were constants for a web. If N in Eq. 13 is interpreted as the total number of organisms in 

the interval [M, M+dM], then Eq. 13 constitutes a prediction that 
4
3

)βlog(
)αlog(λ I −= , conflicting with Eq. 

7. However, if N in Eq. 13 is interpreted as the total number of organisms in the interval [u, u+du], 

where u=log(M), then Eq. 13 predicts that the abundance spectrum slope is 

310 

311 

4
3

)βlog(
)αlog(
− , and that 

therefore 

312 

4
7

)βlog(
)αlog(λ I −= , in agreement with Eq. 7. We assumed the latter interpretation, because 

Brown et al. (2004) compared their prediction 

313 

4
3

)βlog(
)αlog(
−  to the classical result that the marine 

abundance spectrum slope is -1 (while α is often taken to be 10% and a typical β in marine systems is 

about 10000). Jennings & Mackinson (2003) also compared 

314 

315 

4
3

)βlog(
)αlog(
−  to the slope of an abundance 

spectrum. Confusion may result when it is not clearly indicated whether theory is intended to predict 

the abundance spectrum slope or the ISDE. The probabilistic approach and language of White et al. 

(2008) and this study can help clarify theoretical statements and their comparison with data. 

316 

317 

318 

319 

320 

321 

 Another interpretation of the theory of Brown et al. (2004; pp. 1785-1786, their Eq. 13) is also 

possible, but does not agree with our data. In previous work, we compared the LSDREs of 166 webs to 
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the predictions of two null models (Reuman et al. In press). One of the null models was the prediction 

that the LSDRE (rather than the abundance spectrum slope, as predicted in Appendix S1) should equal  

322 

323 

Eq. 14   
4
3

)βlog(
)αlog(λL −= .  324 
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346 
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351 

Eq. 14 is a possible interpretation of the way theory is presented in Brown et al. (2004) and especially 

in Brown & Gillooly (2003). Eq. 14 is empirically unsupported, as demonstrated here (last paragraph of 

Local size-density relationships in Results) and in Reuman et al. (In press). A superficial reading of 

Reuman et al. (In press) and the current study may suggest that the theories of Brown et al. (2004) 

were falsified by the former study and validated by the latter, but we emphasize that in Reuman et al. 

(In press), we compared the interpretation Eq. 14 with data, and here we compared a different 

interpretation, augmented by other theory (Appendix S1). We recognized in Reuman et al. (2004) that 

Eq. 13 of Brown et al. (2004) was intended to predict the abundance spectrum and not the LSDRE; 

testing Eq. 14 was for comparative purposes and because a precise and integrated theory of the LSDR 

was not available at that time. Nevertheless, confusion may result when it is not explicitly indicated 

whether theory is intended to predict the LSDR or the ISD and abundance spectrum. 

Formulating theory intended to predict ISDs and abundance spectra using the term “trophic 

level,” as done by Brown & Gillooly (2003) and Brown et al. (2004) may also create confusion. In 

much historical literature, the concept of the trophic level has often been applied to species or higher 

taxa, ignoring ontogenetic changes in individual feeding. Arriving at predictions for the ISD, which 

ignores taxonomy, using concepts such as trophic level could create confusion, unless terms are 

precisely defined or redefined.  

 This study showed that a mechanistic model explained variation in observed allometric patterns 

among webs. Our results supported the causal hypothesis in the model but did not confirm causation 

nor exclude other important mechanisms. The model of Silvert & Platt (1980) included mass-specific 

mortality and transfer of biomass (by a combined growth and consumption term) from small-mass 

categories to larger-mass categories. Andersen & Beyer (2006) modelled consumer foraging velocities 

and search volumes. Rossberg et al. (2008) modelled several mechanisms combined, including 

evolution, migration from and to other communities, and explicit top-down effects. A topic for future 

research is a detailed comparison of the ability of models to explain variation among webs in observed 

allometric patterns. Such a comparison could illuminate the relative importance of the proposed 

mechanisms for structuring communities. 
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Figure S1: Bias and variability of parameter estimates from fitting Pareto and power function 

distributions to data from a truncated Pareto distribution. (A) For each value of λtp, 100 values were 

independently chosen from the truncated Pareto distribution with atp = 1 and btp = 1000; λ1, λ2, and λ3 

were computed. This experiment was repeated 5000 times for each λtp. The bias, standard deviation, 

and mean squared error of each estimator were plotted. Increments of 0.1 in λtp from -7 to 5 were used. 

(B) For each of the λtp values -1.05, -1, and -0.95, 5000 datasets of 100 points each were generated 

from a truncated Pareto distribution with atp = 1 and btp = 1000 and histograms of λ3 estimates were 

