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The dynamical theory of food webs has been based typically on local stability analysis. The
relevance of local stability to food web properties has been questioned because local stability
holds only in the immediate vicinity of the equilibrium and provides no information about the
size of the basin of attraction. Local stability does not guarantee persistence of food webs in
stochastic environments. Moreover, local stability excludes more complex dynamics such as
periodic and chaotic behaviors, which may allow persistence. Global stability and permanence
could be better criteria of community persistence. Our simulation analysis suggests that these
three stability measures are qualitatively consistent in that all three predict decreasing stability
with increasing complexity. Some new predictions on how stability depends on food web
con"gurations are generated here: a consumer}victim link has a smaller e!ect on the probabil-
ities of stability, as measured by all three stability criteria, than a pair of recipient-controlled
and donor-controlled links; a recipient-controlled link has a larger e!ect on the probabilities of
local stability and permanence than a donor-controlled link, while they have the same e!ect on
the probability of global stability; food webs with equal proportions of donor-controlled and
recipient-controlled links are less stable than those with di!erent proportions.

( 2001 Academic Press
Introduction

The relationship between stability and complex-
ity of food webs has been a central issue in theor-
etical ecology. An in#uential theory, based on the
local asymptotic stability (LAS) analysis of ran-
domly assembled Lotka}Volterra model food
webs, suggested that complexity reduces stability
(May, 1972). This theory has been challenged for
two reasons.

First, LAS may not be an appropriate criterion
for food web persistence. LAS holds only in an
arbitrarily small neighborhood of the equilib-
rium (Lewontin, 1969; Haydon, 1994) and
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depends on the interaction coe$cients which could
vary considerably in real food webs. Moreover,
LAS excludes complex dynamical behaviors such
as periodic and chaotic solutions, which may be
consistent with community persistence (Hutson &
Law, 1985; Anderson et al., 1992; Law & Blackford,
1992; Law & Morton, 1993; Hastings, 1988,
1996).

Second, randomly generated community
matrices may allow biologically unrealistic struc-
tures such as an absence of autotrophs (Lawlor,
1978; Lawton, 1989; Hall & Ra!aelli, 1993).
Many e!orts have been made towards incorpor-
ating structural features of real food webs into
the pool of community matrices of dynamic mod-
els (DeAngelis, 1975; Yodzis, 1981; Pimm, 1982),
( 2001 Academic Press
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including the &&Lotka}Volterra cascade model''
(LVCM, Cohen et al., 1990b). The LVCM com-
bines the trophic structure of the cascade model
with the population dynamics of the Lotka}Vol-
terra model. The model distinguishes among four
types of dynamical e!ects caused by feeding links,
namely, consumer}victim, donor-controlled and
recipient-controlled interactions and links with
no dynamical e!ects. The dynamical e!ects of
consumer}victim interactions received much at-
tention in previous studies. Some authors (Pimm,
1982; Hawkins, 1992) suggested that donor-con-
trolled interactions are quite common in nature
and that they have normally less destabilizing
e!ects than consumer}victim interactions. More
detailed work has yet to be done on the e!ects of
these di!erent types of interactions on stability in
a more general context of complex food webs.

Qualitative global asymptotic stability (QGAS)
and permanence are two alternative measures of
stability. QGAS depends only on the sign pattern
of the community matrix, but is independent of
the values of the interaction coe$cients as well as
of the initial states (Cohen et al., 1990b). Perma-
nence measures the boundedness of the trajectory
of a system within the region of state space where
all species have positive abundances. Perma-
nence includes complex dynamical behaviors
such as periodic and chaotic motions (Law
& Blackford, 1992; Law & Morton, 1993;
Morton et al. 1995). Previous investigations of
the permanence of Lotka}Volterra systems have
mainly focused on community assembly (Law
& Blackford, 1992; Law & Morton, 1993, 1996).
They did not provide an explicit and systematic
measurement of the probability of permanence in
relation to the complexity of food webs.

