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Summary

1. Previously unnoticed patterns emerged in the lengths and slopes of trophic links of
the food web of Tuesday Lake, Michigan, USA, when species were plotted on axes of log
body mass (vertical) vs. log numerical abundance (horizontal). Link length was defined
as equal to the number of orders of magnitude difference in mean body size between
predator and prey plus the number of orders of magnitude difference in numerical abund-
ance between predator and prey.
2. The average length over all trophic links was 6·2 [SD (standard deviation) = 2·8]
orders of magnitude in 1984, and 5·8 (SD = 2·6) in 1986. Thus, for the average link, the
ratio of the mean body mass of predator to prey, times the ratio of the numerical abund-
ance of prey to predator, was about one million (106 ±). To a first approximation the typical
predator was 10 times as long as its prey but 1000 times less numerically abundant. Link
length distributions were approximately normal. Mean link lengths in 1984 and 1986
were not statistically different, but were more than an order of magnitude larger than
the mean distance between all possible ordered pairs of species in each year. Ordered
pairs of species that were between 9 and 11 orders of magnitude apart were the most
likely to be links in both years.
3. The angle of a (non-cannibalistic) link was defined so that an angle of 135° indicates
that the predator was larger than the prey by exactly as many orders of magnitude as the
prey was numerically more abundant than the predator, and so that the biomass (mean
body mass times numerical abundance) of predator and prey were equal. For all non-
cannibalistic links, the median angle was 132° in 1984 and 129° in 1986. Both of these
angles were significantly less than 135°. Angle deviated much from its median value only
for short links. When the link was short or had the median angle, the predator species’
biomass was probably greater than that of the prey species.
4. Several models of food web structure failed to reproduce the observed normal dis-
tribution of link lengths. Observed predation matrices with species ordered by body
mass had links arranged in blocks suggesting functional groups. Models that incor-
porated this block structure reproduced the normal link length distribution, but a model
that forced a normal link length distribution did not produce blocks. The cascade model
explained the median angle of trophic links.

Key-words: allometry, body size, cascade model, food web, niche model, numerical
abundance.
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Introduction

The combination of information on species’ abundance
and body mass with the traditional food web directed

graph is a powerful descriptive tool to characterize an
ecological community (Ulanowicz 1984; Moore, deRuiter
& Hunt 1993; deRuiter, Neutel & Moore 1995; Rott &
Godfray 2000; Bersier, Banasek-Richter & Cattin 2002).
Cohen, Jonsson & Carpenter (2003) and Jonsson, Cohen
& Carpenter (2004) used average body mass (M ) and
numerical abundance per unit of habitat (N), attaching
an (M, N)-pair to each species in the food web (hereafter,
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simply web) of Tuesday Lake, Michigan, USA. Unlike
studies of  single or a few predator–prey relations in
simplified natural, experimental or theoretical webs,
the studies by Jonsson, Carpenter and the present authors
investigate the multivariate relations among body mass,
numerical abundance and all predator–prey interactions
in a well-defined natural community. The motivation is
to provide a detailed, quantitative, community-wide
context for the study of predator–prey relations, first in
Tuesday Lake and then as a model for empirical studies
in other natural communities.

The community-wide perspective on predator–prey
relations yields many new empirical regularities, to be
reported below. These empirical regularities are un-
familiar because the data from Tuesday Lake are, so far,
unique in combining comprehensive data on a web,
body mass and numerical abundance (see Materials and
methods for details). These data were used to address
familiar ecological questions concerning the importance
of functional taxonomic groups.

One of the numerous new patterns reported here is
that the length (defined below) of trophic links, when
species are plotted on log(M ) vs. log(N ) coordinates, is
approximately normally distributed. Moreover, the
mean length is about equal to the community span (the
number of orders of magnitude body-mass variation in
the community plus the number of orders of magnitude
numerical abundance variation in the community)
divided by the mean number of links in food chains in
the web. We hypothesize that this rough equality will
hold in other webs as well.

The hope that predation matrices generated by the
cascade model or niche model combined with the M
and N distributions of Tuesday Lake would give nor-
mal link length distributions failed decisively. Analysis
of  these models and four new models indicates that
species’ average body mass and numerical abundance
are not sufficient to account for the observed normal
distribution of link lengths, without also taking account
of trophic specialization associated with major taxo-
nomic groups such as phytoplankton, zooplankton and
fish. This specialization appears as rectangles in a body-
mass-indexed predation matrix. The analysis indicates
that taxonomy matters for feeding relations, beyond
the very important effects of average body mass and
numerical abundance. A new ‘cascade model with func-
tional groups’ attempts to model webs with additional
M and N data, and to combine functional specialization
with other food web patterns to produce the observed
normal distribution of link length.

Another new reported pattern is that the angles of
trophic links from the positive x-axis when species are
plotted on log(M ) vs. log(N) coordinates have median
slightly but significantly less than 135°. Because the species
arrange themselves roughly in a linear pattern of slope
about −1 when plotted on these coordinates, it is to be
expected that the median angle of links is roughly 135°.
However, the median angle of links is also significantly
less than the angle of the best-fitting line to species on

a log(M ) vs. log(N) coordinates. The cascade model is
sufficient to explain the observed median angles.

Normal link length distribution and many of the
other statistical regularities found in Tuesday Lake, in
addition to their direct biological significance, are also
quantitative benchmarks to which future models of
webs with M and N data should be compared.

The Tuesday Lake data cannot address questions of
dynamics because the data describe only two points in
time (1984 and 1986). These data also cannot identify
the effects of the intervention in 1985 (removal of three
fish species and introduction of another fish species)
because no control lake is available.

Materials and methods



All logarithms in this paper are base 10. Cohen et al.
(2003) and Jonsson et al. (2004) suggested placing all
species and trophic links in a web on axes with ordinate
log(M ) and abscissa log(N ). Then the l1 length of a link
(r, c) from prey (resource) r to predator (consumer) c is:

l1 = | log(Mc) − log(Mr) | + | log(Nc) − log(Nr) | 
= | log(Mc/Mr) | + | log(Nc /Nr) |, eqn 1

the order of magnitude of the body size ratio between
the predator and prey, plus the order of  magnitude
of the numerical abundance ratio between the predator
and prey. The slope α of  a link (r, c) is:

, eqn 2

the order of magnitude of the body size ratio between
predator and prey, over the order of magnitude of the
numerical abundance ratio between predator and prey
(which is typically negative). The angle θ of  a link (r, c)
is the angle in the counter-clockwise direction from a
right-pointing horizontal line to the link considered
as a vector from prey r to predator c in the (log(N ),
log(M )) plane.

A trophic link that has an angle of 135° (equal to slope
−1) has predator and prey of equal biomass abundance.
If  the angle is less than 135° but greater than −45°, then
the biomass of  the predator exceeds that of  the prey.
If  the angle is greater than 135° but less than 315°, the
opposite holds.

Taking population production and ingestion of a
species to be proportional to NM0·75 (Peters 1983), one
can show that a trophic link of slope −4/3 has predator
and prey species with equal production and ingestion. A
slope that is less than −4/3 with heavier predator indicates
that the predator has greater ingestion and production
than the prey, and a slope that is greater than −4/3 with
heavier predator indicates the opposite. Slope and angle
are not defined for cannibalistic links where r = c.

Slope and angle are conceptually interchangeable, but
there were statistical and mathematical circumstances
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under which each was most appropriate, so both were used.
For instance, angle interacts better with median and mean.
Two links with angles 89° and 91° have mean angle 90°,
but mean slope 0 because slope has a vertical asymptote
at angle 90°. Slope is more useful than angle for certain
linear regressions because the homoskedasticity assump-
tions of linear regression are more nearly satisfied for slope.

The l2 length of a link is the Euclidean length in the
log(M ) vs. log(N ) plane, and l1/l2 = (| α | + 1)/(α2 + 1)1/2.
For Tuesday Lake, where α is usually close to −1, l1/l2 will
be roughly 21/2. A constant factor will not affect the trends
examined, so l1 only is used because it, unlike l2, has a
clear biological interpretation. The intuitive under-
standing of the Euclidean distance applies to l1 because
it differs from l2 only by a (very nearly) constant factor.

Each link in a web may be represented by a point in
a 1-, 2-, 3-, or higher dimensional Euclidean space,
depending on whether 1, 2, 3 or more quantitative
attributes of the link are to be studied. The set of all
links is represented by a cloud of such points. For
example, below we study the one-dimensional distribu-
tions of each link’s length and each link’s angle (being
careful of cannibalistic links).

Length, angle and other distributions are also well-
defined for any ordered pair of species (a, b) in the
( log(N ), log(M )) plane if  one replaces c (‘predator’)
with b and r (‘prey’) with a in eqn 1 and eqn 2 [again
excepting the angle of ‘cannibalistic’ ordered pairs (a,
a)]. When discussing an ordered pair (a, b), species a
will be called the prey and b the predator, even though
there may have been no trophic relationship between
a and b, or even if  in reality a ate b. The set of links is
contained in the set of ordered pairs, and there is no
implied relationship between the body mass or numerical
abundance of a and that of b in the ordered pair (a, b).

Species were divided into basal, intermediate and top
(B, I and T) groups, allowing a division of ordered pairs
into (B, B) (B, I) (B, T) (I, B) (I, I ) (I, T) (T, B) (T, I)
and (T, T) groups. This and several other divisions of
species into groups permitted us to investigate whether
these classifications of species were involved in statis-
tical regularities in length and angle distributions. Any
distribution of ordered pairs was thereby divided into
subdistributions, one for each of these groups. Some
(but not all) of these groups of ordered pairs contained
links, and so subdistributions of links were also broken
into groups. This procedure was carried out in other ways
by starting with different initial groupings of species. The
following groupings of species were used: the above BIT-
grouping; a grouping that put species of similar average
body mass M together (called the M-grouping); a group-
ing that put species of similar numerical abundance
together (called the N-grouping); and the functional
grouping into phytoplankton, zooplankton and fish
species (called the PZF-grouping). In Tuesday Lake, the
PZF-grouping was almost identical to the N-grouping.

All groupings are listed in Appendix S1 (see Supple-
mentary material; also available on request from the
authors), Table A1 and Table A2. The groups of the M-

grouping were called the H group, the S group and the
L group, representing heavy, standard weight and light
species. The groups of the N grouping were called the R
group, the U group and the C group, representing rare,
uncommon and common species.

The trophic position of a species in a food chain is
the number of species below it in the chain (so a species
with no species below it has position 0). This definition
is a slight modification of the definition of Jonsson
et al. The trophic height of a species in a web is com-
puted by collecting all chains that begin at the given
species going strictly down through the web (i.e. from
predator to prey at each step), but that do not contain
more than one copy of the same species. One then takes
the mean of the species’ trophic position in all these
chains. No chains including cannibalistic links are
included in the mean, and no chains that go all the way
around a cycle are included, although it is acceptable to
go any part of the way around a cycle. The algorithm
used by Jonsson et al. treated cycles in a different way,
but produced results similar to this definition, other
than a uniform difference of 1.



The Tuesday Lake (M, N )-enriched web of  the non-
littoral epilimnion contains a list of species and trophic
relationships, average wet body mass (in kg) of  indi-
viduals of each species, and numerical abundance of each
species per m3 of water, measured in 1984 and again in
1986. In 1985, the three planktivorous fish species were
removed and replaced by a single piscivorous fish spe-
cies. Jonsson et al. (2004) described Tuesday Lake and
presented the raw data and their limitations. Our ana-
lyses used unlumped webs and excluded isolated species
(those not involved in any reported trophic relationship
with any other species). There were six isolated species
in both 1984 and 1986.



The M- and N-groupings were obtained by using a ker-
nel density estimator of the distributions by species of
log(M ) and log(N ), respectively, similar to that described
in Havlicek & Carpenter (2001) and Silverman (1986).
The kernel density estimator is defined as the sum of
normal probability density functions of common standard
deviation w, centred at each species’ log(M ) or log(N)
value. For large w, the resulting density functions had no
local minima because the underlying normal density
functions were so wide that they blurred together. As w
decreased, local minima emerged. A kernel density estima-
tor for w = 0·6 shows the first two local minima (Appendix
S1, Fig. A1), which were used to separate the groupings.

Computations were performed using the statistics
toolbox of Matlab, version 6·5·0·180913a (R13). The
Matlab statistics toolbox function ‘ksdensity’ was used
for kernel density estimates. Linear regressions were
done using ‘regress’. Non-linear fitting used ‘nlinfit’.
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One-way s used ‘anova1’. Non-parametric testing
was performed using ‘ranksum’ (Wilcoxon rank sum test).
To determine whether the median of a non-normal dis-
tribution of n data points was different from a fixed
value x, we let m be the minimum of the number of data
points below x and the number above x. We then com-
puted 2ϕn,0·5(m) where ϕn,0·5 is the cumulative distribution
function (c.d.f.) of the binomial distribution with
parameters n and 1/2. This is the P-value of a two-tailed
test with null-hypothesis that the median is equal to x
and alternative hypothesis that it is not. We will refer to
this procedure as the ‘binomial test’ (Siegel 1956). To
determine whether a one-dimensional distribution
is normal, the Jarque–Bera test (Jarque & Bera 1987)
as implemented by ‘jbtest’, and the Lilliefors test
(Lilliefors 1967) as implemented by ‘lillietest’, were used.
The Lilliefors and Jarque–Bera tests are based on different
characteristics of the data, so a distribution had to pass
both tests to be considered normal. A distribution of data
was considered to have passed a normality test with any
P-value greater than 0·01 (rather than 0·05, because
only a rough, qualitative description of the data was
desired, and a P-value of more than 0·01 on both tests
indicated that normality offered such a description).

The usage ‘links (pairs)’ occurring in a sentence will
be used to denote that the sentence could be read using
either the word links or the word pairs, producing a
true statement in either case.

The collections of numbers that were tested for nor-
mality using the Jarque–Bera and Lilliefors tests were
not independent because they were distributions of link
(pair) lengths and angles, and a single species can be
part of several links (pairs). This lack of independence
means that one cannot interpret the P-values returned
by these normality tests as probabilities. The Jarque–Bera
P-values indicate how much the skew and kurtosis of
the data differed from those of a normal distribution.
The Lilliefors P-values indicate how much the sample
c.d.f. differed from that of a normal distribution. These
P-values should be regarded as descriptive statistics,
rather than probabilities.