plotted. 
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Figure S2: Bias, standard deviation, and mean squared error of the MLE of the exponent λtp of the 
truncated Pareto distribution (left) and the bias-corrected MLE of the same exponent (right). For these 
plots, atp = 1 and btp = 1000, and 100 data points were independently generated 5000 times for each 
value of λtp, so 5000 estimates were generated for each λtp. 
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Figure S3: Bias, standard deviation, and mean squared error of an estimate of the exponent λtp of the 
truncated Pareto distribution, using 10 bins uniform on a logarithmic scale. For these plots, atp = 1 and 
btp = 1000 and 100 data points (left) and 1000 data points (right) were independently generated 5000 
times (left) and 1000 times (right) for each value of λtp, so 5000 estimates (left) and 1000 estimates 
(right) were generated for each λtp. 
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Figure S4: A straightforward adaptation of cdf fitting to the case where only taxon means M  and 
population densities N are available (left), compared to a generalized method (right). A few species 
comprised most of the total population density in Tuesday Lake, 1984, so the empirical cdf of Eq. S8 
had most points close to 1, and was a poor target to compare with a theoretical cdf. A generalized cdf 
(right) was a statistically better target for comparison with a generalized theoretical cdf (Appendix S5). 
Results were often unrealistic for the cdf fitting method but more realistic for the generalized-cdf fitting 
method. For instance, cdf fitting gave ISDE+1 = -0.37 for Tuesday Lake 1984, an unrealistic value 
based primarily on the fit of the cdf to the smallest 10-15 species. Generalized-cdf fitting and the bin-
based method of Methods both gave -0.94; these estimates were not disproportionately influenced by 
any subset of species.  
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Figure S5: ISDE+1 as estimated by the generalized-cdf fitting method of Appendix S5 versus as 
estimated by the bin-based method of Methods. The line is y = x.  
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Figure S6: (Left) Same as Fig. 3A, C, E but using the generalized-cdf estimator of ISDE. (Right) Same 
as the second column of panels of Fig. 4, but using the generalized-cdf estimator of ISDE. Webs were 
excluded from these histograms only if they had non-power-law ISD, determined using generalized-cdf 
methods as described in Appendix S5. Only two of 146 soil webs were excluded, both forests (Table 
S1). The mean ISDE in the panel for super-intensive farms was computed with and without the largest 
outlier value included. MnOR denotes the mean with the right-most outlier point removed. 
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Table S1: Individual size distribution exponent (ISDE) estimates for the 149 webs of this study. The 
entry under “Web name” for soil webs is the web ID number, also used in Fig. 2. Web types are: P = 
pelagic, E = estuarine, 1 = conventional farm, 2 = organic farm, 3 = intensive farm, 4 = super-intensive 
farm, 5 = pasture, 6 = forest, 7 = winter farm. Column 3 contains estimates of ISDE+1 using the bin-
based method (Methods); columns 4-5 contain 99% confidence intervals. Column 6 contains “yes” if 
bin-based methods could not reject the hypothesis that the ISD was a truncated Pareto distribution (1% 
level). Column 7 contains estimates of ISDE+1 using the generalized-cdf fitting method of Appendix 
S5; columns 8-9 contain 99% confidence intervals. Column 8 contains “yes” if generalized cdf-based 
methods could not reject the hypothesis that the ISD was a truncated Pareto (1% level). Confidence 
intervals entirely above -3/4 are highlighted in red. 

403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413  

Web 
name 

Web 
type 

Bin 
ISDE, 
+1 

Lower 
99% 
conf. 

Upper 
99% 
conf. 

Trunc. 
Pareto
? 

cdf 
ISDE, 
+1 

Lower 
99% 
conf. 

Upper 
99% 
conf. 

Trunc. 
Pareto
? 