The purposes of this paper are to examine,
"rst, whether these three criteria of community
persistence, QGAS, LAS, and permanence,
predict qualitatively consistent relationships
between food web stability and complexity, and
second, how the stability determined by these
three criteria are a!ected by the con"guration of
di!erent types of trophic links. We use the
LVCM with a "nite number of species as the
model system for this investigation. Until
recently (Chen & Cohen, 2001), the LVCM was
studied only in the limit of an in"nite number of
species (Cohen et al., 1990b).
The Model and Methods of Analysis

THE LOTKA}VOLTERRA CASCADE MODEL

In the Lotka}Volterra model,
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A LVCM system is a Lotka}Volterra model
with its trophic structure de"ned by rules of the
cascade model: for each pair of species i, j"1,2,n
with i(j, species i has a probability of zero of
eating species j, while species j has a probability
of c/n (0(c(n) of eating species i (Cohen &
Newman, 1985; Cohen et al., 1990a, b).

The LVCM supposes that one of the four
dynamical e!ects occurs between each pair of
species, independently for each pair of species
i, j"1,2,n with i(j, with probabilities:

(i) recipient-controlled interaction, PrMp
ij
(0

and p
ji
"0N"r/n;

(ii) donor-controlled interaction, PrMp
ij
"0

and p
ji
'0N"s/n;

(iii) consumer}victim interaction, PrMp
ij
(0

and p
ji
'0N"t/n;

(vi) neither species has a dynamical e!ect on
the other, or there is no trophic link between
species i and j, PrMp

ij
"0 and p

ji
"0N"1!

(r#s#t)/n.

Here r, s, t*0 and r#s#t)n. The LVCM
also assumes that all the species are self-limited
(Cohen et al., 1990b), i.e., PrMp

ii
(0N"1,

i"1,2,n. Biologically, a recipient-controlled
link means that the predator diminishes the rate
of increase of the prey population but does not
enjoy any augmentation in the rate of increase of
its own population as a result of feeding on the
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prey. This situation is typically seen in the rela-
tionship between a generalist predator species
and a prey species. A donor-controlled link
means that the predator bene"ts from feeding on
a prey, but the prey su!ers little damage from
the predator. This relation is quite common in
plant}herbivore and host}parasite interactions.
A consumer}victim link helps the consumer and
hurts the victim; this is the common reciprocal
relationship between a predator and its prey.

In this study, all sample food webs are stochas-
tically assembled. Hence we de"ne a food web
con"guration as the vector of probabilities (r/n,
s/n, t/n) and not as the particular realization of
trophic links in a simulation. We denote Cr"r/n,
Cs"s/n and Ct"t/n as the partial connectance
of r, s and t links, respectively.

There are two ways to count links (¸) and two
corresponding de"nitions of connectance (C) in
the LVCM (Cohen et al., 1990b). Connectance
refers to the expected fraction of all possible links
that actually occur. If food webs are looked
upon as undirected graphs, then only a single un-
directed link is recognized between any two
interacting species and, hence, the undirected
connectance is de"ned by C

u
"E(¸

u
)/[n(n!1)/2]
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rected graphs and cannibalism is ignored, then
the directed connectance is de"ned by C
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SIMULATION

Numerical simulations are conducted on ran-
domly constructed LVCM food webs with
n"10 species and varying connectance to deter-
mine the probability of stability, as measured by
QGAS, LAS and permanence, respectively, in
relation to connectance and con"guration of
model food webs. The probabilities r/10, s/10 and
t/10 are varied systematically. For each combi-
nation of the probability values, a random
community matrix P"(p
ij
)n
i, j/1

is generated.
Each non-zero element of P"(p

ij
) is assigned

a uniformly distributed random value within the
interval of (0, 1) for each non-zero p
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and a value

within the interval of (!1, 0) for each non-zero
p
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and each p
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the Jacobian matrix of the LVCM is Df"
diag (Q) )P. For simplicity, we chose q
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i"1,2,n, so that Df"P. This approach is
equivalent to normalizing the system by repla-
cing x
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by y
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for all i. This makes the equi-

librium of y
i
be 1 for all i and replaces the matrix

of interaction coe$cients P by P@"Pdiag (Q).
The Jacobian matrix at the equilibrium 1 for the
normalized system is then P@. We just generate P@
within the interval of (0, 1). Both endpoints 0
and 1 of the uniform distribution are arbitrary
choices in this case.