Cannibalistic links and pairs were necessarily excluded
from analyses involving angle, as angle is not well defined
for them. Angle distributions occur on a circle, not on
a real line. One must break the circle to identify angle
distributions with distributions on some part of the real
line (necessary to apply the above statistical methods).
For links, a large part of the circle always contained no
values. Any point in this area could be chosen as the
breaking point, and −135° was chosen. For pairs, the circle
was also broken at −135°, where the fewest values occurred.
Another approach was to consider only pairs for which
the angle fell between 45° and 225°. Any pair (x, y) with
x different from y has a corresponding pair (y, x) whose
angle differs by 180°, so this approach eliminates a
form of redundancy, but also excludes a few links.

Links or pairs whose slope was undefined, positive
infinity or negative infinity were excluded from all anal-
yses involving slope.



Models of webs usefully sharpen understanding of how
observed patterns arise (Cohen et al. 1993). Link length
distributions simulated by six models were investigated.
Each model took as given the body-mass and numerical
abundance distributions of Tuesday Lake, modelling
only the selection of links from the set of ordered pairs.
The models were the cascade model (Cohen 1990; Cohen,
Briand & Newman 1990), an adaptation of the niche
model of Williams & Martinez (2000), and four new
models.

First, in the cascade model, the species index was
interpreted as a rank ordering of body mass. The explicit
limitation of the cascade model to trophic species was
ignored here, although the cascade model was presented
originally as a model of lumped webs (Cohen et al. 1990).
Beginning with the body mass and numerical abundance
distributions of unlumped species in Tuesday Lake from
1984, 269 links were randomly and uniformly chosen
(the Tuesday Lake web had 269 links in 1984) for which
the predator had a higher species index (body mass)
than the prey. The process was repeated, choosing 264
links instead of  269 (5 links in Tuesday Lake were
cannibalistic in 1984). The web for 1986 was simulated
similarly. The biological content of this model is the
assumption that any given species will eat, independently
and with equal probability, any other species of lesser
average body mass than itself. In theory, the cascade
model can give rise to isolated species. However, 1000
simulated cascade predation matrices with either 50
species and 264 or 269 links, or 51 species and 236 or
241 links, never yielded more than four webs with iso-
lated species (and never more than one isolated species
per web).

Secondly, in the ‘niche model’ of Williams & Martinez
(2000), the ‘niche value’ of each species was chosen uni-
formly on the interval (0,1). Their biological motivation
was that a species cannot eat any species smaller than
itself, but only those in a limited range of sizes; see details
in Williams & Martinez (2000). The adapted version
used here re-normalized the log body masses of the spe-
cies to create their niche values. The re-normalization
was linear, and sent the log of the smallest body mass to
y and the log of the largest to x, where x was the maxi-
mum of n uniform random variables on (0,1) (n was the
number of species in the model web) and y was the mini-
mum of the same set of random variables. The original
niche model eliminated isolated species and trophically
identical species by deleting and replacing them. The
adapted model allowed trophic duplicates because model
results were to be compared with unlumped Tuesday
Lake webs, but threw away simulated webs that contained
isolated species because species could not be deleted
individually (the niche values were determined in
advance by the Tuesday Lake body mass distribution,
which could not be changed).

A third, ‘block equivalence’ model ordered the
species of Tuesday Lake by body mass, separately for
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each year. The predation matrix was rearranged corre-
spondingly, producing the same (M, N )-web, anno-
tated in a new way. Three blocks of links were apparent
in the re-indexed predation matrices. They were out-
lined by hand from each of the predation matrices of
1984 and 1986. These blocks are described exactly in
Appendix S1, Table A9 and Fig. A2. The model ran-
domly permuted the entries in each block separately, to
investigate whether block structure could explain the
link length distribution of Tuesday Lake. The model
does not explain what causes the blocks.

A fourth, ‘diagonal equivalence’ model started from
Tuesday Lake (M, N )-webs re-indexed by body mass as
above. The model then permuted independently the
entries of each diagonal of the resulting predation
matrix to create a new (M, N )-web, with the same body
mass and numerical abundance distributions as the
original. In a body-mass-indexed predation matrix, there
is a rough correspondence between which diagonal an
ordered pair is in and the length of that pair. On the
other hand, the diagonal equivalence model disrupts
the block structure of the body-mass-indexed preda-
tion matrices. The diagonal equivalence model seeks to
determine whether preserving the distribution of links
among the diagonals preserves the link length distribu-
tion of Tuesday Lake, in spite of disruption of the block
structure.

A fifth ‘cascade model with functional groups’ added
links with the following characteristics to a predation
matrix, with equal probability. As before, species were
ordered by body mass and the M and N distributions of
Tuesday Lake were used. First, only links strictly above
the main diagonal of the predation matrix were allowed
(a ‘size diet limit’). Secondly, a ‘perceptual limit’ was
assumed to prevent a species from eating another spe-
cies with body mass more than 6·8 orders of magnitude
smaller. Thirdly, considering years independently, it
was assumed that the first several species (by index) were
primary producers (the first 19 in 1984 and the first 25
in 1986), and that the next several species (species
20–40 in 1984 and species 26–41 in 1986) only ate the
first group, or were primary producers themselves. The
numbers 19 and 25 are the numbers of species in 1984
and 1986 that were lighter than the respective lightest
non-basal species. The numbers 40 and 41 are the indices
of  the heaviest species in 1984 and 1986 to eat only
from the first group of species. The remaining species
were allowed to eat anything within the confines of the
size diet limit and the perceptual limit. This model pos-
tulates some biological causes of the block structure
assumed in the block equivalence model.

A sixth ‘forced link length distribution model’ created
upper-triangular, body-mass-indexed predation matrices.
Link length distributions were forced to be similar to
that of  the links in the upper-triangular part of  the
body-mass-indexed Tuesday Lake predation matrix. The
Matlab function ‘ksdensity’ was used to add together
one normal probability density function of standard
deviation 0·8 centred at the length of each pair in the

upper triangle of the body-mass-indexed predation
matrix. Another density function was created in the
same way for links in the upper-triangle, and the ratio
of the latter density function to the former density
function was computed. For each year, this quotient was
used to produce model predation matrices by assigning
a pair in the upper-triangle of a body-mass-indexed
predation matrix to be a link with probability given by
the quotient function upon plugging in the length of
that pair. By construction, the link length distributions
of (M, N )-webs produced in this way were similar to
those of Tuesday Lake. This model seeks to determine
whether a block structure of the predation matrix is
necessary for a model to generate link length distribu-
tions similar to those of Tuesday Lake.

The first five models were tested against link length
data by using each to generate 5000 (M, N )-webs, com-
puting the Jarque–Bera and Lilliefors statistics of the
link length distribution of each, and comparing the
resulting distributions of 5000 statistics to the Jarque–
Bera and Lilliefors statistics of the Tuesday Lake link
length distributions. A few examples of the output of the
sixth model were inspected visually for the presence of
rectangular blocks in the simulated predation matrices.
The Matlab code for all models is in Appendix S1.

The cascade model was tested against link angle data
by using it to generate 5000 (M, N )-webs, computing
the median angle of each, and comparing the resulting
distribution of median angles to the median angle of
Tuesday Lake.

Results

 

Allometric relations

Ecological communities have frequently exhibited a
rough allometric relationship:

log(N ) = β1 log(M ) + γ1. eqn 3

Estimates of β1 have varied by community (Peters
1983; Peters & Wassenberg 1983; Peters & Raelson 1984;
Blackburn & Gaston 1999; Leaper & Raffaelli 1999).
The equation:

log(M ) = β2 log(N ) + γ2 eqn 4

is not just an algebraic manipulation of eqn 3 if  one
obtains β1 and γ1 by minimizing the sum-of-squared-
log(N )-error, and β2 and γ2 by minimizing the sum-
of-squared-log(M )-error, because usually β2 differs
from 1/β1. Substituting these equations into eqn 1 gives,
respectively:

l1 = (1 + | β1 |) | log(Mc) − log(Mr) | eqn 5

l1 = (1 + | β2 |) | log(Nc) − log(Nr) |. eqn 6



857
Trophic link 
lengths and slopes 
in a food web

© 2004 British 
Ecological Society, 
Journal of Animal 
Ecology, 73,
852–866

These results predict what to expect for the three-
dimensional distributions ( log(Mr), log(Mc), l1) and
(log(Nr), log(Nc), l1) both over ordered pairs and over
links.

Suppose that a species grouping contains a group G
in which log(M ) varies little. Substituting the mean
value of log(M ) over the group G for log(Mc) in eqn 5
gives a prediction of l1 for links (pairs) with predator in
G. The accuracy of the prediction depends on how
accurately the mean of log(M ) approximates the actual
values of log(M ) for all members of G. The accuracy of
the prediction also depends on the extent to which the
shape (as opposed to the centre) of the distribution of
the values of log(Mc) across all links (pairs) with pred-
ator in G and prey with fixed mass Mr is independent of
log(Mr). The most accurate predictions will occur when
the distribution of values of log(Mc) across all links
(pairs) with predator in G and prey with fixed mass Mr1

is just a translation of the analogous distribution using
fixed prey mass Mr2. Heteroskedastic data plots will
arise if  departures from this assumption occur (see
Results). Such departures can cause the theoretical pre-
dictions just developed to be inaccurate.

Substituting eqn 4 into eqn 2 gives:

α = β2 eqn 7

for the slope. This result predicts the three-dimensional
distributions (log(Mr), log(Mc), α) and (log(Nr),
log(Nc), α) over links (pairs).

Clumping

Jonsson et al. (2004, their Fig. 4) plotted all links in
Tuesday Lake on log(Mc) vs. log(Mr) axes. The points
on their graph separated roughly into clumps. Figure 1
shows links plotted on the same axes with ordinate and
abscissa exchanged, but using different markers accord-
ing to the N-grouping. Clumping of groups is evident,
and was also evident when the other groupings were
used. The clumps were delineated more precisely under
some groupings than under others. These clumps affected
many other distributions.

Clumps tended to be rectangular. After drawing the line
y = x on the axes, it was always possible to draw another
line of slope 1 so that every clump sat roughly between

Fig. 1. Trophic links of Tuesday Lake in 1984 (a, c) and 1986 (b, d) by average body masses (a, b) and numerical abundances (c,
d) of predator and prey species. Trophic links clumped into approximate rectangles associated with numerical abundance. The
numerical abundance grouping was the same as the functional grouping into phytoplankton, zooplankton and fish in 1986, and
different by one species in 1984. The numerical abundance groups are R, U and C for rare, uncommon and common. Links are
grouped using (A, B), where A is the group of the prey and B is the group of the predator. Most links fell between the (solid)
diagonal line y = x and a second (dashed) line with slope 1 which delimits the extent of links.
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these two lines, with one of its corners on one of the lines.
The second line of slope 1 was roughly invariant with
respect to year. Predators usually did not prey on other
species too many orders of magnitude smaller or more
abundant. Large gaps in a single clump (as are apparent,
for instance, in the clump consisting of ‘+’ signs in 1986
in Fig. 1b) were due typically to gaps in the plot of
ordered pairs on log(Mr) vs. log(Mc) axes, which in turn
came from gaps in the distribution of log(M ) of species.
Rectangular clumps of links plotted on log(Nr) vs.
log(Nc) axes also occurred, as one would expect as the
negative correlation between log(M ) and log(N ) was
strong. The rectangles on these axes also fell roughly
between the line y = x and another line of slope 1, with at
least one corner of each rectangle on one of these lines.
Because species in Tuesday Lake fell near a line of slope
β2 (which was close to −1) in the log(M ) vs. log(N) plane,
one would expect long links to deviate less in slope from
β2 than short links. One may also expect the median
angle of all links to approximate β2. Under any of the
species groupings mentioned previously, species in the
same group tended to clump together along this line of
slope β2. Different groups tended to be located at dif-
ferent places along the line. Therefore, one would expect
only links in which the predator and prey are from the
same grouping to deviate significantly from slope β2 as
these were, to a large degree, the only short links. One
would expect such a phenomenon when using any group-
ing that is fairly well correlated to log(M ) or log(N ).

    

Descriptive statistics

Table 1 summarizes the basic descriptive statistics of
the length, slope and angle of links and ordered pairs in
1984 and 1986. Link lengths were normally distrib-
uted, so parametric tests were used, and the mean was
used as the measure of centre. Pair length distributions
and angle and slope distributions were not normal, so
non-parametric tests and the median were used. Dis-

tributions of pair angles are considered only in the
range of angles between 45° and 225° (see Methods).

For all links, the average ± standard deviation of length
was 6·2 ± 2·8 orders of magnitude in 1984 and 5·8 ± 2·6
in 1986. Thus, for the average link from a prey species to
a predator species, the ratio of the mean body mass of
predator to prey × the ratio of the numerical abundance of
prey to predator was about one million (106±), assuming
that the predator had larger average body mass and lower
numerical abundance than its prey. The mean length of
links was more than two orders of magnitude larger than
the median length of all ordered pairs of species, in 1984
and in 1986. The link length difference between years was
not significant at the 5% level according to a one-way
. The pair length distributions in each year could be
distinguished at the 1% level using the Wilcoxon rank
sum test.

The median angles of non-cannibalistic links were 132°
and 129° in 1984 and 1986, respectively. The binomial test
distinguished these median angles from 135° at the 1%
level in both years. The binomial test also distinguished
these median angles from the angles corresponding to the
slopes β2 of the species linear regression lines (Table 2).
The link angle distributions in 1984 and 1986 were not
distinguishable at the 5% level using the Wilcoxon rank
sum test.

Links and ordered pairs were shorter in 1986 than in
1984, and links had smaller median angles. These dif-
ferences were significant for pairs, but not for links.
Thus, on average, in both links and pairs, predators and
prey were closer in 1986 than in 1984 in the plane of log
body mass and log numerical abundance. The ratio of
predator biomass to prey biomass in links was typically
larger in 1986 than in 1984.