TL 84 P -0.9438 -1.1309 -0.7566 yes -0.9398 -1.1311 -0.77262 yes 
TL 86 P -0.896 -1.1283 -0.6637 yes -0.8628 -1.0128 -0.71939 yes 
Ythan E -1.1147 -1.3652 -0.8642 no -1.1285 -1.2768 -0.97934 no 
ID 95 1 -0.6158 -1.1801 -0.0515 yes -0.7093 -1.1237 -0.43502 yes 
ID 96 1 -0.8375 -1.2694 -0.4056 yes -0.8455 -1.1356 -0.64081 yes 
ID 97 1 -0.8095 -1.3532 -0.2658 yes -0.7612 -1.091 -0.48895 yes 
ID 98 1 -0.9039 -1.1632 -0.6446 yes -0.8226 -1.2855 -0.34274 yes 
ID 99 2 -0.7944 -1.163 -0.4257 yes -0.7108 -1.2139 -0.45558 yes 
ID 100 1 -0.7708 -0.985 -0.5565 yes -0.8001 -1.1184 -0.50622 yes 
ID 101 1 -0.7723 -1.4121 -0.1325 yes -0.7939 -1.2199 -0.52647 yes 
ID 102 1 -0.6849 -1.4873 0.1175 yes -0.9065 -1.5917 -0.63559 yes 
ID 103 1 -0.7289 -1.2378 -0.22 yes -0.8925 -1.1496 -0.71894 yes 
ID 104 1 -0.7255 -0.9676 -0.4833 yes -0.7901 -0.99514 -0.59208 yes 
ID 105 1 -0.8276 -1.2504 -0.4049 yes -0.8396 -1.1949 -0.5823 yes 
ID 106 3 -0.5659 -0.9929 -0.1389 yes -0.5728 -0.9072 -0.17129 yes 
ID 107 3 -0.7077 -1.367 -0.0483 yes -0.7503 -1.305 -0.12272 yes 
ID 108 3 -0.8381 -1.5094 -0.1668 yes -0.8434 -1.1424 -0.55341 yes 
ID 109 2 -0.741 -1.1894 -0.2926 yes -0.7096 -1.1777 -0.42119 yes 
ID 110 3 -0.8356 -1.3277 -0.3435 yes -0.8593 -1.211 -0.40697 yes 
ID 111 1 -0.6366 -1.6131 0.3398 yes -0.691 -1.167 -0.37895 yes 
ID 112 1 -0.7421 -1.3073 -0.1768 yes -0.7243 -1.1665 -0.27452 yes 
ID 113 1 -0.8724 -1.2816 -0.4633 yes -0.8097 -1.1627 -0.54856 yes 
ID 114 2 -0.7004 -1.1157 -0.285 yes -0.7787 -1.0031 -0.45425 yes 
ID 115 3 -0.7495 -1.3996 -0.0994 yes -0.7429 -1.2336 -0.44963 yes 
ID 116 3 -0.7349 -1.2237 -0.2461 yes -0.7388 -1.0605 -0.4483 yes 
ID 117 1 -0.7562 -1.0999 -0.4125 yes -0.8315 -1.1878 -0.57098 yes 
ID 118 1 -0.7178 -1.1277 -0.3079 yes -0.7546 -1.0356 -0.55186 yes 
ID 119 3 -0.7535 -1.1091 -0.3978 yes -0.6987 -1.1112 -0.24855 yes 
ID 120 3 -0.8182 -1.3238 -0.3126 yes -0.9352 -1.2026 -0.68474 yes 
ID 121 3 -0.7765 -1.2285 -0.3245 yes -0.7987 -1.0631 -0.54718 yes 
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ID 122 1 -0.7833 -1.3331 -0.2335 yes -0.8427 -1.1484 -0.66299 yes 
ID 123 3 -0.689 -1.0871 -0.2909 yes -0.7584 -1.0395 -0.4463 yes 
ID 124 3 -0.8217 -1.3063 -0.3371 yes -0.6418 -0.96202 -0.35439 yes 
ID 125 3 -0.8518 -1.252 -0.4515 yes -0.7276 -1.0446 -0.50988 yes 
ID 126 3 -0.7246 -1.1166 -0.3327 yes -0.7848 -1.0881 -0.43364 yes 
ID 127 1 -0.6605 -1.0938 -0.2272 yes -0.7133 -0.97787 -0.42487 yes 
ID 128 3 -0.8355 -1.3941 -0.2769 yes -0.9105 -1.3096 -0.56621 yes 
ID 129 3 -0.6853 -1.0895 -0.2811 yes -0.6909 -1.0115 -0.19204 yes 
ID 130 3 -0.8025 -1.5634 -0.0415 yes -0.8243 -1.2879 -0.4312 yes 
ID 131 3 -0.7129 -1.1569 -0.2689 yes -0.701 -1.0743 -0.32808 yes 
ID 132 1 -0.8522 -1.4652 -0.2391 yes -0.8844 -1.2082 -0.54569 yes 
ID 133 3 -0.7269 -1.0586 -0.3951 yes -0.7855 -1.1079 -0.5606 yes 
ID 134 3 -0.7808 -1.1273 -0.4343 yes -0.8137 -1.1683 -0.53436 yes 
ID 135 3 -0.7984 -1.3413 -0.2555 yes -0.8453 -1.1888 -0.60943 yes 
ID 136 1 -0.7193 -1.2175 -0.2212 yes -0.7594 -1.0611 -0.3329 yes 
ID 137 2 -0.7125 -1.1803 -0.2447 yes -0.8504 -1.1157 -0.60169 yes 
ID 138 2 -0.802 -1.2186 -0.3855 yes -0.7457 -1.0695 -0.50848 yes 
ID 139 2 -0.894 -1.4769 -0.3111 yes -0.6597 -1.1502 -0.17593 yes 
ID 140 2 -0.7263 -1.1827 -0.2699 yes -0.8509 -1.2435 -0.62629 yes 
ID 141 2 -0.9075 -1.4493 -0.3658 yes -0.9199 -1.3173 -0.59697 yes 