For each con"guration of r, s and t, 10,000
such stochastic systems are generated, and the
relative frequency with which these systems are
qualitatively globally asymptotically stable and
locally asymptotically stable is used to approxim-
ate the probability of having QGAS and LAS.
Similarly, we also "x the connectance (Ct"0.4)
and vary the number of species (n) to determine
the probability of stability in relation to the num-
ber of species in model food webs. The upper
bound of the standard deviation of each relative
frequency p is

S.D."Jpq/n)J0.5 ) 0.5/10000"0.005.

The identi"cation of permanence is computation-
ally expensive, so we simulate only 1000 sample
systems to estimate the probability of perma-
nence (except for Table 1).

MEASURES OF STABILITY

Several conditions determine the QGAS of
the Lotka}Volterra model (Quirk & Ruppert,
1965; Bone et al., 1988; Redhe!er & Zhou, 1989;
Logofet, 1993). Logofet listed "ve conditions (1993)
for determining the QGAS of the Lotka}Volterra
model:

(i) p
it
)0 for all i and at least one p

ii
(0;

(ii) p
ij
p
ji
)0 for any iOj;

(iii) the digraph D (P) has no k-cycles for k*3;



TABLE 1
Frequency of randomly assembled ¸otka }<olterra
cascade model systems having local asymptotic
stability (¸AS) and satisfying the su.cient condi-
tion for permanence. ¹he model food webs all have
ten species. <alues outside the parentheses are the
frequency of webs with t/10"0.5. <alues inside
the parentheses are the frequency of webs with

r/10#s/10"0.5 (and r/10"s/10)

¸AS

Yes No Total

Permanence Yes 7758 (2522) 122 (534) 7980 (3056)
No 515 (183) 1605 (6761) 2020 (6944)

Total 8273 (2705) 1727 (7295) 10000
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(iv) there exists a non-zero term in the stan-
dard expansion of the determinant

det (P)"+ sgn (p)
n

<
i/1

pp (i)i , (2)

where p is a permutation of the numbers
M1, 2,2,nN and sgn(p)"$1 is the sign of p;

(v) the trophic graph fails the color test.
A trophic graph is an undirected graph with
a node corresponding to each species and an
undirected edge between any two nodes, if and
only if, at least one of the two corresponding
species eats the other species. A trophic graph is
said to pass the color test if each of its vertices can
be colored black or white in such a way that: (1)
all self-limited vertices are black; (2) there exist
white vertices, each of which is linked to at least
another white vertex; (3) if a black vertex is linked
to a white one, then it is also linked to at least
another white vertex. If not so, the graph fails the
test.

Conditions (i), (ii), (iv) and (v) are immediately
satis"ed in the LVCM since p

ii
(0 for all i and

p
ij
p
ji
)0 for any iOj. The determination of

QGAS in the LVCM reduces to checking that the
digraph of a LVCM food web has no k-cycles for
k*3.

The LAS is determined by the eigenvalues of
the Jacobian matrix of the LVCM. A system is
said to have LAS, if and only if, all the eigen-
values of its Jacobian matrix are negative or have
a negative real part, i.e. Re(j

i
)(0 for all i.

Permanence measures the ability of a system
to stay bounded inside the positive orthant of
the state space. A system is said to be perma-
nent if the boundary (include the in"nity) is a
repeller (Hofbauer & Sigmund, 1998), that is,
if there exists constants 0(d

l
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i"1,2,n (Hofbauer & Sigmund, 1998). A
su.cient condition for permanence is the exist-
ence of an average Lyapunov function (Hofbauer,
1981; Hutson, 1984; Jansen, 1987). For a
Lotka}Volterra system with a unique positive
equilibrium (x*