Regression coefficients of allometric relations

Linear regression of the Tuesday Lake data, including
only non-isolated species, gave values (Table 2) for the
coefficients β1 in eqn 3 and β2 in eqn 4. Jonsson et al.
(2004) and Cohen et al. (2003) included all species, not

Table 1. Basic descriptive statistics of links and ordered pairs in the Tuesday Lake food web. SD = standard deviation. Length, slope
and angle are defined in the text. In entries of the form x/y, x is the relevant quantity for all links or pairs and y is the relevant quantity
for only non-cannibalistic links or pairs. Cannibalistic links were excluded from slope and angle calculations, and infinite values were
also excluded from slope calculations. Angle calculations with ordered pairs included only pairs with angles between 45° and 225°
 

 

Links Ordered pairs 

mean SD median mean SD median

1984 (269 observed, 5 cannibalistic) (2500 observed, 50 cannibalistic)
Length 6·1777/6·2947 2·8246/2·7186 6·5049/6·5403 5·0467/5·1497 4·2257/4·2060 3·9220/4·0417
Slope –1·1585 6·7734 –1·0278 –0·9689 6·0259 –0·9825
Angle 125·1476 26·2328 131·5118 133·4167 30·2410 132·5952

1986 (241 observed, 5 cannibalistic) (2601 observed, 51 cannibalistic)
Length 5·7724/5·8947 2·5717/2·4557 6·0313/6·1294 4·3756/4·4631 3·6593/3·6425 3·4210/3·5019
Slope –0·8625 10·3901 –1·1300 –0·6919 5·3494 –0·8753
Angle 121·6181 32·4822 128·9777 133·9004 34·8867 132·6054
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only non-isolated species, and obtained similar but not
identical values of β1 and β2.

Constancy within groups

The means and standard deviations of log(M ) and
log(N ) and the number of species in each group are
shown in Table 3 for the M- and N-groupings and for
other groupings in Appendix S1, Table A3.

To explain linear subtrends such as those found in
Fig. 2, we substituted into eqn 5 to obtain eqn 8 and
eqn 9. To predict the l1 length of links and ordered pairs
as a function of log(Mr) when the predator is in the H
group, one approximates the value of log(M ) for the H
group by the mean value, obtaining:

l1 = 1·7461 | −0·7093 − log(Mr) | eqn 8

in 1986 from eqn 5. Because there was only one species
in the H group in 1986, the approximation by the mean
of the log(M ) is exact in this case. Approximating the S
group by its mean gives:

l1 = 1·7461 | −7·5589 − log(Mr) | eqn 9

in 1986 as a predictor of how the length of links (pairs)
for which the predator is in the S group should vary as

a function of log(Mr). The approximations underlying
this equation were not as good as those for the H group.
Similar results for 1984 are shown in Table 4.

One can also substitute for log(Nc) in eqn 6 if  log(N)
varied little in the group G. The approximations involved
were better for the R group than for the U group (Table 4).

Three-dimensional distributions

Link (pair) length varied as a function of  the body
mass of both consumer and resource, or as a function
of the numerical abundance of both consumer and
resource, as predicted by theory in both 1984 and 1986.
Specifically, when the non-linear equations

l1 = | a log(Mc) + b log(Mr) | eqn 10

l1 = | a log(Nc) + b log(Nr) | eqn 11

were fitted to the data (log(Mr), log(Mc), l1) and
(log(Nr), log(Nc), l1) for links (pairs), using the Matlab
non-linear fitting routine ‘nlinfit’, the fitted equations
explained 75–93% of the variance of the data from the
mean, and the theory eqn 5 and eqn 6 explained almost
as much (Appendix S1, Table A4). The variables log(Mc)
and log(Mr) were a better predictor of l1 than were
log(Nc) and log(Nr).

Table 2. Slope coefficients β1 and β2 of linear regressions between log numerical abundance log(N ) and log average body mass
log(M ) of non-isolated species in Tuesday Lake in log(N ) = β1 log(M ) + γ1 and log(M ) = β2 log(N ) + γ2. The values of the squared
correlation coefficient R2 and the probability P that the slope differs from 0 by chance alone are the same for both regressions. The
99% confidence intervals for the slopes are in parentheses
 

 

β1 β2 R2 P

1984 –0·8413 (–0·9764, –0·7062) –1·0141 (–1·1770, –0·8513) 0·8532 < 0·001
1986 –0·7461 (–0·9065, –0·5857) –1·0191 (–1·2381, –0·8000) 0·7603 < 0·001

Table 3. The means and standard deviations of  log(M) and log(N) and the number of  species in each group from the M- and
N-groupings for 1984 and 1986. The other groupings are in Appendix S1, Table A3
 

No. 
species

log(M ) log(N )

Group mean SD mean SD

1984
M-grouping
H (heavy) 3 –2·9390 0·0535 –0·4870 0·6768
S (standard) 29 –9·4276 1·3074 5·0171 1·3231
L (light) 18 –12·2999 0·5013 7·6413 0·6904
N-grouping
R (rare) 3 –2·9390 0·0535 –0·4870 0·6768
U (uncommon) 23 –9·1147 1·2861 4·4772 0·8363
C (common) 24 –11·8817 0·8712 7·5027 0·6823
1986
M-grouping
H (heavy) 1 –0·7093 0·0000 –1·4685 0·0000
S (standard) 9 –7·5589 0·4161 3·4350 0·5070
L (light) 41 –11·3105 1·1361 6·0884 1·4355
N-grouping
R (rare) 1 –0·7093 0·0000 –1·4685 0·0000
U (uncommon) 21 –8·9697 1·3518 3·8412 0·6568
C (common) 29 –11·8412 0·8431 6·8922 0·7181
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Length varied with the trophic heights of predator
and prey, as would be expected for ordered pairs with
heavier predator than prey, but for links, unexpectedly,
did not increase significantly with the trophic height of the
consumer. To model the distribution (Hr, Hc, l1) (where
Hr and Hc represent the trophic height of the prey and
predator, respectively), restricted to ordered pairs for
which Mc > Mr, and restricted to links, the equation:

l1 = aHc + bHr + c eqn 12

was fitted to the data (Table 5). Over ordered pairs with
Mc > Mr, l1 increased with increasing Hc, and decreased

with increasing Hr, as expected, because greater trophic
height was associated with higher body mass, and
therefore corresponded to species higher along the line
represented by eqn 4. Moving a predator up, and prey
down, along this line increased link length. For links,
the relationships were far less clear, particularly the
relationship between l1 and Hc. The 99% confidence
intervals for the coefficient of Hc contained 0 in both
1984 and 1986. Other measures of trophic height all
provided relationships less clear than the above.

When the slope of a link α was regressed linearly on
log(Mr) and log(Mc), the 99% confidence intervals for
the slope coefficients of log(Mr) and log(Mc) contained

Fig. 2. The l1 length as functions of resource’s log average body mass in Tuesday Lake, for trophic links (a, b) and ordered pairs of
species with heavier consumer than resource (c, d), in 1984 (a, c) and 1986 (b, d). Markers show a grouping of predator or consumer
species into categories of similar average body mass. H, S and L groups represent heavy, standard weight, and light. Solid lines are
best fits to � and + symbols, respectively. Dashed lines are the corresponding predictions of the Theoretical Predictions section.

Table 4. Results of substituting for log(Mc) in l1 = (1 + | β1 |) | log(Mc) – log(Mr) | or for log(Nc) in l1 = (1 + | β2 | ) | log(Nc) – log(Nr) |
if  log(M ) (or log(N ), respectively) varies little or is constant in the group G of predators, in 1984 and 1986 for G equal to the H
and S groups of the M-grouping or the R and U groups of the N-grouping
 

 

Year H (heavy) group S (standard) group

1984 l1 = 1·8413 | – 2·9390 – log(Mr) | l1 = 1·8413 | – 9·4276 – log(Mr) |
1986 l1 = 1·7461 | – 0·7093 – log(Mr) | l1 = 1·7461 | – 7·5589 – log(Mr) |

R (rare) group U (uncommon) group
1984 l1 = 2·0141 | – 0·4870 – log(Nr) | l1 = 2·0141 | 4·4772 – log(Nr) |
1986 l1 = 2·0191 | – 1·4685 – log(Nr) | l1 = 2·0191 | 3·8412 – log(Nr) |
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0 in both years, over both non-cannibalistic links and
ordered pairs with heavier predator. The median slope
of links in 1984 was −1·03 and in 1986 was −1·13, and the
median slopes of pairs were −0·983 and −0·875, respec-
tively. These results were reasonably close to the pre-
dictions of theory (−1·01 and −1·02, by eqn 7 and Table 2),
and the theoretical values fell within 99% confidence
intervals of the z-intercept of the linear regressions of
slope vs. log(Mr) and log(Mc) fitted to link (pair) data.
Regression results are in Appendix S1, Table A5.

Similar linear regressions of α vs. log(Nr) and log(Nc)
for links and for pairs with heavier predator (Appendix
S1, Table A5) showed that zero fell in all 99% confidence
intervals of slope coefficients except two (both slope
coefficients of pairs with heavier predator in 1986), and
these intervals almost contained zero. The theoretically
predicted values of α always fell within 99% confidence
intervals of the z-intercepts of the fitted planes.

Similar linear regressions with angle in place of
slope are also possible. However, angles plotted against
log(Mc) and log(Mr), or against log(Nc) and log(Nr),
are not nearly homoskedastic. The homoskedasticity
assumption is more nearly, although not perfectly,
satisfied for slope. Visual examination of scatter plots
of  slope confirms that the linear regressions above
describe the slope data well.

Two-dimensional distributions

The larger the body mass of the prey, the shorter the
length of the link (pair) for any given group of predator
body mass, and the larger the numerical abundance of
the prey, the longer the length of the link (pair) for any
given group of predator numerical abundance (Fig. 2
for (log(Mr), l1), Appendix S1, Fig. A3 for (log(Nr), l1),
and Appendix S1, Table A5 for the coefficients for the
theory and the best-fit, and 99% confidence intervals for
the best-fit). For links (pairs) for which the predator was
in the H group or the R group, theoretically predicted
slope coefficients were always within the 99% confidence
intervals of the fitted values. Theoretically predicted y-
intercept values were also within 99% confidence intervals
of  the fitted results for the H and R groups, except for
pairs when l1 was regressed on log(Nr).

Theoretical predictions sometimes corresponded less
well to fitted values for links (pairs) with predator in the
S group for two reasons. First, the approximation of
log(Mc) by the mean of log(Mc) across the S group was

rough in some cases (for instance, links or pairs in 1984).
Secondly, the shape of the distribution of log(Mc) across
links (pairs) with given log(Mr) was not always inde-
pendent of log(Mr). This lack of independence led to
the heteroskedastic distributions of ‘+’ signs found in
Fig. 2a,c. The predictions of theory were good in 1986
for links and pairs, but not in 1984.

For the same reasons, all theoretical predictions involv-
ing links (pairs) with predator in the U group failed to
correspond closely with fit.

Long links were much more likely than short links to
have predator and prey with equal (or nearly equal)
biomass abundance. As theory predicted, when l1 was
plotted as a function of θ, the angle of a link (pair) (e.g.
Fig. 3 for links, and for pairs with angle between 45°
and 225°, using the N-grouping), only short links (pairs)
deviated much from the median angle, and the only
links (pairs) that deviated much from the median angle
were links (pairs) in which the predator and the prey were
in the same group. The only short links were (R, R) links
and (U, U) links. The Wilcoxon rank sum test was applied
to the distribution of angles in which predator and prey
N-groups were the same, vs. angles with predator and
prey from different N-groups. The distributions could
be distinguished with P < 0·001 in 1984 and 1986, both
for links and for pairs for which the angle was between
45° and 225°. Figure 3a,b also shows a lack of symmetry
of the link (θ, l1) distributions about the median angle
(which is the angle at which long links tended to occur).
In both 1984 and 1986, nearly all shorter links had angles
less than about 135°, although a few had angles greater
than 135°. This asymmetry is not surprising, because
links of a fixed length that have angle less than 135° have
more predator–prey size difference than links of the same
length that have slope greater than 135°. By contrast, for
pairs, the distribution of angles was symmetric.

One-dimensional distributions

One-dimensional distributions of angles (Table A7)
and lengths (Table A8) were tested for normality.

Many patterns of normality were discovered in angle
distributions of ordered pairs. These are reported in
Appendix S1. The distribution of  angles over non-
cannibalistic links was not normal in either year. Its
left tail was too long. The only coherent patterns that
emerged when considering links within certain groupings
is that (Z, Z) (S, S) (U, U) and (I, I) links that had

Table 5. Slope coefficients resulting from fitting l1 = aHc + bHr + c to the data. The heading ‘Pairs, heavy pred.’ refers to pairs where
predator is strictly heavier than prey. The 99% confidence intervals for the fitted coefficients are in parentheses. H is trophic height
 

 

a b R2 P

Links
1984 0·520 (–0·051, 1·090) –1·722 (–2·479, –0·964) 16·6% < 0·001
1986 –0·422 (–0·892, 0·047) –1·456 (–2·050, –0·863) 43·1% < 0·001
Pairs, heavy pred.
1984 2·643 (2·518, 2·768) –2·951 (–3·228, –2·674) 70·6% < 0·001
1986 2·301 (2·174, 2·429) –2·622 (–2·910, –2·334) 63·0% < 0·001
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angles between 45° and 225° had normally distributed
angles independent of year.

The one-dimensional distribution of l1 length was not
normal over all ordered pairs. It leaned heavily toward
zero, perhaps resembling a normal distribution truncated
at zero, in both years (see Fig. 4 for 1984). This possibility
was not tested statistically because we are not aware of
a composite test for truncated-at-zero normality. Other
distributions arising below from l1 also seemed, qualitat-
ively, to be truncated normal. It may be worth designing
a test of truncated-at-zero normality if  other webs have
qualitative patterns similar to those of Tuesday Lake.

The same results were true of the distribution of
lengths over the set of pairs containing all cannibalistic
pairs, and one of each of (x, y) and ( y, x) for all x dif-
ferent from y.

Link lengths were normally distributed in both 1984
and 1986 (Fig. 4 for 1984). Against the backdrop of a
highly non-normal distribution of pairs that was biased
heavily toward short pairs, this normality emphasizes
that short links are not preferred.

The l1 distributions of links over any group arising
from the N-grouping were normal in 1984 (although

Fig. 3. The l1 length of each link or pair as a function of the angle between the link or pair and the positive x-axis, for trophic links
(a, b) and ordered pairs of species (c, d) of Tuesday Lake in 1984 (a, c) and 1986 (b, d). Pairs in (c) and (d) are limited to those with
angle from the positive x-axis lying between 45° and 225°. Markers show grouping of species into categories of similar numerical
abundance. R, U and C groups represent rare, uncommon and common. Only short links or pairs deviate much from the mean
angle. The short links or pairs are all from symmetric groups.