ID 142 2 -0.7199 -1.1274 -0.3125 yes -0.7867 -1.0791 -0.54854 yes 
ID 143 2 -0.7256 -1.1576 -0.2935 yes -0.878 -1.1181 -0.61712 yes 
ID 144 3 -0.7429 -1.0692 -0.4165 yes -0.8146 -1.0723 -0.55167 yes 
ID 145 4 -0.6549 -1.1033 -0.2066 yes -0.5127 -0.75996 -0.30693 yes 
ID 146 4 -0.7174 -1.1598 -0.275 yes -0.7213 -1.1664 -0.36068 yes 
ID 147 4 -0.7156 -1.2407 -0.1905 yes -0.8093 -1.0764 -0.56164 yes 
ID 148 4 -0.8369 -1.3143 -0.3595 yes -0.7528 -1.095 -0.5201 yes 
ID 149 4 -0.7389 -1.1306 -0.3472 yes -0.7164 -1.0166 -0.28551 yes 
ID 150 4 -0.8424 -1.3127 -0.3721 yes -0.8662 -1.2874 -0.55649 yes 
ID 151 4 -0.7484 -1.0831 -0.4137 yes -0.7868 -1.098 -0.51626 yes 
ID 152 4 -0.769 -1.1005 -0.4374 yes -0.8542 -1.1481 -0.56951 yes 
ID 153 4 -0.7095 -1.1535 -0.2655 yes -0.897 -1.2561 -0.61942 yes 
ID 154 4 -0.7771 -1.085 -0.4692 yes -0.6847 -0.99892 -0.39403 yes 
ID 155 4 -0.7918 -1.4974 -0.0862 yes -0.7177 -0.94928 -0.47265 yes 
ID 156 4 -0.8598 -1.3397 -0.38 yes -0.716 -1.0725 -0.30304 yes 
ID 157 4 -0.469 -1.063 0.125 yes -0.1409 -0.2928 0.56387 yes 
ID 158 4 -0.795 -1.1994 -0.3907 yes -0.9123 -1.2308 -0.6657 yes 
ID 159 4 -0.7501 -1.1086 -0.3915 yes -0.8598 -1.2 -0.64875 yes 
ID 160 4 -0.7578 -1.1398 -0.3759 yes -0.7588 -1.0452 -0.26966 yes 
ID 161 4 -0.6821 -1.0793 -0.285 yes -0.7141 -0.96124 -0.44405 yes 
ID 162 4 -0.7742 -1.223 -0.3255 yes -0.6331 -0.98204 -0.42674 yes 
ID 163 4 -0.6505 -0.9935 -0.3076 yes -0.7376 -1.0439 -0.41681 yes 
ID 164 6 -0.7611 -1.1632 -0.359 yes -0.7171 -1.0174 -0.22375 yes 
ID 165 6 -0.5926 -0.9833 -0.2019 yes -0.5764 -0.85485 -0.27401 yes 
ID 166 6 -0.2994 -0.5802 -0.0187 yes -0.2155 -0.57711 0.13274 yes 
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ID 167 6 -0.4376 -1.0002 0.1249 yes -0.202 -0.62648 0.19595 yes 
ID 168 6 -0.2058 -0.6769 0.2653 yes -0.0869 -0.31126 0.19409 no 
ID 169 6 -0.1745 -0.8065 0.4575 yes -0.0509 -0.62465 0.52657 yes 
ID 170 6 -0.3905 -0.8132 0.0321 yes -0.2288 -0.74322 0.15064 yes 
ID 171 6 -0.3745 -0.9611 0.2122 yes -0.1485 -0.52035 0.2392 yes 
ID 172 6 -0.2716 -0.7826 0.2393 yes -0.1193 -0.56687 0.38141 yes 
ID 173 6 -0.4196 -0.947 0.1079 yes -0.2366 -0.66621 0.14258 yes 
ID 175 6 -0.5076 -0.8937 -0.1215 yes -0.3369 -0.6489 0.03426 yes 
ID 176 6 -0.7108 -1.3862 -0.0354 yes -0.5314 -1.0273 -0.05676 yes 
ID 177 6 -0.5323 -1.062 -0.0025 yes -0.3082 -0.60932 0.12758 yes 
ID 178 6 -0.4716 -0.8135 -0.1297 yes -0.4703 -0.79129 -0.00192 yes 
ID 179 6 -0.2954 -0.7761 0.1853 yes -0.2215 -0.52223 0.12869 yes 
ID 180 6 -0.3149 -0.5281 -0.1017 yes -0.2984 -0.62866 -0.06245 yes 
ID 181 6 -0.1854 -0.6144 0.2436 yes -0.2313 -0.43512 0.01904 no 
ID 182 6 -0.4765 -0.7456 -0.2074 yes -0.4498 -0.78458 -0.07077 yes 
ID 183 6 -0.8516 -1.2231 -0.4801 yes -0.6892 -1.0174 -0.24504 yes 
ID 184 5 -0.7927 -1.2296 -0.3557 yes -0.7322 -1.0099 -0.49942 yes 
ID 185 5 -0.7216 -1.2592 -0.184 yes -0.7935 -1.1246 -0.58133 yes 
ID 186 5 -0.6739 -1.2255 -0.1224 yes -0.7701 -1.1476 -0.386 yes 
ID 187 5 -0.7768 -1.0715 -0.482 yes -0.7273 -1.0085 -0.23995 yes 
ID 188 5 -0.7168 -1.1243 -0.3093 yes -0.5981 -0.92362 -0.31727 yes 
ID 189 5 -0.7156 -1.2611 -0.1701 yes -0.677 -1.1355 -0.21925 yes 
ID 190 5 -0.7685 -1.2104 -0.3266 yes -0.7156 -1.0551 -0.38267 yes 
ID 191 5 -0.7097 -0.9144 -0.5051 yes -0.7022 -0.94804 -0.42077 yes 