i
'0 for all i ) and no trajectory

tending to in"nity, the test of an average
Lyapunov function is reduced to solving the lin-
ear programming problem (Jansen, 1987):
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Here h
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, i"1,2,n, and z are the variables in

the linear programming problem and yB(k)
j

( j"1,

2,n and k"1,2,m) is the equilibrium density
of species j at the k-th boundary equilibrium. As
k"1,2,m, the m boundary equilibria yield
m linear constraints. The boundary is a repellor
and, hence, the system is permanent if the opti-
mum z

min
is negative. For more information on

the su.cient condition for permanence of the
Lotka}Volterra systems, see Jansen (1987), Law
& Blackford (1992) and Law & Morton (1993).
We solved this linear programming problem
using software of the MOSEK optimization
toolbox for Matlab (by EKA Consulting APS).

The second way to check whether the bound-
ary is a repellor is numerical invasibility analysis,
done by deleting species one at a time and seeing
if the deleted species has a positive per-capita rate
of change at the boundary equilibrium. The sec-
ond approach could sometimes be computation-
ally less expensive, but with e$cient linear
programming software such as MOSEK, the "rst
approach is faster.



FIG. 1. Perspective view of the probability of stability
in the Lotka}Volterra cascade model (LVCM), as measured
by di!erent stability criteria, as a function of r#t and s#t.
(a) Asymptotic (nPR) probability of qualitative global
asymptotic stability (Pr(QGAS)) (redrawn from Cohen et al.,
1990). (b) Pr (QGAS) in the LVCM with n"10 species.
(c) Probability of local asymptotic stability (Pr (¸AS)) in the
LVCM with n"10. Graphs (b) and (c) are plotted with
t"0, each representing the lower bound of a family of
qualitatively similar surfaces.
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A way to determine the persistence (not perma-
nence) of a dynamical food web model is to
simulate numerically its trajectories from a large
number of initial conditions. Unfortunately, for
this approach, some non-permanent systems may
have a non-zero probability of survival for the
necessarily "nite duration of the numerical simu-
lation while some permanent systems may not
persist when started from some starting points
(Law & Morton, 1993). This numerical approach
is computationally very expensive.

Currently, conditions that are both necessary
and su$cient for permanence in Lotka}Volterra
systems with more than three species are
not known. Jansen's (1987) condition is only a
su.cient condition for permanence in Lotka}
Volterra systems with more than three species. It
may miss an unknown proportion of permanent
systems. For large Lotka}Volterra systems, it is
so far not clear how large a proportion of perma-
nent systems may go undetected (Law & Morton,
1992). Below, when we say the probability of
permanence for brevity, we refer to the probabil-
ity that systems will satisfy the su$cient condi-
tion of Jansen (1987).

Results

COMPLEXITY-STABILITY IN LVCM

We plot the probability surfaces of QGAS
and LAS in the LVCM having ten species with
respect to r#t and s#t [Fig. 1(b and c)]. Like
the asymptotic (nPR) probability surface
(Cohen et al., 1990b) [Fig. 1(a) here], the two
probabilities of stability in the LVCM with
n"10 decrease with increasing r#t and s#t
(Fig. 1). The asymptotic probability of QGAS as
nPR shows a sharp transition from a positive
value to zero as t increases (Fig. 2). In contrast,
the probabilities of QGAS, LAS and permanence
for the LVCM food webs with ten species show
a gradual transition from a positive value toward
zero with increasing t (Fig. 2). When all links are
consumer}victim (t) links (r"s"0), the prob-
ability of QGAS is smaller than the probability of
permanence which is, in turn, smaller than the
probability of LAS [Fig. 2(a)]. However, when all
the links are an equal number of r and s links
(r"s and t"0), the probability of permanence
becomes greater than the probability of LAS
[Fig. 2(b)]. Table 1 also shows that with ten
species and the same directed connectance, the
subset of webs that have permanence but not



FIG. 2. The probabilities of stability of the Lotka}Volterra cascade model (LVCM), as measured by di!erent criteria: (a)
with respect to t, assuming s"r"0. (b) with respect to r and s, assuming r"s and t"0. The four curves are the asymptotic
(nPR) probability of qualitative global asymptotic stability ( ), the probability of the qualitative global asymptotic
stability ( ), the probability of local asymptotic stability ( ) and the probability of permanence ( ) in LVCM with
ten species.