Fig. 4. Frequency distributions of lengths of all pairs and of
all links in 1984 (histogram − left axis), and the quotient of
the kernel density estimates of these distributions with
window width 0·8 on the l1 scale (smooth curve − right axis).
The frequency distribution of pairs is highly non-normal. The
frequency distribution of lengths of links is approximately
normal. The pairs most likely to be links have lengths between
about 9 and 11 orders of magnitude. Similar phenomena
occurred in 1986.
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there were too few data in (R, R) to draw conclusions)
and in 1986 (although (R, R) and (U, R) had too few
data to draw conclusions). Ordered pair distributions
were normal in both years for non-symmetric groups
(those of the form (A, B) where A and B are different
groups of species), except for the (C, U) and (U, C) groups.
The species-level groups C and U were close together in
the log(N ) vs. log(M ) plane, and therefore may have
behaved in some respects as one large group. No other
pair of two different species-level groups was so close.
The symmetric groups (C, C) and (U, U) could have
had truncated normal distributions in both years. There
were too few data in the (R, R) group to draw conclusions.
Overall these data suggest that distributions of link and
pair lengths were always truncated-at-zero-normal,
both over all links (pairs), and within groups of  the
N-grouping. Normal distributions with mean many
standard deviations from 0 appear to be normal when
truncated at 0, as in any link distribution, and any pair
distribution from a nonsymmetric group. For distribu-
tions over pairs from symmetric groups, truncation had
a more visible effect. Groups of the form (A, B) where
A and B are different but close on the log(N ) vs. log(M )
plane may have deviated slightly from this pattern.

Modelling results on normality of link length 
distributions

To illuminate the mechanisms that produced the
observed normality of the link length distribution in
the Tuesday Lake web, the normality of the link lengths
of webs produced by the first five models described in
Materials and methods was investigated. The cascade
model did not produce link length distributions that
resembled the Tuesday Lake link length distributions
(Table 6). These results are extremely statistically sig-
nificant, but are also expected. Cascade model link
length distributions were expected to look like ordered
pair length distributions because the cascade model

chooses links uniformly from the set of pairs with heav-
ier predator. A variant of the cascade model for which
each pair with heavier predator was assigned link status
with equal probability would produce very similar results.

The adapted niche model also failed to produce link
length distributions with Jarque–Bera and Lilliefors
statistics similar to those of the Tuesday Lake webs
(Table 7). These results are also extremely statistically
significant. The diagonal equivalence model failed in
the same way (Table 7), with a similar level of signi-
ficance. The block equivalence model, however, pro-
duced statistics similar to those of the Tuesday Lake
data, as did the cascade model with functional groups
(Table 7).

The quotient of density functions computed for the
forced link length distribution model is shown for 1984
in Fig. 4. The 1986 quotient was very similar. In both
years, the pairs most likely to be links had lengths
between about 9 and 11 orders of magnitude. By con-
struction, the link length distributions of (M, N )-webs
produced by this model were similar to those of Tues-
day Lake. However, predation matrices produced in this
way did not exhibit the blocks found in Appendix S1,
Fig. A2, although they did exhibit a rough perceptual
limit.

Comparing the results from the first four models
suggested that the block structure of the predation
matrix in the block equivalence model was important
for the resulting normal distribution of link lengths. The
‘cascade model with functional groups’ suggested that
a size diet limit, a perceptual limit, and the imposition
of functional groups were sufficient to approximate the
blocks of trophic links that produced a normal distri-
bution of link length. The ‘forced link length distribution
model’ showed that blocks represent additional structure
beyond that inherent in a normal link length distribu-
tion, since blocks led to normality, but not vice versa.

The cascade model produced webs with median angle
comparable to those of Tuesday Lake. In 1984, 6·7% of the

Table 6. Comparison of the Jarque–Bera and Lilliefors statistics of the link length distribution of Tuesday Lake in 1984 and 1986
with those of (M, N )-webs built from the body mass and numerical abundance distributions (in 1984 and 1986, respectively) of
Tuesday Lake using the cascade model. The cascade model does not produce cannibalistic links. Tuesday Lake link length
distribution statistics were computed both including and excluding cannibalistic links, in the ‘cann.’ and ‘no cann.’ columns,
respectively. In 1984 there were 269 links, five cannibalistic. In 1986 there were 241 links, five cannibalistic. The cascade model with
all combinations of connectance parameters (264 and 269 in 1984 and 236 and 241 in 1986) was used to produce 5000 webs for
each choice of parameters. The minimum, maximum and mean Jarque–Bera and Lilliefors statistics of the resulting link length
distributions are shown. In every case, all 5000 model statistics were larger than the corresponding Tuesday Lake statistic
 

 

Data

Model simulations

264 (1984) or 236 (1986) links 269 (1984) or 241 (1986) links 

cann. no cann. min. mean max. min. mean max.

Jarque–Bera
1984 6·943 6·622 49·013 116·285 282·238 50·074 119·212 341·449
1986 3·452 2·520 25·628 382·966 1061·458 22·868 391·750 1040·741

Lilliefors
1984 0·0524 0·0472 0·0930 0·1301 0·1818 0·0936 0·1299 0·1797
1986 0·0515 0·0462 0·0839 0·1266 0·1907 0·0816 0·1263 0·1740
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cascade median angles were greater than the median
angle of Tuesday Lake. In 1986, 19·2% of the median
angles were greater than the Tuesday Lake median angle.

Discussion

This analysis gives a new quantitative overview of the
Tuesday Lake web. We summarize the most important
results in two steps, first assuming that every link is
identical to the average link, and then recognizing the
important variation among links.

As a first approximation, suppose every link has l1

length 6 and slope −1. A slope of −1 means that the bio-
mass of predator and prey are equal, and that differ-
ences between predator and prey in average body mass
and in numerical abundance contribute equally to the
length of 6 orders of magnitude. Then the body mass
ratio of predator to prey is 1000 (because log10 1000 = 3),
and the numerical abundance ratio of prey to predator
is 1000. If  body mass is proportional to body length
cubed, then the typical predator is 10 times as long as
its prey, while the prey is 1000 times more numerically
abundant (individuals/m3) than the predator. Given
that the average body mass of species in Tuesday Lake
ranged over almost 12 orders of magnitude and numer-
ical abundance varied almost 10 orders of magnitude
(Cohen et al. 2003), the l1 distance from the smallest to
the largest species was 21 or 22 orders of magnitude, a
distance that could be spanned by four links each of

length 6. In fact, as Jonsson et al. (2004) showed, the
mean length of food chains in the unlumped web was
4·6 links in 1984 and 4·2 links in 1986; in the lumped
web, it was 3·7 and 3·5 links in the corresponding years.

We hypothesize that other webs in which the top spe-
cies are typically the largest species in the web and basal
species are typically the smallest will have mean link
length equal to the community span (see Introduction)
divided by the mean length of a chain in the web. These
observations and predictions suggest an answer to the
classic question (Hutchinson 1959) of why food chains
typically have so few links: food chains are short as a
result of the typical differences between predator and
prey (i.e. the length of a typical trophic link is 6 orders
of magnitude) in combination with the limited range of
average body mass and numerical abundance over all
species (here about 22 orders of magnitude). This resolu-
tion of the question replaces one question with two: why
(or under what conditions) is a typical trophic link 6
orders of magnitude long, and why (or under what con-
ditions) is the combined range of average body mass and
numerical abundance limited to 22 orders of magnitude?

In 1984 and 1986, short ordered pair lengths were
much more common than long ones. Any model of (M,
N )-webs must select links to reproduce the observed
normal link length distribution by choosing from this
background distribution of  pair lengths, which is
heavily skewed to short pairs. Median pair lengths were
between 3·4 and 4·1 orders of magnitude in both years,

Table 7.  Comparison of the Jarque–Bera and Lilliefors statistics of the link length distribution of Tuesday Lake in 1984 and 1986
with those of (M, N )-webs built in four ways (see Methods): A: from the body mass and numerical abundance distributions (in
1984 and 1986, respectively) of Tuesday Lake by using an adaptation of the niche model of Williams & Martinez (2000). B: from
an equivalent version of the Tuesday Lake (M, N )-food web re-indexed by body mass, by independently permuting the entries of
each diagonal of the predation matrix (a ‘diagonal equivalence’ model). C: from an equivalent version of the Tuesday Lake (M,
N )-food web re-indexed by body mass, by independently permuting the entries of each of the blocks in the predation matrix
described in Appendix S1, Table A9 and Fig. A2 (a ‘block equivalence’ model). D: from an equivalent version of the Tuesday Lake
(M, N )-food web re-indexed by body mass, by using a cascade-like model (‘cascade model with functional groups’). The second
and third columns of the table have the statistics of the Tuesday Lake link length distributions. The subsequent columns are based
on 5000 food webs produced by each model. The columns ‘min.’, ‘mean’ and ‘max.’ provide the minimum, mean and maximum
of the statistics over the 5000 runs. The column ‘% less’ gives the percentage of model statistics that were less than the
corresponding Tuesday Lake statistic. Columns 6 and 9 sometimes contain ‘max.’ data and sometimes contain ‘% less’ data. The
‘max.’ data are shown only when the ‘% less’ data would be 0%
 

 

Model simulations 

Data Jarque–Bera Lilliefors 

Jarque–Bera Lilliefors min. mean % less min. mean % less

A
1984 6·943 0·0524 4·300 122·480 0·14% 0·0376 0·1328 0·14%
1986 3·452 0·0515 4·230 192·993 6203.35 0·0451 0·1357 0·14%

B
1984 6·943 0·0524 21·648 49·149 109·115 0·0600 0·0932 0·1427
1986 3·452 0·0515 51·083 191·756 345·830 0·0603 0·1144 0·1754

C
1984 6·943 0·0524 2·955 6·899 51·8% 0·0253 0·0464 79·64%
1986 3·452 0·0515 1·492 5·939 2·74% 0·0313 0·0670 5·1%

D
1984 6·943 0·0524 3·651 10·488 4·04% 0·032 0·059 25·52%
1986 3·452 0·0515 1·651 6·870 1·36% 0·032 0·062 15·22%
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while mean link lengths were about 6 in both years. The
pairs that were most likely to be links had length
between 9 and 11 orders of magnitude in both years. A
tension between the greater likelihood that a longer
pair (of length 9–11 orders of magnitude) will materi-
alize as a link and the greater abundance of short pairs
results in links whose mean length is 6 orders of mag-
nitude (Fig. 4). The cascade and niche models produce
(M, N )-webs with unrealistic link length distributions,
given observed M and N distributions, because they
select links of all lengths from the collection of availa-
ble ordered pairs with equal likelihood.

As a second approximation, the variation in the
length of links is well described by a normal distribution
with mean approximately 6 and standard deviation
approximately 2·7. We hypothesize that other webs will
also have normal link length distributions. Normality
produces a quantitative goal that models of (M, N)-webs
should be required to fulfil if other (M, N)-webs confirm
the pattern. Attempts to understand this normal vari-
ation yield important insights into the mechanisms
that may produce it, and into the inadequacy of the
models that have so far been proposed to explain other
features of web structure. The block equivalence model
and the cascade model with functional groups succeeded
in producing normality, suggesting that a functional
classification of species (phytoplankton, zooplankton,
fish; or basal, herbivorous and omnivorous/carnivorous)
may play an important role in producing the normality
of the link length distribution. The forced link length
distribution model showed that functional classifica-
tion is not mathematically necessary (although it is
sufficient) to explain normal link length distributions.
A functional classification is probably the most biolo-
gically reasonable way to proceed.

The finding here that a typical body mass ratio
between predator and prey is 1000 in the web of the
pelagic Tuesday Lake community does not contradict,
but differs from, earlier findings that a typical body mass
ratio between competitors in a guild, such as congeneric
granivorous birds, is 2 (e.g. Hutchinson 1978: 174).
When such findings are based on community-wide studies
and not on selected taxonomic groups or literature
surveys from scattered habitats, the results provide the
nucleus of a catalogue of associations between different
interspecific relationships (predation, competition, para-
sitism, symbiosis, etc.) and body mass ratios in different
types of habitats (pelagic freshwater or marine, benthic
freshwater or marine, above-ground terrestrial, soil,
hydrothermal, phytotelmata, etc.). Such a catalogue
could increase the realism of both inputs and outputs
of dynamical ecological models.

Because body mass is related allometrically to
demographic parameters such as birth rate and death
rate (Peters 1983), the magnitude of the coefficients of
dynamic models would be constrained by species’ body
mass. Even in two-species Lotka–Volterra predator–prey
differential equations, our results plus allometric relations
constrain the turnover rates of  predator and prey.

More extensive use of  body mass and numerical
abundance information in dynamical models could help
theoretical investigations of structure and stability and
management simulations in the absence of direct meas-
urements of demographic parameters.

How general are the results obtained here for Tues-
day Lake? Does either the first approximation based
on averages or the second approximation recognizing
variability describe the webs of other lakes? Of other
aquatic or marine webs? Of terrestrial webs? Obtaining
the data to answer these questions is an exciting prospect.
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Appendix S1. Trophic links’ lengths and slope in the
Tuesday Lake food web with species’ body mass and
numerical abundance.

Fig. A1. Estimate of the 1984 frequency distribution of
numerical abundance in Tuesday Lake, using a kernel
density estimator.

Fig. A2.  Predation matrices in (a) 1984 and (b) 1986.

Fig. A3. Trophic links and ordered pairs of species of
Tuesday Lake with heavier predator than prey, plotted
on l1 vs. log(Nr).

Fig. A4. Frequency distributions of lengths of all pairs
and of all links in 1986.

Table A1. Groupings of all non-isolated species in
Tuesday Lake in 1984.

Table A2. Groupings of all non-isolated species in
Tuesday Lake in 1986.

Table A3. Means and SDs of log(M) and log(N) and
the number of species in each group from the BIT- and
PZF-groupings for 1984 and 1986.
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Table A4. Comparison between fitted and theoretical
equations in accounting for variance of link lengths as
functions of body masses and numerical abundances.

Table A5. Coefficients of a linear regression of α vs.
log(Mr) and log(Mc) and α vs. log(Nr) and log(Nc) over
links and over pairs with heavier predator, where α is
the slope of a link (pair).

Table A6. Coefficients of linear best-fits and predictions
of theory for the distributions ( log(Mr), l1) and (log(Nr),
l1) over links and over pairs with predator at least as
heavy as prey.

Table A7. Results of statistical tests of the normality of
distributions of angles.

Table A8. Results of statistical tests of the normality of
distributions of lengths.

Table A9. Boundaries of the blocks selected in the
‘block equivalence’ model.

Additional results.

Matlab code for models.
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Figure A1: Estimate of the 1984 frequency distribution of numerical abundance in 

Tuesday Lake, using a kernel density estimator. Probability density function was 

obtained using the Matlab statistics toolbox function 'ksdensity', with a normal window of 

varying standard deviation ranging from 0.2 to 1.4, illustrated here with a window of 

width 0.6 on the l1 scale. The dividing points between the groups of the N-grouping were 

the first two local minima to emerge in the density estimate as the window standard 

deviation was decreased. The N-grouping in 1986 and the M-grouping in both years were 

determined in the same way. 
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Figure A2: Predation matrices in (A) 1984 and (B) 1986. Each mark represents a link. 