ID 192 5 -0.8581 -1.1105 -0.6058 yes -0.7322 -1.0203 -0.3695 yes 
ID 193 7 -0.759 -1.2674 -0.2505 yes -0.9296 -1.2634 -0.7103 yes 
ID 194 7 -0.7969 -1.7326 0.1387 yes -0.8085 -1.5156 -0.07994 yes 
ID 196 7 -0.8186 -1.5337 -0.1035 yes -0.989 -1.466 -0.63793 yes 
ID 197 7 -0.857 -1.6292 -0.0849 yes -0.918 -1.2868 -0.4044 yes 
ID 198 7 -0.5454 -1.9195 0.8286 yes -0.7776 -1.1889 -0.13819 yes 
ID 199 7 -0.913 -1.8393 0.0132 yes -1.0315 -1.5942 -0.45678 yes 
ID 200 7 -0.8236 -1.2227 -0.4246 yes -0.9069 -1.2818 -0.54884 yes 
ID 201 7 -0.984 -1.8159 -0.152 yes -1.1333 -1.5407 -0.85064 yes 
ID 202 7 -0.6255 -1.1748 -0.0762 yes -0.7289 -1.109 -0.42212 yes 
ID 203 7 -1.0297 -1.4722 -0.5872 yes -1.0675 -1.4372 -0.73872 yes 
ID 204 7 -0.8861 -1.9709 0.1986 yes -1.0133 -1.3577 -0.72591 yes 
ID 205 7 -0.9832 -2.1556 0.1892 yes -0.7352 -2.1029 0.01887 yes 
ID 206 7 -0.8986 -1.3677 -0.4295 yes -1.0096 -1.2409 -0.59919 yes 
ID 207 7 -0.924 -1.5283 -0.3197 yes -0.9407 -1.265 -0.5046 yes 
ID 208 7 -0.8919 -1.831 0.0473 yes -0.8863 -1.4517 0.00454 yes 
ID 209 7 -0.7593 -1.6943 0.1757 yes -0.8184 -1.152 -0.28743 yes 
ID 210 7 -0.8351 -1.3952 -0.275 yes -0.6644 -0.96101 -0.22182 yes 
ID 211 7 -0.864 -1.4934 -0.2346 yes -0.8624 -1.1678 -0.5227 yes 
ID 212 7 -0.5833 -1.756 0.5895 yes -0.8023 -1.2084 -0.32336 yes 
ID 213 7 -0.7678 -1.589 0.0533 yes -0.9279 -1.3666 -0.27257 yes 
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ID 214 7 -0.8765 -1.3271 -0.4259 yes -0.9727 -1.2263 -0.57924 yes 
ID 215 7 -0.7061 -1.6855 0.2733 yes -0.7134 -1.1951 -0.13971 yes 
ID 216 7 -1.0998 -1.5782 -0.6215 yes -1.0549 -1.3493 -0.74651 yes 
ID 217 7 -0.8079 -1.4543 -0.1615 yes -0.9767 -1.2746 -0.6666 yes 
ID 218 7 -0.7543 -1.6176 0.1091 yes -0.8826 -1.2914 -0.57106 yes 
ID 219 7 -0.7908 -1.4203 -0.1612 yes -0.7479 -1.042 -0.39079 yes 
ID 220 7 -0.8409 -1.3857 -0.2961 yes -0.8802 -1.235 -0.56643 yes 
ID 221 7 -0.6004 -1.0615 -0.1394 yes -0.6524 -0.86088 -0.29877 yes 
ID 222 2 -0.3972 -1.2381 0.4437 yes -0.6109 -0.97529 -0.18218 yes 
ID 223 2 -0.4797 -1.1415 0.1822 yes -0.6715 -1.0525 -0.2096 yes 
ID 224 2 -0.4794 -1.1463 0.1875 yes -0.7115 -1.182 -0.12806 yes 
ID 225 2 -0.4246 -1.1536 0.3045 yes -0.5278 -1.12 0.18017 yes 
ID 226 2 -0.4988 -1.2179 0.2203 yes -0.7094 -1.1991 0.02064 yes 
ID 227 2 -0.5072 -1.6433 0.629 yes -0.4986 -1.239 0.03248 yes 
ID 228 2 -0.2466 -1.5268 1.0336 yes -0.3728 -1.1316 0.08513 yes 
ID 229 2 -0.5128 -1.5175 0.4919 yes -0.7181 -1.2182 -0.08554 yes 
ID 230 2 -0.6075 -1.4176 0.2025 yes -0.6874 -1.2684 -0.1855 yes 
ID 231 2 -0.6299 -1.8336 0.5737 yes -0.8454 -1.2714 -0.13584 yes 
ID 232 2 -0.4773 -1.2294 0.2748 yes -0.703 -1.0718 -0.10091 yes 
ID 233 7 -0.8675 -1.3114 -0.4237 yes -0.8666 -1.1117 -0.64874 yes 
ID 234 7 -0.8872 -1.4026 -0.3718 yes -0.8095 -1.0528 -0.47535 yes 
ID 235 7 -0.8292 -1.1561 -0.5023 yes -0.8123 -1.0575 -0.56161 yes 
ID 236 7 -0.7378 -1.3571 -0.1184 yes -0.8604 -1.3977 -0.38266 yes 
ID 237 7 -0.8213 -1.5578 -0.0847 yes -0.7506 -1.1324 -0.3437 yes 
ID 238 7 -0.908 -1.3444 -0.4716 yes -0.868 -1.2241 -0.44682 yes 
ID 239 7 -0.9521 -1.3845 -0.5198 yes -0.8292 -1.0727 -0.5871 yes 
ID 240 7 -0.8689 -1.4408 -0.297 yes -0.6031 -0.91128 -0.13982 yes 
ID 241 7 -0.893 -1.3604 -0.4256 yes -0.679 -1.0393 -0.39168 yes 
ID 242 7 -0.7797 -1.363 -0.1965 yes -0.7073 -1.0469 -0.21169 yes 