FIG. 3. The probabilities of stability (Pr(stability)) of the
Lotka}Volterra cascade model, as measured by di!erent
criteria, with respect to the number of species (n). The three
curves represent the probability of qualitative global asymp-
totic stability ( ), the probability of local asymptotic
stability ( ) and the probability of permanence ( ),
respectively. In each case, the LVCM food webs are assem-
bled with t links only with an undirected connectance of 0.4.
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LAS is smaller than the subset of webs that have
LAS but not permanence for model webs with
t links, while the opposite is true for model webs
with the same probability of r and s links.

When the number of species n is increased
while the undirected connectance is "xed at
C

u
"t/n"Ct"0.4, with r"s"0, the probabil-

ities of QGAS, LAS and permanence of the
LVCM all decrease (Fig. 3). With increasing n,
the probability of QGAS drops very sharply. The
probabilities of LAS and permanence decrease
more slowly (Fig. 3).

QUALITATIVE GLOBAL ASYMPTOTIC STABILITY

AND FOOD WEB CONFIGURATION

For the LVCM with nPR, the limiting prob-
ability of QGAS is uniquely determined by the
values of r#t and s#t irrespective of the pro-
portion of t in those values (Cohen et al., 1990b).
A t link has the same e!ect on the probability of
QGAS as do an r link plus an s link. Since a t link
represents a pair of directed links, a coupled
positive}negative pair of unidirectional links has
exactly the same e!ect on the asymptotic prob-
ability of QGAS as does an uncoupled posit-
ive}negative pair of unidirectional links.

In contrast, in LVCM food webs with ten
species, with equal directed connectances, i.e.,
t/n"(r#s)/(2n), the LVCM food webs with
t links (r"s"0) have greater probabilities of
QGAS than do the webs with paired r and s links
(r"s and t"0) [Fig. 4(a)].

On the other hand, if a t link is counted as an
undirected link, given equal undirected connec-
tances, i.e., t/n"(r#s)/n, the LVCM food webs
with t links (r"s"0) have smaller probabilities
of QGAS than do food webs with paired r and
s links (r"s and t"0) [Fig. 4(b)].

This result leads to our prediction 1: when food
webs are looked upon as directed graphs, then
consumer}victim links, equivalent to coupled
pairs of directed links, lead to a higher probabil-
ity of QGAS than do the same number of pairs of
donor-controlled and recipient-controlled links;
when food webs are regarded as undirected
graphs, then consumer}victim links lead to a
lower probability of QGAS than do the same
number of donor-controlled and recipient-
controlled links, assuming there are equal num-
bers of donor-controlled and recipient-controlled
links.



FIG. 4. The probabilities of qualitative global asymptotic stability (Pr(QGAS)) of the Lotka}Volterra cascade model in
food webs connected by t links ( ) and by paired r and s links ( ). (a) Given equal directed connectances, i.e.,
t/n"(r#s)/(2n), Pr(QGAS) is greater in webs with t links than Pr (QGAS) in webs with paired r and s links. (b) Given equal
undirected connectance, i.e., t/n"(r#s)/n, Pr(QGAS) is smaller in webs with t links than Pr(QGAS) in webs with paired
r and s links.

FIG. 5. The probability of qualitative global asymptotic
stability (Pr (QGAS)) in the Lotka-Volterra cascade model
with n "10. For the same values of r#s, the probability
becomes larger as the absolute value of di!erence between
r and s increases. Here t"0 for all three cases. The three
curves represent the Pr (QGAS) with Dr!s D"0 ( ),
Dr!sD"0.4 ( ) and Dr!s D"0.8 ( ), respectively.
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Like the asymptotic probability surface
[Fig. 1(a)], the probability surface of QGAS with
ten species is symmetric with respect to r#t and
s#t [Fig. 1(b)]. If we transect the probability
surface, given by a speci"c value of t, by a plane
s"c and a plane r"c (where c is a positive
constant), respectively, the two resulting curves
coincide.