The blocks in Appendix Table A9 are superimposed on the figures. 

2A: 

 
2B: 
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Figure A3: Trophic links (A, B) and ordered pairs (C, D) of species of Tuesday Lake 

with heavier predator than prey, in 1984 (A, C) and 1986 (B, D), showing l1 length as 

functions of prey's log numerical abundance. 

Markers show a grouping of predator or consumer species into categories of similar 

numerical abundance. R, U and C groups represent rare, uncommon, and common. Solid 

lines are best fits to o and + symbols respectively. Dashed lines are the corresponding 

predictions of the Theoretical Predictions section. 
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3A: 

 
3B: 
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3C: 

 
3D: 
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Figure A4: Same as Fig. 4 in the main text, but for 1986. 
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Appendix Tables A1 and A2 

Groupings of all non-isolated species in Tuesday Lake in 1984 (Table A1) and 1986 

(Table A2). The four columns after the species names give the group of each species with 

respect to each grouping. The PZF-grouping sorts the species into the functional 

categories of phytoplankton, zooplankton and fish. The BIT-grouping sorts the species 

into basal, intermediate and top groups. The M-grouping sorts the species into three 

groups of similar body mass (H, S and L, for heavy, standard weight and light). The N-

grouping sorts the species into three groups of similar numerical abundance (R, U and C, 

for rare, uncommon and common). The number 0 corresponds to P, B, L and C groups 

respectively. The number 1 corresponds to Z, I, S and U groups respectively. The number 

2 corresponds to F, T, H and R groups respectively. The species names were taken from 

Jonsson et al. 

Table A1: 1984 

Id # Species name PZF BIT M N 

1 Nostoc sp. 0 0 0 0 

2 Arthrodesmus sp. 0 0 0 0 

3 Cryptomonas sp. 1 0 0 0 0 

4 Cryptomonas sp. 2 0 0 0 0 

5 Chroococcus dispersus 0 0 0 0 

6 Closteriopsis longissimus 0 0 0 0 

7 Dinobryon bavaricum 0 0 0 0 

8 Dinobryon cylindricum 0 0 0 0 

9 Dactylococcopsis fascicularis 0 0 0 0 
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10 Dictyosphaerium pulchellum 0 0 0 0 

11 Dinobryon sertularia 0 0 1 0 

12 Dinobryon sociale 0 0 0 0 

13 Glenodinium quadridens 0 0 1 0 

14 Microcystis aeruginosa 0 0 1 0 

15 Mallomonas sp. 1 0 0 0 0 

16 Mallomonas sp. 2 0 0 0 0 

17 Unclassified flagellates 0 0 0 0 

18 Peridinium limbatum 0 0 1 0 

19 Peridinium cinctum 0 0 1 0 

20 Peridinium pulsillum 0 0 0 0 

21 Peridinium wisconsinense 0 0 1 0 

22 Chromulina sp. 0 0 0 0 

23 Selenastrum minutum 0 0 0 0 

24 Synedra sp. 0 0 1 1 

25 Trachelomonas sp. 0 0 0 0 

26 Ascomorpha eucadis 1 1 1 1 

27 Synchaeta sp. 1 1 1 1 

28 Bosmina longirostris 1 1 1 1 

29 Conochilus (solitary) 1 1 1 1 

30 Cyclops varians rubellus 1 1 1 1 

31 Diaphanosoma leuchtenbergianum 1 1 1 1 

32 Daphnia pulex 1 1 1 1 
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33 Filinia longispina 1 1 1 1 

34 Conochiloides dossuarius 1 1 1 1 

35 Gastropus stylifer 1 1 1 1 

36 Holopedium gibberum 1 1 1 1 

37 Kellicottia sp. 1 1 1 1 

38 Keratella cochlearis 1 1 1 1 

39 Keratella testudo 1 1 1 1 

40 Leptodiaptomus siciloides 1 1 1 1 

41 Orthocyclops modestus 1 1 1 1 

42 Ploesoma sp. 1 1 1 1 

43 Polyarthra vulgaris 1 1 1 1 

44 Trichocerca multicrinis 1 1 1 1 

45 Trichocerca cylindrica 1 1 1 1 

46 Tropocyclops prasinus 1 1 1 1 

47 Chaoborus punctipennis 1 1 1 1 

48 Phoxinus eos 2 1 2 2 

49 Phoxinus neogaeus 2 1 2 2 

50 Umbra limi 2 2 2 2 

 

Table A2: 1986 

Id # Species name PZF BIT M N 

1 Ankyra judayi 0 0 0 0 

2 Cryptomonas sp. 1 0 0 0 0 
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3 Cryptomonas sp. 3 0 0 0 0 

4 Cryptomonas sp. 4 0 0 0 0 

5 Chroococcus dispersus 0 0 0 0 

6 Chroococcus limneticus 0 0 0 0 

7 Cosmarium sp. 0 0 0 0 

8 Closteriopsis longissimus 0 0 0 0 

9 Dinobryon bavaricum 0 0 0 0 

10 Dinobryon cylindricum 0 0 0 0 

11 Dactylococcopsis fascicularis 0 0 0 0 

12 Dictyosphaerium pulchellum 0 0 0 0 

13 Dinobryon sertularia 0 0 0 0 

14 Sphaerocystis schroeteri 0 0 0 0 

15 Gloeocystis sp. 0 0 0 0 

16 Glenodinium pulvisculus 0 0 0 0 

17 Microcystis aeruginosa 0 0 0 0 

18 unclassified microflagellates 0 0 0 0 

19 Oocystis sp. 1 0 0 0 0 

20 Oocystis sp. 2 0 0 0 0 

21 Oscillatoria sp. 0 0 0 0 

22 Peridinium limbatum 0 0 0 0 

23 Peridinium pulsillum 0 0 0 0 

24 Quadrigula lacustris 0 0 0 0 

25 Quadrigula sp. 2 0 0 0 0 
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26 Chromulina sp. 0 0 0 0 

27 Schroederia setigera 0 0 0 0 

28 Selenastrum minutum 0 0 0 0 

29 Synedra sp. 0 0 0 0 

30 Ascomorpha eucadis 1 1 0 1 

31 Conochilus (colonial) 1 2 1 1 

32 Conochiloides dossuarius 1 1 0 1 

33 Cyclops varians rubellus 1 1 1 1 

34 Diaptomus oregonensis 1 1 1 1 

35 Daphnia pulex 1 1 1 1 

36 Daphnia rosea 1 1 1 1 

37 Gastropus hyptopus 1 1 0 1 

38 Gastropus stylifer 1 1 0 1 

39 Holopedium gibberum 1 1 1 1 

40 Kellicottia bostoniensis 1 1 0 1 

41 Kellicottia longispina 1 1 0 1 

42 Keratella cochlearis 1 1 0 1 

43 Keratella testudo 1 1 0 1 

44 Orthocyclops modestus 1 1 1 1 

45 Polyarthra vulgaris 1 1 0 1 

46 Synchaeta sp. 1 1 0 1 

47 Trichocerca cylindrica 1 1 0 1 

48 Trichocerca multicrinis 1 1 0 1 
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49 Tropocyclops prasinus 1 1 1 1 

50 Chaoborus punctipennis 1 1 1 1 

51 Micropterus salmoides 2 2 2 2 
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Table A3: Means and standard deviations of log(M) and log(N) and the number of 

species in each group from the BIT- and PZF-groupings for 1984 and 1986. 

 
1984 
  log(M) log(N) 
Group number of 

species 
mean std. mean std. 

BIT-grouping      
T (top) 1 -2.8894 0.0000 -0.8794 0.0000 
I (intermediate) 24 -8.5637 2.1257 4.0165 1.5341 
B (basal) 25 -11.8079 0.9293 7.4426 0.7325 
PZF-grouping      
F (fish) 3 -2.9390 0.0535 -0.4870 0.6768 
Z (zooplankton) 22 -9.0728 1.3002 4.4080 0.7857 
P (phytoplankton) 25 -11.8079 0.9293 7.4426 0.7325 
1986 
  log(M) log(N) 
Group # species mean std. mean std. 
BIT-grouping      
T (top) 2 -4.2732 5.0401 1.0774 3.6004 
I (intermediate) 20 -9.0264 1.3611 3.8521 0.6719 
B (basal) 29 -11.8412 0.8431 6.8922 0.7181 
PZF-grouping      
F (fish) 1 -0.7093 0.0000 -1.4685 0.0000 
Z (zooplankton) 21 -8.9697 1.3518 3.8412 0.6568 
P (phytoplankton) 29 -11.8412 0.8431 6.8922 0.7181 
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Table A4: Comparison between fitted and theoretical equations in accounting for 

variance of link lengths as functions of body masses (first half of table) and numerical 

abundances (second half of table). The fitted equation l |)log()log(|1 rc MbMa +=  explains 

a large percentage of the variance of link lengths. The theoretical equation 

 explains almost as much.  The equations 

 and l

|)log()log(||)|1( 11 rc MMl −β+=

|)log()log(|1 rc NbNal += |)log( rN)log(||)|1( 21 cN −β+=  perform similarly.  SSM 

is the sum of the squares of the differences of l1 from the mean value of l1.  SSRF is the 

sum of the squares of the residuals of the real l1 values from the best-fitted values.  SSRT 

is the sum of the squares of the residuals of the real l1 values from the theoretically 

predicted values.  "Fit over mean" is the percent reduction in error in passing from the 

mean to the fit as a predictor (=(SSM-SSRF)/SSM).  "Theory over mean" is the percent 

reduction in error in passing from the mean to theory as a predictor (=(SSM-

SSRT)/SSM).  "Fit over theory" is the percent reduction in error in passing from the 

theory to the fit as a predictor (=(SSRT-SSRF)/SSRT).   

(Mc, Mr, l1) 
Links a b SSM SSRF SSRT Fit over 

mean 
Theory 
over 
mean 

Fit over 
theory 

1984 1.6936 -1.7625 2138.2 394.6 427.8 81.5% 80.0% 7.8% 
1986 1.3918 -1.5180 1587.2 288.2 349.5 81.8% 78.0% 17.5% 
Pairs         
1984 1.8537 -1.8539 44623.0 3081.2 3086.0 93.10% 93.08% 0.16% 
1986 1.7702 -1.7702 34815.5 3588.3 3603.4 89.69% 89.65% 0.42% 
(Nc, Nr, l1) 
Links a b SSM SSRF SSRT Fit over 

mean 
Theory 
over 
mean 

Fit over 
theory 

1984 1.7491 -1.8675 2138.2 433.3 456.7 79.7% 78.6% 5.1% 
1986 1.1771 -1.6142 1587.2 400.6 480.9 74.8% 69.7% 16.7% 
Pairs         
1984 2.0298 -2.0298 44623.0 3714.2 3716.7 91.68% 91.67% 0.07% 
1986 2.0595 -2.0595 34815.5 4902.1 4921.7 85.92% 85.86% 0.40% 
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Table A5: Coefficients of a linear regression of α versus log(Mr) and log(Mc) (first half 

of the table) and α versus log(Nr) and log(Nc) (second half of the table) over links and 

over pairs with heavier predator, where α is the slope of a link (pair).  Columns 2 and 3 

contain the slope coefficient of the independent variable in the column heading.  The 

99% confidence intervals for fitted values are in parentheses. 

 
(log(Mr), log(Mc), α)  
 Links 
 log(Mr) log(Mc) constant 
1984 -0.019 (-0.897, 0.859) -0.195 (-1.016, 0.626) -2.897 (-9.189, 3.394) 
1986 0.185 (-1.212, 1.583) 0.072 (-1.396, 1.541) 1.859 (-11.268, 14.986) 
 Pairs with heavier predator 
1984 0.055 (-0.298, 0.408) -0.144 (-0.336, 0.048) -1.599 (-5.224, 2.026) 
1986 0.323 (-0.026, 0.673) -0.174 (-0.354, 0.006) 1.452 (-2.241, 5.145) 
(log(Nr), log(Nc), α)  
 Links 
 log(Nr) log(Nc) constant 
1984 0.080 (-0.571, 0.732) 0.069 (-0.693, 0.830) -1.936 (-5.846, 1.973) 
1986 -0.394 (-1.545, 0.758) 0.690 (-1.554, 2.933) -0.926 (-9.929, 8.077) 
 Pairs with heavier predator 
1984 0.006 (-0.308, 0.320) 0.115 (-0.090, 0.319) -1.527 (-3.586, 0.533) 
1986 -0.354 (-0.654, -0.054) 0.228 (0.020, 0.436) 0.535 (-1.387, 2.456) 
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Table A6: Coefficients of linear best-fits and predictions of theory for the distributions 

(log(Mr), l1) (first half of table) and (log(Nr), l1) (second half of table) over links and over 

pairs with predator at least as heavy as prey.  Theory predicts |)log(|1 rMbal −=  (first 

half) and |l  (second half).  This table contains -a and ab (first half) and 

a and –ab (second half), the values that are directly comparable to the fitted slope and y-

intercept, respectively.  The 99% confidence intervals are in parentheses. 

)log(|1 rNba −=

(log(Mr), l1)  
 Theory Fitted 
 -a ab Slope y-intercept 
 Links 
H preds.     
1984 -1.8413 -5.4116 -1.7910 (-2.0583, -1.5237) -4.6338 (-6.6248, -2.6428) 
1986 -1.7461 -1.2385 -1.8392 (-2.7233, -0.9551) -1.2575 (-6.7152, 4.2001) 
S preds.     
1984 -1.8413 -17.3590 -1.2803 (-1.4644, -1.0963) -8.8486 (-10.9886, -6.7087) 
1986 -1.7461 -13.1986 -1.6644 (-1.7787, -1.5500) -12.4956 (-13.7523, -

11.2390) 
 Pairs with predator at least as heavy as prey 
H preds.     
1984 -1.8413 -5.4116 -1.8152 (-1.9148, -1.7157) -5.0095 (-6.0516, -3.9674) 
1986 -1.7461 -1.2385 -1.7461 (-1.9065, -1.5857) -1.5586 (-3.2708, 0.1535) 
S preds.     
1984 -1.8413 -17.3590 -1.1757 (-1.3131, -1.0384) -9.0023 (-10.5660, -7.4387) 
1986 -1.7461 -13.1986 -1.7124 (-1.7948, -1.6300) -12.8621 (-13.7709, -

11.9534) 
(log(Nr), l1) 
 Theory Fitted 
 a -ab Slope y-intercept 
 Links 
R preds.     
1984 2.0141 0.9809 1.8891 (1.6012, 2.1770) 1.7305 (0.6256, 2.8355) 
1986 2.0191 2.9650 2.1654 (0.9376, 3.3932) 3.2310 (-1.0885, 7.5504) 
U preds.     
1984 2.0141 -9.0175 1.2074 (1.0364, 1.3784) -2.3973 (-3.6074, -1.1871) 
1986 2.0191 -7.7558 1.2309 (1.0906, 1.3713) -1.8909 (-2.7895, -0.9923) 
 Pairs with predator at least as heavy as prey 
R preds.     
1984 2.0141 0.9809 1.9828 (1.8662, 2.0994) 2.1099 (1.3956, 2.8242) 
1986 2.0191 2.9650 2.0191 (1.8000, 2.2381) 5.6235 (4.3541, 6.8928) 
U preds.     
1984 2.0141 -9.0175 1.2614 (1.1516, 1.3712) -3.6146 (-4.3539, -2.8754) 
1986 2.0191 -7.7558 1.2895 (1.1855, 1.3936) -2.9246 (-3.5768, -2.2724) 
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Table A7: Results of statistical tests of the normality of distributions of angles. 