414 
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Table S2: Species-mean-size distribution exponent (SMSDE) and local size-density relationship 
exponent (LSDRE) estimates for the 149 webs of this study. The entry under “Web name” for soil 
webs is the web ID number, also used in Fig. 2. Web types are: P = pelagic, E = estuarine, 1 = 
conventional farm, 2 = organic farm, 3 = intensive farm, 4 = super-intensive farm, 5 = pasture, 6 = 
forest, 7 = winter farm. Column 3 contains estimates of SMSDE using the bias-corrected maximum 
likelihood method. Column 4 contains “yes” if the hypothesis that the SMSD was truncated Pareto 
could not be rejected (1% level) in favour of the generalization mentioned in Methods. Column 5 
contains estimates of the LSDRE; column 6 contains “yes” if the hypothesis that the LSDRE was a 
power law could not be rejected. If the 99% confidence intervals of SMSDE+LSDRE+1 that occur in 
the last two columns are entirely above -3/4, then they are highlighted in red. 

415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425  

Web 
name 

Web 
type 

SMSDE Trunc. 
Pareto? 

LSDRE Power 
law? 

SMSDE+ 
LSDRE+1 

Lower 
99% 
conf. 

Upper 
99% 
conf. 

TL 84 P -1.0984 Yes -0.8413 Yes -0.9397 -1.1074 -0.7958
TL 86 P -1.1355 Yes -0.7461 Yes -0.8816 -1.0293 -0.6892
Ythan E -0.9664 Yes -1.1347 Yes -1.1011 -1.2467 -0.9349
ID 95 1 -1.2831 Yes -0.4627 Yes -0.7458 -1.0185 -0.4268
ID 96 1 -1.2664 Yes -0.599 Yes -0.8654 -1.1562 -0.6651
ID 97 1 -1.2818 Yes -0.5658 Yes -0.8477 -1.1241 -0.5129
ID 98 1 -1.3042 Yes -0.6387 Yes -0.9429 -1.2585 -0.5243
ID 99 2 -1.264 Yes -0.4921 Yes -0.7561 -1.01 -0.5567
ID 100 1 -1.2997 Yes -0.5634 Yes -0.863 -1.163 -0.5596
ID 101 1 -1.3047 Yes -0.6166 Yes -0.9212 -1.3512 -0.6108
ID 102 1 -1.2889 Yes -0.6106 Yes -0.8995 -1.3785 -0.6715
ID 103 1 -1.2803 Yes -0.5089 Yes -0.7892 -1.1435 -0.597
ID 104 1 -1.2575 Yes -0.5242 Yes -0.7817 -1.048 -0.6005
ID 105 1 -1.2992 Yes -0.551 Yes -0.8502 -1.266 -0.6074
ID 106 3 -1.2638 Yes -0.3684 Yes -0.6321 -0.8493 -0.2791
ID 107 3 -1.2384 Yes -0.499 Yes -0.7374 -1.2939 -0.2889
ID 108 3 -1.2776 Yes -0.5598 Yes -0.8374 -1.177 -0.5074
ID 109 2 -1.2405 Yes -0.4797 Yes -0.7202 -1.0379 -0.4562
ID 110 3 -1.2967 Yes -0.5842 Yes -0.8809 -1.2086 -0.4805
ID 111 1 -1.2463 Yes -0.5259 Yes -0.7722 -1.3232 -0.3699
ID 112 1 -1.2537 Yes -0.5539 Yes -0.8076 -1.0805 -0.5
ID 113 1 -1.2466 Yes -0.5879 Yes -0.8345 -1.1179 -0.6034
ID 114 2 -1.2529 Yes -0.5036 Yes -0.7564 -1.1169 -0.5688
ID 115 3 -1.3348 Yes -0.5289 Yes -0.8637 -1.2577 -0.4522
ID 116 3 -1.3053 Yes -0.5185 Yes -0.8238 -1.1003 -0.4758
ID 117 1 -1.3135 Yes -0.6165 Yes -0.93 -1.2707 -0.7003
ID 118 1 -1.2508 Yes -0.5004 Yes -0.7512 -1.0799 -0.5604
ID 119 3 -1.2878 Yes -0.4702 Yes -0.758 -1.0525 -0.4347
ID 120 3 -1.2589 Yes -0.6321 Yes -0.891 -1.2013 -0.713
ID 121 3 -1.2649 Yes -0.5543 Yes -0.8192 -1.116 -0.6105
ID 122 1 -1.2612 Yes -0.5854 Yes -0.8467 -1.1543 -0.6559
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ID 123 3 -1.2491 Yes -0.604 Yes -0.8531 -1.1413 -0.5831
ID 124 3 -1.2592 Yes -0.5625 Yes -0.8217 -1.0324 -0.4389
ID 125 3 -1.2403 Yes -0.577 Yes -0.8173 -1.08 -0.636
ID 126 3 -1.2724 Yes -0.5421 Yes -0.8145 -1.0824 -0.4675
ID 127 1 -1.2683 Yes -0.5003 Yes -0.7686 -1.0589 -0.4842