Like the asymptotic probability, with the same
value of (r#t)#(s#t), the probability of
QGAS in the LVCM with n"10 decreases as the
di!erence between r and s becomes smaller, and
reaches the minimum when r"s (Fig. 5).

This result gives our prediction 2: a donor-
controlled link and a recipient-controlled link
have an identical e!ect on the probability of
QGAS in the LVCM; with "xed values of t and
r#s#t, food webs with more even proportions
of r (recipient-controlled) links and s (donor-
controlled) links are less likely to be QGAS
than webs with less even proportions of these two
types of unidirectional links. Results omitted for
brevity also show that the second part of predic-
tion 2, that webs with more even proportions of
donor-controlled and recipient-controlled links
are less likely to be stable than those with less
even proportions, applies equally to LAS and to
the lower bound of, or su$cient condition for,
permanence.

LOCAL ASYMPTOTIC STABILITY AND

FOOD WEB CONFIGURATION

As with the probability of QGAS for LVCM
food webs with ten species, the probability of
LAS is not uniquely determined by the values of
r#t and s#t. The probability increases with
the proportion of t in the combination of r#t
and s#t. In Fig. 6, we compare the probability
of LAS in food webs with t links (r"s"0) with
the probability of LAS in food webs with r and
s links (r"s and t"0). The comparison is based
on equal directed connectances [Fig. 6(a)], i.e.,
t/n"(r#s)/(2n), and equal undirected connec-
tances [Fig. 6(b)], i.e., t/n"(r#s)/n, respec-
tively. In both cases, the LVCM food webs
with t links (r"s"0) have greater probabilities
of having LAS than do the webs with paired r
and s links (r"s and t"0) (Fig. 6).

This result yields our prediction 3: when re-
garded as coupled pairs of directed links, con-
sumer}victim links produce a higher probability
of LAS than the same number of pairs of



FIG. 6. The probability of local asymptotic stability (Pr (¸AS)) of the Lotka}Volterra cascade model in food webs
connected by t links ( ) and by paired r and s links ( ). (a) Given equal directed connectances, i.e., t/n"(r#s)/(2n),
Pr(¸AS) is greater in webs with t links than Pr(¸AS) in webs with paired r and s links. (b) Given equal undirected
connectances, i.e., t/n"(r#s)/n, Pr(¸AS) is greater in webs with t links than Pr (¸AS) in webs with paired r and s links.

FIG. 7. Di!erences between e!ects of coupled positive}
negative pairs of links (t) and e!ects of uncoupled positive}
negative pairs of links (r"s) on the probability of qualitat-
ive global asymptotic stability (Pr(QGAS), ), the prob-
ability of local asymptotic stability (Pr(¸AS), ) and the
probability of permanence ( ) in Lotka}Volterra cas-
cade model with ten species. Pr (.)(t) represents probability of
stability as a function of t with r"s"0; Pr (.)(r/s) represents
probability of stability as a function of r and s (r"s) with
t"0. Undirected connectance is measured by t/n or
(r#s)/n, respectively.
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recipient-controlled and donor-controlled links;
when regarded as undirected links, consumer}
victim links produce a higher probability of LAS
than the same number of recipient-controlled
and donor-controlled links, given that the num-
ber of recipient-controlled links equals the num-
ber of donor-controlled links.