Cannibalism has always been removed. In columns 2 and 4, the circle was broken at 

-135°=225°. The first number in each box in columns 2, 3, 4, 5 is the number of data 

points in that category, the second is the Jarque-Bera p-value, and the third is the 

Lilliefors p-value. The Lilliefors test is based on simulation only for p-values between 

0.01 and 0.2, so any p-value outside this range is reported as <0.01 or >0.2. Jarque-Bera 

p-values that are less than 0.001 are reported as <0.001 for readability. NA means the 

number of data points is too few for the Matlab test. The Lilliefors test requires at least 4 

data points, and the Jarque-Bera could take any positive number of data points. 

Conclusions of both tests are suspect when data are few. 

 

 links: links with angle 
between 45° and 
225°: 

ordered pairs: pairs with angle 
between 45° and 
225°: 

     

overall 
distributions: 

    

1984 264/<0.001/<0.01 258/<0.001/<0.01 2450/<0.001/<0.01 1225/<0.001/<0.01 

1986 236/<0.001/<0.01 229/<0.001/<0.01 2550/<0.001/<0.01 1275/0.0021/<0.01 

     

symmetric 
groups: 

    

PZF-grouping 
of function 

    

1984 (P,P) 0/NA/NA 0/NA/NA 600/<0.001/<0.01 300/0.0252/0.0446 

1986 (P,P) 0/NA/NA 0/NA/NA 812/<0.001/<0.01 406/0.0002/<0.01 

1984 (Z,Z) 69/<0.001/<0.01 63/0.7043/>0.2 462/<0.001/<0.01 231/0.0018/<0.01 

1986 (Z,Z) 68/<0.001/<0.01 61/0.5431/>0.2 420/<0.001/<0.01 210/0.0004/<0.01 

1984 (F,F) 2/0.7297/NA 2/0.7297/NA 6/0.6258/>0.2 3/0.6858/NA 
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1986 (F,F) 0/NA/NA 0/NA/NA 0/NA/NA 0/NA/NA 

M-grouping of 
body mass  

    

1984 (L,L) 0/NA/NA 0/NA/NA 306/<0.001/<0.01 153/0.0394/0.11017 

1986 (L,L) 74/0.5951/0.0722 74/0.5951/0.0722 1640/<0.001/<0.01 820/0.0467/<0.01 

1984 (S,S) 83/<0.001/0.0158 77/0.5456/>0.2 812/<0.001/<0.01 406/0.4738/>0.2 

1986 (S,S) 15/0.7771/>0.2 8/0.5847/0.1303 72/0.1436/0.0483 36/0.1134/0.0188 

1984 (H,H) 2/0.7297/NA 2/0.7297/NA 6/0.6258/>0.2 3/0.6858/NA 

1986 (H,H) 0/NA/NA 0/NA/NA 0/NA/NA 0/NA/NA 

N-grouping of 
abundance 

    

1984 (C,C) 0/NA/NA 0/NA/NA 522/<0.001/<0.01 276/0.0124/<0.01 

1986 (C,C) 0/NA/NA 0/NA/NA 812/<0.001/<0.01 406/0.0002/<0.01 

1984 (U,U) 70/<0.001/<0.01 64/0.7583/>0.2 506/<0.001/<0.01 253/0.0081/<0.01 

1986 (U,U) 68/<0.001/<0.01 61/0.5431/>0.2 420/<0.001/<0.01 210/0.0004/<0.01 

1984 (R,R) 2/0.7297/NA 2/0.7297/NA 6/0.6258/>0.2 3/0.6858/NA 

1986 (R,R) 0/NA/NA 0/NA/NA 0/NA/NA 0/NA/NA 

BIT-grouping 
of web 
location 

    

1984 (B,B) 0/NA/NA 0/NA/NA 600/<0.001/<0.01 300/0.0252/0.0446 

1986 (B,B) 0/NA/NA 0/NA/NA 812/<0.001/<0.01 406/0.0002/<0.01 

1984 (I,I) 87/<0.001/<0.01 81/0.3121/>0.2 552/<0.001/<0.01 276/0.0005/<0.01 

1986 (I,I) 68/<0.001/<0.01 61/0.5431/>0.2 380/<0.001/<0.01 190/0.0014/<0.01 

1984 (T,T) 0/NA/NA 0/NA/NA 0/NA/NA 0/NA/NA 

1986 (T,T) 0/NA/NA 0/NA/NA 2/0.7297/NA 1/1/NA 

     

non-symmetric 
groups: 

    

1984 (P,Z) 166/0.0017/0.0307 166/0.0017/0.0307 550/<0.001/<0.01 548/<0.001/<0.01 
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1986 (P,Z) 165/0.5036/>0.2 165/0.5036/>0.2 609/<0.001/<0.01 609/<0.001/<0.01 

1984 (P,F) 0/NA/NA 0/NA/NA 75/0.6191/>0.2 75/0.6191/>0.2 

1986 (P,F) 0/NA/NA 0/NA/NA 29/0.8054/>0.2 29/0.8054/>0.2 

1984 (Z,P) 0/NA/NA 0/NA/NA 550/<0.001/<0.01 2/0.7297/NA 

1986 (Z,P) 0/NA/NA 0/NA/NA 609/<0.001/<0.01 0/NA/NA 

1984 (Z,F) 27/0.9349/>0.2 27/0.9349/>0.2 66/0.9947/>0.2 66/0.9947/>0.2 

1986 (Z,F) 3/0.7110/NA 3/0.7110/NA 21/0.5571/>0.2 21/0.5571/>0.2 

1984 (F,P) 0/NA/NA 0/NA/NA 75/0.6191/>0.2 0/NA/NA 

1986 (F,P) 0/NA/NA 0/NA/NA 29/0.8054/>0.2 0/NA/NA 

1984 (F,Z) 0/NA/NA 0/NA/NA 66/0.9947/>0.2 0/NA/NA 

1986 (F,Z) 0/NA/NA 0/NA/NA 21/0.5571/>0.2 0/NA/NA 

     

1984 (L,S) 152/0.0020/<0.01 152/0.0020/<0.01 522/<0.001/<0.01 520/<0.001/<0.01 

1986 (L,S) 144/<0.001/<0.01 144/<0.001/<0.01 369/<0.001/<0.01 369/<0.001/0.01 

1984 (L,H) 0/NA/NA 0/NA/NA 54/0.6991/>0.2 54/0.6991/>0.2 

1986 (L,H) 0/NA/NA 0/NA/NA 41/0.3994/0.1363 41/0.3994/0.1363 

1984 (S,L) 0/NA/NA 0/NA/NA 522/<0.001/<0.01 2/0.7297/NA 

1986 (S,L) 0/NA/NA 0/NA/NA 369/<0.001/<0.01 0/NA/NA 

1984 (S,H) 27/0.9349/>0.2 27/0.9349/>0.2 87/0.3630/0.1204 87/0.3630/0.1204 

1986 (S,H) 3/0.7110/NA 3/0.7110/NA 9/0.6161/>0.2 9/0.6161/>0.2 

1984 (H,L) 0/NA/NA 0/NA/NA 54/0.6991/>0.2 0/NA/NA 

1986 (H,L) 0/NA/NA 0/NA/NA 41/0.3994/0.1363 0/NA/NA 

1984 (H,S) 0/NA/NA 0/NA/NA 87/0.3630/0.1204 0/NA/NA 

1986 (H,S) 0/NA/NA 0/NA/NA 9/0.6161/>0.2 0/NA/NA 

     

1984 (C,U) 165/0.0021/0.0366 165/0.0021/0.0366 552/<0.001/<0.01 552/<0.001/<0.01 

1986 (C,U) 165/0.5036/>0.2 165/0.5036/>0.2 609/<0.001/<0.01 609/<0.001/<0.01 
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1984 (C,R) 0/NA/NA 0/NA/NA 72/0.6454/>0.2 72/0.6454/>0.2 

1986 (C,R) 0/NA/NA 0/NA/NA 29/0.8054/>0.2 29/0.8054/>0.02 

1984 (U,C) 0/NA/NA 0/NA/NA 552/<0.001/<0.01 0/NA/NA 

1986 (U,C) 0/NA/NA 0/NA/NA 609/<0.001/<0.01 0/NA/NA 

1984 (U,R) 27/0.9349/>0.2 27/0.9349/>0.2 69/0.9550/>0.2 69/0.9550/>0.2 

1986 (U,R) 3/0.7110/NA 3/0.7110/NA 21/0.5571/>0.2 21/0.5571/>0.2 

1984 (R,C) 0/NA/NA 0/NA/NA 72/0.6454/>0.2 0/NA/NA 

1986 (R,C) 0/NA/NA 0/NA/NA 29/0.8054/>0.2 0/NA/NA 

1984 (R,U) 0/NA/NA 0/NA/NA 69/0.9550/>0.2 0/NA/NA 

1986 (R,U) 0/NA/NA 0/NA/NA 21/0.5571/>0.2 0/NA/NA 

     

1984 (B,I) 166/0.0017/0.0307 166/0.0017/0.0307 600/<0.001/<0.01 598/<0.001/<0.01 

1986 (B,I) 158/0.4973/>0.2 158/0.4973/>0.2 580/<0.001/<0.01 580/<0.001/<0.01 

1984 (B,T) 0/NA/NA 0/NA/NA 25/0.6448/>0.2 25/0.6448/>0.2 

1986 (B,T) 7/0.594/0.1078 7/0.594/0.1078 58/0.1427/>0.2 58/0.1427/>0.2 

1984 (I,B) 0/NA/NA 0/NA/NA 600/<0.001/<0.01 2/0.7297/NA 

1986 (I,B) 0/NA/NA 0/NA/NA 580/<0.001/<0.01 0/NA/NA 

1984 (I,T) 11/0.7335/<0.01 11/0.7335/<0.01 24/<0.001/<0.01 24/<0.001/<0.01 

1986 (I,T) 3/0.7110/NA 3/0.7110/NA 40/<0.001/<0.01 33/<0.001/<0.01 

1984 (T,B) 0/NA/NA 0/NA/NA 25/0.6448/>0.2 0/NA/NA 

1986 (T,B) 0/NA/NA 0/NA/NA 58/0.1427/>0.2 0/NA/NA 

1984 (T,I) 0/NA/NA 0/NA/NA 24/<0.001/<0.01 0/NA/NA 

1986 (T,I) 0/NA/NA 0/NA/NA 40/<0.001/<0.01 7/0.5999/>0.2 
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Table A8: Results of statistical tests of the normality of distributions of lengths. 

Cannibalism has never been removed. Column 6 considers all cannibalistic pairs plus one 

from each pair ((x, y) and (y, x)) of non-cannibalistic pairs. Columns 3, 5 and 7 are the 

authors' opinion, based on the relevant histogram, of whether the distribution could be 

normal, truncated at zero. Possible answers are y for yes, n for no, and NA if there were 

fewer than 20 data. The answer is y if the distribution is verified to be (un-truncated) 

normal via the testing methods, except if there were fewer than 20 data. These opinions 

lean toward saying more distributions could be truncated-at-zero normal. Otherwise, the 

layout of this table is the same as that of Appendix Table A7. 

 

 links:  ordered pairs:  half of the pairs:  

       

overall distributions:       

1984 269/0.0311/0.0663 y 2500/<0.001/<0.01 y 1275/<0.001/<0.01 y 

1986 241/0.1780/0.1066 y 2601/<0.001/<0.01 y 1326/<0.001/<0.01 y 

       

symmetric groups:       

1984 (P,P) 0/NA/NA NA 625/<0.001/<0.01 y 325/<0.001/<0.01 y 

1986 (P,P) 0/NA/NA NA 841/<0.001/<0.01 y 435/<0.001/0.0200 y 

1984 (Z,Z) 73/0.8447/>0.2 y 484/<0.001/<0.01 y 253/0.0011/<0.01 y 

1986 (Z,Z) 72/0.2522/0.0464 y 441/0.0010/<0.01 y 231/0.0177/0.0352 y 

1984 (F,F) 3/0.6859/NA NA 9/0.4041/<0.01 NA 6/0.5367/<0.01 NA 

1986 (F,F) 1/1/NA NA 1/1/NA NA 1/1/NA NA 

       

1984 (L,L) 0/NA/NA NA 324/0.0008/<0.01 y 171/0.0350/0.0489 y 

1986 (L,L) 74/0.6263/>0.2 y 1681/<0.001/<0.01 y 861/<0.001/<0.01 y 
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1984 (S,S) 87/0.0262/0.0263 y 841/<0.001/<0.01 y 435/<0.001/<0.01 y 

1986 (S,S) 19/0.3826/<0.01 NA 81/0.1186/0.0185 y 45/0.2513/>0.02 y 

1984 (H,H) 3/0.6859/NA NA 9/0.4041/<0.01 NA 6/0.5367/<0.01 NA 

1986 (H,H) 1/1/NA NA 1/1/NA NA 1/1/NA NA 

       

1984 (C,C) 0/NA/NA NA 576/<0.001/<0.01 y 300/0.0008/0.0165 y 

1986 (C,C) 0/NA/NA NA 841/<0.001/<0.01 y 435/<0.001/0.0200 y 

1984 (U,U) 74/0.7805/>0.2 y 529/<0.001/<0.01 y 276/0.0004/<0.01 y 

1986 (U,U) 72/0.2522/0.0464 y 441/0.0010/<0.01 y 231/0.0177/0.0352 y 

1984 (R,R) 3/0.6859/NA NA 9/0.4041/<0.01 NA 6/0.5367/<0.01 NA 

1986 (R,R) 1/1/NA NA 1/1/NA NA 1/1/NA NA 

       