ID 128 3 -1.3066 Yes -0.5989 Yes -0.9055 -1.2786 -0.45
ID 129 3 -1.2781 Yes -0.4996 Yes -0.7778 -1.0436 -0.3402
ID 130 3 -1.2805 Yes -0.6031 Yes -0.8836 -1.3223 -0.5238
ID 131 3 -1.2418 Yes -0.5607 Yes -0.8025 -1.1433 -0.4478
ID 132 1 -1.3147 Yes -0.5761 Yes -0.8908 -1.2088 -0.4785
ID 133 3 -1.2852 Yes -0.449 Yes -0.7342 -0.9665 -0.5323
ID 134 3 -1.2819 Yes -0.5529 Yes -0.8348 -1.0928 -0.4606
ID 135 3 -1.3192 Yes -0.5637 Yes -0.8829 -1.2186 -0.5569
ID 136 1 -1.2699 Yes -0.4935 Yes -0.7634 -1.0155 -0.4075
ID 137 2 -1.3029 Yes -0.5381 Yes -0.841 -1.1722 -0.6141
ID 138 2 -1.2216 Yes -0.5327 Yes -0.7544 -1.0163 -0.5794
ID 139 2 -1.2908 Yes -0.6489 Yes -0.9397 -1.3497 -0.512
ID 140 2 -1.2795 Yes -0.5974 Yes -0.8769 -1.2773 -0.6646
ID 141 2 -1.3159 Yes -0.6488 Yes -0.9648 -1.3163 -0.5496
ID 142 2 -1.3088 Yes -0.5224 Yes -0.8312 -1.1121 -0.5246
ID 143 2 -1.3038 Yes -0.5397 Yes -0.8435 -1.2534 -0.6512
ID 144 3 -1.2657 Yes -0.5231 Yes -0.7888 -1.0882 -0.6016
ID 145 4 -1.2295 Yes -0.3491 Yes -0.5786 -0.7963 -0.3014
ID 146 4 -1.2913 Yes -0.5041 Yes -0.7953 -1.1394 -0.4986
ID 147 4 -1.277 Yes -0.4987 Yes -0.7757 -1.0078 -0.5628
ID 148 4 -1.2763 Yes -0.5762 Yes -0.8524 -1.1566 -0.4661
ID 149 4 -1.2435 Yes -0.5243 Yes -0.7678 -1.0285 -0.3753
ID 150 4 -1.248 Yes -0.5622 Yes -0.8102 -1.151 -0.6131
ID 151 4 -1.2445 Yes -0.4861 Yes -0.7305 -0.9795 -0.496
ID 152 4 -1.2531 Yes -0.4824 Yes -0.7356 -0.9872 -0.4894
ID 153 4 -1.2516 Yes -0.5081 Yes -0.7597 -1.1061 -0.5356
ID 154 4 -1.2509 Yes -0.4302 Yes -0.6812 -0.935 -0.4241
ID 155 4 -1.2529 Yes -0.478 Yes -0.7309 -1.0233 -0.4845
ID 156 4 -1.271 Yes -0.5824 Yes -0.8534 -1.0966 -0.4859
ID 157 4 -1.2161 Yes -0.1188 Yes -0.3349 -0.4916 0.3008
ID 158 4 -1.246 No -0.5866 No -0.8326 -1.1434 -0.5676
ID 159 4 -1.2435 Yes -0.5226 Yes -0.7661 -1.0708 -0.5661
ID 160 4 -1.285 Yes -0.4709 Yes -0.7559 -1.0172 -0.4941
ID 161 4 -1.2645 Yes -0.4881 Yes -0.7526 -1.0343 -0.5455
ID 162 4 -1.3047 Yes -0.4099 Yes -0.7146 -0.9493 -0.4062
ID 163 4 -1.2642 Yes -0.4608 Yes -0.725 -0.9739 -0.4575
ID 164 6 -1.2325 No -0.4656 Yes -0.6981 -0.8983 -0.2444
ID 165 6 -1.1156 No -0.4124 Yes -0.5281 -0.7917 -0.1921
ID 166 6 -1.0779 No -0.195 No -0.2729 -0.5653 0.0491
ID 167 6 -1.1145 No -0.2533 Yes -0.3678 -0.667 0.1129
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ID 168 6 -1.0684 No -0.075 Yes -0.1433 -0.3927 0.1835
ID 169 6 -0.8806 Yes -0.368 No -0.2486 -0.6254 0.1478
ID 170 6 -1.0991 No -0.3438 No -0.4429 -0.7663 -0.0456
ID 171 6 -1.0837 No -0.2286 Yes -0.3123 -0.603 0.0954
ID 172 6 -1.1327 No -0.1245 Yes -0.2572 -0.5699 0.2005
ID 173 6 -1.0899 No -0.3184 Yes -0.4084 -0.6789 -0.0387
ID 175 6 -1.1202 No -0.2535 Yes -0.3737 -0.6166 0.0094
ID 176 6 -1.0821 No -0.679 Yes -0.7611 -1.0577 -0.3699
ID 177 6 -1.0915 No -0.2919 Yes -0.3834 -0.6229 -0.0462
ID 178 6 -1.0692 No -0.4203 Yes -0.4895 -0.7609 -0.1668
ID 179 6 -1.0889 No -0.1913 Yes -0.2802 -0.5489 0.1003
ID 180 6 -1.1119 No -0.184 No -0.2959 -0.5369 -0.0286
ID 181 6 -1.0189 No -0.1507 Yes -0.1696 -0.4232 0.1375
ID 182 6 -1.1041 No -0.2391 Yes -0.3432 -0.6128 -0.0643
ID 183 6 -1.2227 No -0.4909 Yes -0.7136 -0.9273 -0.2805
ID 184 5 -1.2568 Yes -0.4391 Yes -0.6959 -0.9325 -0.4062
ID 185 5 -1.2419 Yes -0.5353 Yes -0.7772 -1.1082 -0.5614