For n"10 species, the di!erence between
the e!ects of t links (i.e., coupled positive}nega-
tive pairs of directed links) and the e!ects of the
same number of r and s links (i.e., uncoupled
positive}negative pairs of directed links) on the
probability of LAS is much greater than the dif-
ference of e!ects on the probability of QGAS
when C

u
'0.12, and is slightly smaller when

C
u
)0.12 (Fig. 7).
Unlike the probability surface of QGAS, where
the recipient-controlled and donor-controlled
links have identical e!ects on the probability of
global asymptotic stability, the probability of
LAS is asymmetric with respect to r links and s
links. To facilitate the comparison, we de"ne
the probability of LAS as partial functions of
r (with s and t "xed) and s (with r and t "xed),
respectively,

Pr (¸AS)(r)"PrMmax(Rej
i
(P) D i"1,2,n)(0:

r3[0, n!s
c
!t

c
], s"s

c
, t"t

c
N ,

(2a)

Pr (¸AS)(s)"PrMmax(Rej
i
(P) D i"1,2, n)(0:

s3[0, n!r
c
!t

c
], r"r

c
, t"t

c
N,

(2b)

where r
c
, s

c
and t

c
are positive constants. We

transect the probability surface of LAS [Fig. 1(c)]
for t

c
"0 along planes parallel to the

r!Pr (¸AS) plane at s"c (c is a positive
constant) and along planes parallel to the
s!Pr(¸AS) plane at r"c, respectively, for sev-
eral di!erent values of c. The transects in each
pair are superimposed and the horizontal axis is
transformed from the value of r or s into partial
connectance (by dividing by 10) to compare the
probability of LAS as a function of the partial
connectance of r links (Cr) with the probability of
LAS as a function of the partial connectance of
s links (Cs) (Fig. 8). The curve Pr (¸AS)(r) crosses



FIG. 8. The probability of local asymptotic stability
(Pr(¸AS)) with respect to the partial undirected connectance
of r links (Cr, ) and s links (Cs, ), respectively, with
no t links. (a) When varying Cr with Cs"0.1 and varying
Cs with Cr"0.1, the two curves cross at 0.1; (b) When
varying Cr with Cs"0.2 and varying Cs with Cr"0.2, the
two curves cross at 0.2; (c) When varying Cr with Cs"0.3
and varying Cs with Cr"0.3, the two probabilities cross at 0.3.
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the curve Pr (¸AS)(s) where Cr"Cs. Where Cr(

Cs for Pr (¸AS)(r) and Cr'Cs for Pr (¸AS)(s), we
"nd Pr (¸AS)(r)'Pr (¸AS)(s). Where Cr'Cs for
Pr (¸AS)(r) and C r(Cs for Pr (¸AS)(s), we "nd
Pr (¸AS)(r)(Pr (¸AS)(s) (Fig. 8).
FIG. 9. The probability of permanence of the Lotka}Volterr
by paired r and s links ( ). (a) Given equal directed connec
greater in webs with t links than the probability of permanence
connectances, i.e., t/n"(r#s)/n, the probability of permanenc
with paired r and s links.
This result leads to our prediction 4: with the
same number of t links and the same number of
unidirectional links r#s, systems with s'r are
more likely to have LAS than systems with r's.
The biological implication of this property is that
if two sets of food webs have the same number of
species, the same total number of trophic links
(r#s#t), and the same number of con-
sumer}victim links (t), the set of webs with more
donor-controlled (s) than recipient-controlled (r)
links is more likely to be locally asymptotically
stable than the set with the reverse relationship of
the two types of links.

THE PROBABILITY OF PERMANENCE AND

FOOD WEB CONFIGURATION

The probability of permanence in LVCM food
webs with t links (r"s"0) is compared with the
probability in webs with paired r and s links
(r"s and t"0), based on equal directed connec-
tance [t/n"(r#s)/(2n), Fig. 9(a)] and equal un-
directed connectance [t/n"(r#s)/n, Fig. 9(b)],
respectively, for ten species. The probability of
permanence with respect to both directed and
undirected connectance of t links is greater than
the probability with respect to the equivalent
connectance of r and s links (Fig. 9).

This result leads to prediction 5: when re-
garded as coupled pairs of directed links, or as
undirected links, consumer}victim links yield a
larger probability of permanence than the same
number of pairs of recipient-controlled and
donor-controlled links, given equal number of
recipient-controlled and donor-controlled links.