1984 (B,B) 0/NA/NA NA 625/<0.001/<0.01 y 325/<0.001/<0.01 y 

1986 (B,B) 0/NA/NA NA 841/<0.001/<0.01 y 435/<0.001/0.0200 y 

1984 (I,I) 91/0.0003/<0.01 y 576/<0.001/<0.01 n 300/<0.001/<0.01 y 

1986 (I,I) 72/0.2522/0.0464 y 400/0.0020/0.0312 y 210/0.0246/0.0422 y 

1984 (T,T) 1/1/NA NA 1/1/NA NA 1/1/NA NA 

1986 (T,T) 1/1/NA NA 4/0.6095/0.1822 NA 3/0.6857/NA NA 

       

non-symmetric 
groups: 

      

1984 (P,Z) 166/0.0598/0.0222 y 550/0.0058/0.1641 y 550/0.0058/0.1641 y 

1986 (P,Z) 165/0.8010/>0.2 y 609/0.0023/<0.01 n 609/0.0023/<0.01 n 

1984 (P,F) 0/NA/NA NA 75/0.4769/>0.2 y 75/0.4769/>0.2 y 

1986 (P,F) 0/NA/NA NA 29/0.8830/>0.2 y 29/0.8830/>0.2 y 

1984 (Z,P) 0/NA/NA NA 550/0.0058/0.1641 y 550/0.0058/0.1641 y 

1986 (Z,P) 0/NA/NA NA 609/0.0023/<0.01 n 609/0.0023/<0.01 n 

1984 (Z,F) 27/0.6583/>0.2 y 66/0.2718/0.0998 y 66/0.2718/0.0998 y 
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1986 (Z,F) 3/0.6953/NA NA 21/0.3786/0.0424 y 21/0.3786/0.0424 y 

1984 (F,P) 0/NA/NA NA 75/0.4769/>0.2 y 75/0.4769/>0.2 y 

1986 (F,P) 0/NA/NA NA 29/0.8830/>0.2 y 29/0.8830/>0.2 y 

1984 (F,Z) 0/NA/NA NA 66/0.2718/0.0998 y 66/0.2718/0.0998 y 

1986 (F,Z) 0/NA/NA NA 21/0.3786/0.0424 y 21/0.3786/0.0424 y 

       

1984 (L,S) 152/0.0651/0.0165 y 522/0.0006/0.0622 y 522/0.0006/0.0622 y 

1986 (L,S) 144/0.0193/<0.01 n 369/<0.001/0.01 n 369/<0.001/0.01 n 

1984 (L,H) 0/NA/NA NA 54/0.6319/>0.2 y 54/0.6319/>0.2 y 

1986 (L,H) 0/NA/NA NA 41/0.2310/ n 41/0.2310/ n 

1984 (S,L) 0/NA/NA NA 522/0.0006/0.0622 y 522/0.0006/0.0622 y 

1986 (S,L) 0/NA/NA NA 369/<0.001/0.01 n 369/<0.001/0.01 n 

1984 (S,H) 27/0.6583/>0.2 y 87/0.3546/>0.2 y 87/0.3546/>0.2 y 

1986 (S,H) 3/0.6953/NA NA 9/0.7160/>0.2 NA 9/0.7160/>0.2 NA 

1984 (H,L) 0/NA/NA NA 54/0.6319/>0.2 y 54/0.6319/>0.2 y 

1986 (H,L) 0/NA/NA NA 41/0.2310/0.0482 n 41/0.2310/0.0482 n 

1984 (H,S) 0/NA/NA NA 87/0.3546/>0.2 y 87/0.3546/>0.2 y 

1986 (H,S) 0/NA/NA NA 9/0.7160/>0.2 NA 9/0.7160/>0.2 NA 

       

1984 (C,U) 165/0.0678/0.0238 y 552/0.0019/0.0426 y 552/0.0019/0.0426 y 

1986 (C,U) 165/0.8010/>0.2 y 609/0.0023/<0.01 n 609/0.0023/<0.01 n 

1984 (C,R) 0/NA/NA NA 72/0.4537/>0.02 y 72/0.4537/>0.02 y 

1986 (C,R) 0/NA/NA NA 29/0.8830/>0.2 y 29/0.8830/>0.2 y 

1984 (U,C) 0/NA/NA NA 552/0.0019/0.0426 y 552/0.0019/0.0426 y 

1986 (U,C) 0/NA/NA NA 609/0.0023/<0.01 n 609/0.0023/<0.01 n 

1984 (U,R) 27/0.6583/>0.02 y 69/0.2249/0.1504 y 69/0.2249/0.1504 y 

1986 (U,R) 3/0.6953/NA NA 21/0.3786/0.0424 y 21/0.3786/0.0424 y 
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1984 (R,C) 0/NA/NA NA 72/0.4537/>0.2 y 72/0.4537/>0.2 y 

1986 (R,C) 0/NA/NA NA 29/0.8830/>0.2 y 29/0.8830/>0.2 y 

1984 (R,U) 0/NA/NA NA 69/0.2249/0.1504 y 69/0.2249/0.1504 y 

1986 (R,U) 0/NA/NA NA 21/0.3786/0.0424 y 21/0.3786/0.0424 y 

       

1984 (B,I) 166/0.0598/0.0222 y 600/<0.001/<0.01 n 600/<0.001/<0.01 n 

1986 (B,I) 158/0.7730/>0.2 y 580/0.0019/<0.01 n 580/0.0019/<0.01 n 

1984 (B,T) 0/NA/NA NA 25/0.6565/>0.2 y 25/0.6565/>0.2 y 

1986 (B,T) 7/0.6225/>0.2 NA 58/0.0136/<0.01 n 58/0.0136/<0.01 n 

1984 (I,B) 0/NA/NA NA 600/<0.001/<0.01 n 600/<0.001/<0.01 n 

1986 (I,B) 0/NA/NA NA 580/0.0019/<0.01 n 580/0.0019/<0.01 n 

1984 (I,T) 11/0.3039/<0.01 NA 24/0.0001/0.0285 n 24/0.0001/0.0285 n 

1986 (I,T) 3/0.6953/NA NA 40/0.0606/<0.01 n 40/0.0606/<0.01 n 

1984 (T,B) 0/NA/NA NA 25/0.6565/>0.2 y 25/0.6565/>0.2 y 

1986 (T,B) 0/NA/NA NA 58/0.0136/<0.01 n 58/0.0136/<0.01 n 

1984 (T,I) 0/NA/NA NA 24/0.0001/0.0285 n 24/0.0001/0.0285 n 

1986 (T,I) 0/NA/NA NA 40/0.0606/<0.01 n 40/0.0606/<0.01 n 
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Table A9: Boundaries of the blocks selected in the "block equivalence" model, in the 

form [a,b] by [c,d], where a and b are the upper and lower limits of the prey index, and c 

and d are the upper and lower limits of the predator index. Index is rank body mass. 

 

 1984 1986 

Block 1 [1, 10] by [20, 39] [1, 14] by [26, 41] 

Block 2 [1, 45] by [40, 47] [1, 47] by [42, 50] 

Block 3 [39, 50] by [48, 50] [48, 51] by [50, 51] 
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Additional Results 

The distribution of angles over all ordered pairs (cannibalistic pairs excluded) was 

bimodal and therefore clearly not normal. Bimodality was inevitable because, as 

mentioned in Methods, any pair (x, y) with x different from y had a corresponding pair 

(y, x) whose angle differed by 180°. When only pairs with angles between 45° and 225° 

were considered to eliminate bimodality, the distributions were still not normal in 1984 or 

in 1986. Given a grouping, one can consider the angle distribution over ordered pairs 

within a certain group (A, B). Symmetric groups (those for which A=B) gave bimodal 

distributions, and were therefore never normal, except for the (S, S) group in 1986, and 

some other groups for which there were six or fewer pairs under consideration (where 

tests of normality had little power). Considering only pairs within the given symmetric 

grouping that had angle between 45° and 225° eliminated bimodality, but no symmetric 

group in any grouping was normal in both years except the group (S, S). Other groups in 

the M-grouping and other groupings were sometimes normal, but never in both years. 

Let 0 represent the P, L, C and B groups in their respective groupings. Let 1 

represent the Z, S, U and I groups in their groupings, and let 2 represent the F, L, R and T 

groups. Thus 1 represents the intermediate group in each grouping, while 0 and 2 

represent the alternative extreme groups. Then for all groupings except BIT, the non-

symmetric groups (0,2), (2,0), (1,2), and (2,1) had normal ordered pair distributions of 

angle, while the (0,1) and (1,0) groups did not. In the BIT grouping, only (0,2) and (2,0) 

were normal. These results held in both years. For the PZF-, M-, and N-groupings, 

groups 1 and 2, and groups 0 and 2 were far apart on log(M) versus log(N) axes, while 

groups 0 and 1 were comparatively close. Under the BIT-grouping, groups 1 and 2 were 
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also fairly close.
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Matlab Code for Models: 

The following Matlab code calculates distributions of Jarque-Bera and Lilliefors statistics 

coming from each of the six models discussed in Models Used. 

 
Cascade Model: 
function [jbstat,lilliestat]=cascade(M,N,L,numiters) 
%function [jbstat,lilliestat]=cascade(M,N,L,numiters) 
%This function takes a body mass distribution M, and an identically indexed numerical  
%abundance dist. N.  It sorts the M dist. in increasing order, puts the N dist. in the same  
% order, and uses this order as the cascade model order, and chooses links for a model  
%web using the cascade model, where L is the number of links it will choose.  It chooses  
%these links randomly and uniformly from the strictly-upper-triangular part of a  
%predation matrix based on the indexing order it gets from M.  It then computes the link  
%length distribution and its Jarque-Bera and Lilliefors statistics.  It does this "numiters"  
%times, returning all the statistics in two vectors, one for Jarque-Bera and one for  
%Lilliefors. 
% 
%27 May 2003 
 
%sort the M and N 
[M,I]=sort(M); 
N=N(I); 
%compute logs 
lM=log10(M); 
lN=log10(N); 
n=length(N); 
 
jbstat=[]; 
lilliestat=[]; 
for counter=1:numiters 
     
    %get L different values randomly chosen between 1 and (n^2-n)/2, since there are  
    %(n^2-n)/2 entries in the upper triangle. 
    indexmat=randperm((n^2-n)/2); 
    indexmat=indexmat(1:L)'; 
     
    %get the indices  - if you fill the upper-triangular part of a matrix one column at a time 
     %from the elements of a vector, the following equations give the relationship between  
    %the index in the vector and the indices in the matrix  
    J=next_below_not_equal((-1+sqrt(8.*indexmat+1))./2)+2;  
    I=indexmat-((J-2)./2).*(J-1); 
     
    %for testing purposes 
    %predmat=zeros(n,n); 
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    %predmat(sub2ind([n n],I,J))=1; 
    %predmat 
    %return; 
     
    %compute the link lengths 
    lengths=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
     
    %do the statistical tests and keep the statistic in each case 
    [h,p,stat]=jbtest(lengths); 
    jbstat=[jbstat stat]; 
    [h,p,stat]=lillietest(lengths); 
    lilliestat=[lilliestat stat]; 
     
end 
 
function result=next_below_not_equal(in) 
%function result=next_below_not_equal(in) 
%Takes a matrix and returns a matrix that has each entry equal to the next 
%integer below, but not equal to the corresponding entry in the input 
%matrix. 
% 
%27 May 2003 
 
result=floor(in); 
result=result-(result==in); 
 
Niche Model: 
function [jbstat,lilliestat]=neowilliams2(M,N,C,numiters) 
%function [jbstat,lilliestat]=neowilliams2(M,N,C,numiters) 
%This function takes a body mass distribution, and a correspondingly indexed numerical  
%abundance distribution.  It sorts the M distribution, and puts the N distribution in the  
%same order.  It then uses this order as the index order in the food web model of  
%Williams and Martinez in their 2000 Nature article.  The "niche value" 
%n_i that Williams and Martinez use is the normalized log10 of this body mass.   
%The log10 is used because they choose species index values  
%randomly and uniformly, roughly achieved by log10(M), but not by M without  
%the log10.  The normalization is done by choosing as many uniformly distributed  
%random numbers between 0 and 1 as there are entries in M, and then taking the max  
%and the min. The largest log10(M) is set to the max, the smallest is sent to the min, and  
%the rest are scaled linearly.  The function generates "numiters" food webs and  
%computes the link length distribution of each, and runs the Bera-Jarque and Lilliefors  
%tests on each of these distributions, returning both statistics for each run.  The variable  
%C is the connectance.  The Niche Model specifies that when you create a web with  
%isolated species, you delete these species and put in new ones until you have a web  
%without isolated species.  We have just thrown these webs away instead.  The Niche  
%Model also specifies that if you have webs with trophically identical species, you  
%replace one of the identical species with another until you have all distinct (trophically)  
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%species.  We have not done this because the Tuesday Lake webs are unlumped. 
% 
%27 May 2003 
 
%sort the M and N 
M=M(:); 
N=N(:); 
[M,I]=sort(M); 
N=N(I); 
%compute logs 
lM=log10(M); 
lN=log10(N); 
n=length(N); 
%scale 
randvect=rand(n,1); 
maxrands=max(randvect); 
minrands=min(randvect); 
r=(maxrands-minrands)/(lM(end)-lM(1)); 
NeoIndex=r.*(lM-lM(1))+minrands; 
 
jbstat=[]; 
lilliestat=[]; 
counter=1; 
while counter<=numiters 
     
    %get Williams and Martinez's values r_i, the widths of the niches 
    r=NeoIndex.*neo_beta(2*(C/n^2)*ones(n,1)); 
 
    %the species with the smallest index has r=0 
    r(1)=0; 
    %save r r; 
     
    %get Williams and Martinez's values c_i, the centers of the niches of 
    %the species 
    c=(NeoIndex-r./2).*(rand(n,1))+r./2; 
    %save c c; 
    if sum((c<r./2)|(c>NeoIndex))>0 
        error('One of the c_i was out of range'); 
    end 
     
    %now create a predation matrix 
    holder=NeoIndex*ones(1,n); 
    top=c'+(r'./2); 
    bottom=c'-(r'./2); 
    top=ones(n,1)*top; 
    bottom=ones(n,1)*bottom; 
    predmat=(holder>bottom)&(holder<top); 
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    %if there are isolated species, throw this web away and get a new one 
    if sum((sum(predmat)==0)&(sum(predmat')==0))>0 
        continue; 
    end 
         