ID 186 5 -1.2673 Yes -0.4757 Yes -0.7429 -1.1149 -0.5253
ID 187 5 -1.2703 Yes -0.5483 Yes -0.8187 -1.0507 -0.523
ID 188 5 -1.248 Yes -0.4286 Yes -0.6766 -0.9226 -0.4331
ID 189 5 -1.3045 Yes -0.5089 Yes -0.8134 -1.1495 -0.4482
ID 190 5 -1.319 Yes -0.4524 Yes -0.7714 -1.0747 -0.3387
ID 191 5 -1.2492 Yes -0.464 Yes -0.7132 -0.9703 -0.3712
ID 192 5 -1.2628 No -0.5079 Yes -0.7708 -1.0173 -0.4114
ID 193 7 -1.2514 Yes -0.594 Yes -0.8455 -1.1773 -0.5826
ID 194 7 -1.1027 Yes -0.5555 Yes -0.6582 -1.1319 -0.0604
ID 196 7 -1.2723 Yes -0.6055 Yes -0.8778 -1.3157 -0.3866
ID 197 7 -1.1321 Yes -0.6514 Yes -0.7834 -1.1026 -0.466
ID 198 7 -1.1528 Yes -0.4967 Yes -0.6495 -1.1273 -0.1667
ID 199 7 -1.1149 Yes -0.7434 Yes -0.8584 -1.2775 -0.4446
ID 200 7 -1.2482 Yes -0.5635 Yes -0.8117 -1.1323 -0.5856
ID 201 7 -1.1152 Yes -0.8369 No -0.9521 -1.3402 -0.5241
ID 202 7 -1.2489 Yes -0.4721 Yes -0.721 -1.0311 -0.4209
ID 203 7 -1.2972 Yes -0.7047 Yes -1.0019 -1.3566 -0.6491
ID 204 7 -1.1698 Yes -0.7309 Yes -0.9006 -1.3117 -0.5075
ID 205 7 -1.1316 Yes -0.645 Yes -0.7766 -1.2325 -0.3042
ID 206 7 -1.2601 Yes -0.6266 Yes -0.8867 -1.0802 -0.494
ID 207 7 -1.2692 Yes -0.6017 Yes -0.8708 -1.1568 -0.4106
ID 208 7 -1.1701 Yes -0.7356 Yes -0.9058 -1.2986 -0.45
ID 209 7 -1.1841 Yes -0.5596 Yes -0.7437 -1.1645 -0.3187
ID 210 7 -1.2615 Yes -0.5315 Yes -0.7929 -1.0313 -0.339
ID 211 7 -1.2421 Yes -0.5837 Yes -0.8258 -1.0654 -0.6147
ID 212 7 -1.1756 Yes -0.637 Yes -0.8126 -1.2946 -0.4136
ID 213 7 -1.1261 Yes -0.7596 No -0.8857 -1.2793 -0.4687
ID 214 7 -1.273 Yes -0.6161 Yes -0.8891 -1.0997 -0.5045
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ID 215 7 -1.1193 Yes -0.5813 Yes -0.7006 -1.092 -0.2076
ID 216 7 -1.2338 Yes -0.7921 Yes -1.0259 -1.3692 -0.6675
ID 217 7 -1.142 Yes -0.7313 No -0.8733 -1.2276 -0.4563
ID 218 7 -1.1163 Yes -0.7022 Yes -0.8185 -1.2414 -0.4411
ID 219 7 -1.2696 Yes -0.4019 Yes -0.6715 -0.9475 -0.0993
ID 220 7 -1.2998 Yes -0.6071 Yes -0.9069 -1.1741 -0.5079
ID 221 7 -1.2455 Yes -0.4276 Yes -0.673 -0.8679 -0.3253
ID 222 2 -1.1476 Yes -0.4656 No -0.6133 -1.1516 -0.1893
ID 223 2 -1.128 Yes -0.5126 No -0.6406 -1.1419 -0.2049
ID 224 2 -1.1288 Yes -0.5005 No -0.6293 -1.0574 -0.2437
ID 225 2 -1.1222 Yes -0.4252 No -0.5475 -1.0518 -0.1673
ID 226 2 -1.0686 Yes -0.4496 No -0.5182 -1.0539 -0.0657
ID 227 2 -1.1874 Yes -0.4597 No -0.6471 -1.1738 -0.2366
ID 228 2 -1.145 Yes -0.4847 No -0.6298 -1.1725 -0.1325
ID 229 2 -1.1317 Yes -0.4507 No -0.5823 -1.0763 -0.2076
ID 230 2 -1.182 Yes -0.4726 No -0.6546 -1.1646 -0.264
ID 231 2 -1.1148 Yes -0.6229 No -0.7377 -1.3119 -0.2581
ID 232 2 -1.113 Yes -0.5201 No -0.6331 -1.0564 -0.277
ID 233 7 -1.2358 Yes -0.5859 Yes -0.8217 -1.008 -0.4456
ID 234 7 -1.2102 Yes -0.5821 Yes -0.7923 -0.9883 -0.3421
ID 235 7 -1.263 Yes -0.5384 Yes -0.8014 -1.0062 -0.4733
ID 236 7 -1.1177 Yes -0.8518 Yes -0.9695 -1.3664 -0.5881
ID 237 7 -1.1928 Yes -0.6035 Yes -0.7962 -1.1101 -0.4596
ID 238 7 -1.265 Yes -0.5775 Yes -0.8426 -1.1308 -0.421
ID 239 7 -1.2613 Yes -0.5146 Yes -0.7758 -0.9758 -0.4163
ID 240 7 -1.2811 Yes -0.4593 Yes -0.7404 -1.021 -0.2475
ID 241 7 -1.2557 Yes -0.5305 Yes -0.7862 -0.9884 -0.3141
ID 242 7 -1.2762 Yes -0.5033 Yes -0.7794 -0.9762 -0.4019
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