    %get the indices of the non-zero entries in the predation matrix 
    [I,J]=find(predmat); 
     
    %compute the link lengths 
    lengths=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
     
    %do the statistical tests and keep the statistic in each case 
    [h,p,stat]=jbtest(lengths); 
    jbstat=[jbstat stat]; 
    [h,p,stat]=lillietest(lengths); 
    lilliestat=[lilliestat stat]; 
     
    counter=counter+1; 
end 
 
function result=neo_beta(expected) 
%function result=neo_beta(expected) 
%This function takes a matrix of expected values between 0 and 1, and 
%returns a matrix of the same size, but full of 1-(1-y)^(1/beta), where y 
%is a uniform random variable on the unit interval, and beta is chosen for 
%each entry so that the 1/(1+beta) is equal to the expected value in that 
%spot in the input argument. 
% 
%28 May 2003 
 
beta=(1./expected)-1; 
result=1-(1-rand(size(expected))).^(1./beta); 
 
Diagonal Equivalence Model: 
function [jbstat,lilliestat]=permute_diags_pval(M,N,pred,numiters) 
%function lengths=permute_diags_pval(M,N,pred,numiters) 
%This function takes body mass, numerical abundance and predation matrices, all  
%indexed in the same way.  It rearranges so that everything is indexed by body mass  
%(same M,N-web after this, just different indexing).  It then leaves the M and N the same  
%and permutes the entries of each diagonal of the predation matrix in a random way.  It  
%then computes the link length distribution of the modified system, and gets the Bera- 
%Jarque and Lilliefors statistics for it.  It does this "numiters" times, returning all the  
%statistics. 
% 
%28 May 2003 
 
M=M(:); 
N=N(:); 
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%sort the M and N 
[M,I]=sort(M); 
N=N(I); 
%compute logs 
lM=log10(M); 
lN=log10(N); 
n=length(N); 
 
%reindex the predation matrix 
pred=pred(I,I); 
 
jbstat=[]; 
lilliestat=[]; 
for itercounter=1:numiters 
 
    %rearrange the predation matrix 
    for counter=(-n+1):(n-1) 
     
        %extract that diagonal from pred and permute it in some random way 
        tempdiag=diag(pred,counter); 
        randindex=randperm(length(tempdiag)); 
        tempdiag=tempdiag(randindex); 
     
        %put that permuted diagonal back in 
        pred=(pred-diag(diag(pred,counter),counter))+diag(tempdiag,counter); 
     
    end 
    %we now have the modified predation matrix 
 
    %get the indices of the non-zero entries in that new predation matrix 
    [I,J]=find(pred); 
 
    %compute lengths 
    lengths=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
     
    %do the statistical tests and keep the statistic in each case 
    [h,p,stat]=jbtest(lengths); 
    jbstat=[jbstat stat]; 
    [h,p,stat]=lillietest(lengths); 
    lilliestat=[lilliestat stat]; 
end 
 
Block Equivalence Model: 
function [jbstat,lilliestat]= 
permute_within_blocks1_pval(M,N,pred,block1,block2,block3,numiters) 
%function [jbstat,lilliestat]= 
%permute_within_blocks1_pval(M,N,pred,block1,block2,block3,numiters)  
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%This function takes M already sorted and N and pred already correspondingly  
%rearranged.  The args block1 block2 block3 are each 2 by 2 matrices, the first row of  
%which gives an i range, the second row of which gives a j range.  The function  
%randomly permutes the entries of each of these blocks, independently.  It then calulates  
%the link length distribution of the modified system.  It does this "numiters" times,  
%running Bera-Jarque and Lilliefors tests each time and keeping all the statistics, which  
%it returns. 
% 
%29 May 2003 
 
%compute logs 
lM=log10(M); 
lN=log10(N); 
n=length(N); 
 
jbstat=[]; 
lilliestat=[]; 
for counter=1:numiters 
    %pull out the blocks 
    pred1=pred([block1(1,1):block1(1,2)],[block1(2,1):block1(2,2)]); 
    pred2=pred([block2(1,1):block2(1,2)],[block2(2,1):block2(2,2)]); 
    pred3=pred([block3(1,1):block3(1,2)],[block3(2,1):block3(2,2)]); 
 
    %make them into vectors 
    linpred1=pred1(:); 
    linpred2=pred2(:); 
    linpred3=pred3(:); 
 
    %permute these vectors 
    pred1index=randperm(length(linpred1)); 
    pred2index=randperm(length(linpred2)); 
    pred3index=randperm(length(linpred3)); 
    linpred1=linpred1(pred1index); 
    linpred2=linpred2(pred2index); 
    linpred3=linpred3(pred3index); 
 
    %make these vectors back into blocks of the same size as the original 
    %blocks. 
    pred1(:)=linpred1; 
    pred2(:)=linpred2; 
    pred3(:)=linpred3; 
 
    %put the blocks back in the predation matrix 
    pred([block1(1,1):block1(1,2)],[block1(2,1):block1(2,2)])=pred1; 
    pred([block2(1,1):block2(1,2)],[block2(2,1):block2(2,2)])=pred2; 
    pred([block3(1,1):block3(1,2)],[block3(2,1):block3(2,2)])=pred3; 
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    %find indices of the ones in the modified predation matrix 
    [I,J]=find(pred); 
 
    %compute the link lengths 
    lengths=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
     
    %do the statistical tests and keep the statistic in each case 
    [h,p,stat]=jbtest(lengths); 
    jbstat=[jbstat stat]; 
    [h,p,stat]=lillietest(lengths); 
    lilliestat=[lilliestat stat]; 
end 
 
Cascade Model with Functional Groups 1984: 
function [jbstats,lilliestats]=block_cascade_stats1984(M,N,L,numiters) 
%function [jbstats,lilliestats]=block_cascade_stats1984(M,N,L,numiters) 
%This function creates cascade-like M,N-webs with L links, with M and N  
%distributions given by M and N (M is assumed sorted in ascending order).  In addition 
%to assumptions of the cascade model, the function imposes a perceptual limit, and  
%a functional group structure on the allowed links.  The function computes link length  
%distributions and then returns Bera-Jarque and Lilliefors statistics of these distributions. 
% 
%8 July 2003 
 
%number of species 
n=length(M); 
%compute logs 
lM=log10(M); 
lN=log10(N); 
 
%This matrix is the same size as a predation matrix, but has a one 
%everywhere where that a link is allowed to be. 
indexpm=zeros(n,n); 
%blocks 
indexpm(1:19,20:50)=1; 
indexpm(20:50,41:50)=1; 
%size barrier (this is the bit that is like the cascade model) 
[I,J]=find(indexpm); 
indexpm(sub2ind([n n],I(I>=J),J(I>=J)))=0; 
%perceptual limit 
for pred=1:50 
    for prey=1:pred 
        if lM(pred)-lM(prey)>6.8 
            indexpm(prey,pred)=0; 
        end 
    end 
end 
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%for testing purposes 
%result=indexpm; 
%[I,J]=find(indexpm); 
%plot(J,I,'.'); 
%axis ij; 
%return; 
 
%this is the number of ordered pairs that might be links 
op=sum(sum(indexpm)); 
 
jbstats=[]; 
lilliestats=[]; 
for counter=1:numiters 
     
    %create a vector of size "op" with L ones in it randomly 
    linksvect=[ones(1,L) zeros(1,op-L)]'; 
    permuter=randperm(op); 
    linksvect=linksvect(permuter); 
 
    %now create the predation matrix 
    I=find(indexpm); 
    I=linksvect.*I; 
    I=I(find(I~=0)); 
    pm=zeros(n,n); 
    pm(I)=1; 
 
    %plot for testing purposes 
    %[I,J]=find(pm); 
    %plot(J,I,'.'); 
    %axis ij; 
    %result=pm; 
 
    %now compute the link length distribution and compute statistics 
    [I,J]=find(pm); 
    result=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
    [h,p,statIwant]=jbtest(result); 
    jbstats=[jbstats ; statIwant]; 
    [h,p,statIwant]=lillietest(result); 
    lilliestats=[lilliestats ; statIwant]; 
end 
 
Cascade Model with Functional Groups 1986: 
function [jbstats,lilliestats]=block_cascade_stats1986(M,N,L,numiters) 
%function [jbstats,lilliestats]=block_cascade_stats1986(M,N,L,numiters) 
%This function creates cascade-like M,N-webs with L links, with M and N  
%distributions given by M and N (M is assumed sorted in ascending order).  There are  
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%some assumptions made, other than those of the cascade model, about what pairs could  
%be links and what others couldn't.  The function computes link length  
%distributions and then computes Bera-Jarque and Lilliefors statistics of these  
%distributions. 
% 
%8 July 2003 
 
%number of species 
n=length(M); 
%compute logs 
lM=log10(M); 
lN=log10(N); 
 
%This matrix is the same size as a predation matrix, but has a one 
%everywhere where a link is allowed to be. 
indexpm=zeros(n,n); 
%blocks 
indexpm(1:25,26:51)=1; 
indexpm(26:51,42:51)=1; 
%size barrier (cascade model) 
[I,J]=find(indexpm); 
indexpm(sub2ind([n n],I(I>=J),J(I>=J)))=0; 
%perceptual limit 
for pred=1:51 
    for prey=1:pred 
        if lM(pred)-lM(prey)>6.8 
            indexpm(prey,pred)=0; 
        end 
    end 
end 
 
%for testing 
%result=indexpm; 
%[I,J]=find(indexpm); 
%plot(J,I,'.'); 
%axis ij; 
%return; 
 
%this is the number of ordered pairs that might be links 
op=sum(sum(indexpm)); 
 
jbstats=[]; 
lilliestats=[]; 
for counter=1:numiters 
     
    %create a vector of that size with L ones in it randomly 
    linksvect=[ones(1,L) zeros(1,op-L)]'; 
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    permuter=randperm(op); 
    linksvect=linksvect(permuter); 
 
    %now create the predation matrix 
    I=find(indexpm); 
    I=linksvect.*I; 
    I=I(find(I~=0)); 
    pm=zeros(n,n); 
    pm(I)=1; 
 
    %plot the thing - this is for testing purposes 
    %[I,J]=find(pm); 
    %plot(J,I,'.'); 
    %axis ij; 
    %result=pm; 
 
    %now compute the link length distribution and compute statistics 
    [I,J]=find(pm); 
    result=abs(lM(J)-lM(I))+abs(lN(J)-lN(I)); 
    [h,p,statIwant]=jbtest(result); 
    jbstats=[jbstats ; statIwant]; 
    [h,p,statIwant]=lillietest(result); 
    lilliestats=[lilliestats ; statIwant]; 
end 
 
Forced Link Length Distribution Model: 
function [linkdist,pairdist,quotient]=create_factor(linklengths,pairlengths,w) 
%function [linkdist,pairdist,quotient]=create_factor(linklengths,pairlengths,w) 
%This function starts with a list of all the link lengths and all the pair lengths.  It assumes  
%that the former is contained in the latter. It also starts with a window width.  It  
%creates two distribution functions (which are not normalized to be probability  
%distribution functions), one from the link lengths and one from the pair lengths.  These  
%go from 0 to "upperlimit" which is written into the code but can be easily changed. The  
%increment is "increment", also written into the code and easily changed. These  
%distributions are obtained by adding normal pdf's of standard deviation w centered at  
%each data point. We know that pairdist>=linkdist. 
% 
%11 July 2003 
 
%changable constants - set it up so that upperlimit is an integer multiple of increment 
increment=0.01; 
upperlimit=30; 
 
Xvals=[0:increment:upperlimit]; 
 
linkdist=ksdensity(linklengths,Xvals,'width',w); 
linkdist=linkdist*length(linklengths); 
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pairdist=ksdensity(pairlengths,Xvals,'width',w); 
pairdist=pairdist*length(pairlengths); 
quotient=linkdist./pairdist; 
 
figure; 
plot(Xvals,linkdist,'.'); 
hold on; 
plot(Xvals,pairdist,'.r'); 
xlabel('length of link/pair'); 
legend('links','pairs'); 
title(['Link and pair distributions, w=' num2str(w)]); 
 
figure; 
plot(Xvals,quotient,'.'); 
xlabel('length of link/pair'); 
title(['Quotient of link by pair distributions, w=' num2str(w)]); 
 
 
function [result,lengthdist]=length_dist_pm2(prob,bm,na) 
%function [result,lengthdist]=length_dist_pm2(prob,bm,na) 
%The function takes a probability distribution function "prob" that has on the x-axis the  
%length of a pair, and on the y-axis the probability that it is a link.  The x-axis value is in  
%the first column of prob and the y-axis value is in the second column.  The variables bm  
%and na are body mass and numerical abundance respectively, indexed in such a way  
%that bm is in ascending order.  The function looks at each pair above the diagonal of the  
%predation matrix that one wants to fill in using the given species ordering.  It computes  
%the length of the pair, and uses "prob" to decide whether it is a link. The function  
%returns the created predation matrix, and a vector containing all the link lengths. 
% 
%11 July 2003 
 
n=length(bm); 
bm=bm(:); 
na=na(:); 
lbm=log10(bm); 
lna=log10(na); 
 
%create the predation matrix 
result=zeros(n,n); 
lengthdist=[]; 
pairlengthdist=[]; 
for pred=2:n 
    for prey=1:(pred-1) 
         
        %compute the length of the pair you are on 
        lengthofpair=abs(lbm(pred)-lbm(prey))+abs(lna(pred)-lna(prey)); 
        pairlengthdist=[pairlengthdist lengthofpair]; 
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        %plug this length into the function given by prob - no 
        %extrapolation, just take the nearest value in the x coordinate 
        holder=abs(prob(:,1)-lengthofpair); 
        currentprobindex=find(min(holder)==holder); 
         
        %decide whether the pair you are considering is a link or not using 
        %that probability 
        if rand<=prob(currentprobindex,2) 
            result(prey,pred)=1; 
            lengthdist=[lengthdist lengthofpair]; 
        end 
    end 
end 
 
%plot the predation matrix you have generated 
[I,J]=find(result); 
figure; 
plot(J,I,'.'); 
axis ij; 
xlabel('predator'); 
ylabel('prey'); 
title('Predation matrix'); 
 
%make histograms of the link and pair length distributions to make sure 
%everything is working 
figure; 
hist(lengthdist,15); 
figure; 

hist(pairlengthdist,15); 
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