The di!erence between the e!ects of t links (i.e.,
coupled positive}negative pairs of directed links)
a cascade model in food webs connected by t links ( ) and
tances, i.e., t/n"(r#s)/(2n), the probability of permanence is
in webs with paired r and s links. (b) Given equal undirected
e is greater in webs with t links than the probability in webs



FIG. 10. The probability of permanence in the LVCM
with ten species and no t links as a function of the partial
undirected connectance of r links (Cr, ) and s links (Cs,

), respectively. (a) When varying Cr with Cs"0.1 and
varying Cs with Cr"0.1, the two curves cross at 0.1; (b)
When varying Cr with Cs"0.2 and varying Cs with
Cr"0.2, the two curves cross at 0.2; (c) When varying
Cr with Cs"0.3 and varying Cs with Cr"0.3, the two
probabilities cross at 0.3.
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and the e!ects of the same number of pairs of
r and s links (i.e., uncoupled positive}negative
pairs of directed links) on the probability of per-
manence is smaller than that on the probability
of LAS but generally greater than that on the
probability of QGAS (Fig. 7).

Like the probability of LAS, the probability of
permanence shows asymmetric e!ects of r links
and s links. We denote the probability of perma-
nence with respect to r by PP(r) and the probabil-
ity of permanence with respect to s by PP(s). The
values of r and s are transformed into partial
connectance C r and C s. The probability curves
cross where Cr equals Cs. Where Cr is smaller
than Cs for PP(r) and C s is smaller than Cr for
PP (s), PP (r) is greater than PP(s) (Fig. 10). Where
Cr is greater than Cs for PP(r) and Cs is greater than
Cr for PP(s), PP(r) is smaller than PP(s) (Fig. 10).

This result leads to our prediction 6: with the
same number of bidirectional links t and uni-
directional links r#s, systems with s'r are
more likely to be permanent than systems with
r's. In biological terms, if two sets of food webs
have the same number of species, the same total
number of trophic links (r#s#t), and the same
number of consumer}victim links (t), the webs
with more donor-controlled (s) than recipient-
controlled (r) links are more likely to be perma-
nent than those with more recipient-controlled
than donor-controlled links.

Since currently no conditions that are both
necessary and su$cient for permanence are
known, the proportion of permanent webs unde-
tected by the su$cient condition cannot be accu-
rately determined. Here, we use the probability of
systems satisfying the su$cient condition for per-
manence as a lower bound and the probability of
systems satisfying the necessary conditions for
permanence as an upper bound to enclose the
probability of permanence. The probability that
systems persist in numerical simulations is also
compared with these two bounds.

For a Lotka}Volterra system of n species with
a community matrix P and Jacobian matrix A,
necessary conditions for permanence are that
(!1)n det A'0, trA(0, and (!1)ndet P'0
(Hofbauer & Sigmund 1998).

We determined the persistence of a system
numerically by tracing the trajectory starting
from random values for 5000 time steps. If the
populations of all species remain greater than
1]10~8 during the 5000 time steps, we regard the
system as being persistent. For each food web
con"guration, 1000 sample systems are simulated.

We compared the three probabilities along
four lines: (a) the partial connectance of t links
was increased with no other links; (b) the partial
connectance of r and s links (r"s) is varied with



FIG. 11. The probabilities of LVCM systems satisfying the su$cient conditions ( ) for permanence and the necessary
conditions ( ) for permanence and the probability of persistence ( ) in the LVCM with ten species. (a) Webs with
varying connectance of t links only. (b) Webs with varying connectance of r and s links only. (c) Webs with varying partial
connectance of r links, "xed partial connectance of t links (C t"0.5) and no s links. (d) Webs with varying partial connectance
of s links and "xed partial connectance of t links (C t"0.5) and no r links.
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no t links; (c) the partial connectance of r links is
varied with a "xed partial connectance of
t (t/n"0.5) and no s links; (d) the partial connec-
tance of s links is varied with a "xed partial
connectance of t (t/n"0.5) and no r links.

The probability of persistence falls between the
lower and upper bounds set by the su$cient
condition and the necessary conditions for webs
with only t links [Fig. 11(a)], webs with t and
r links [Fig. 11(c)] and webs with t and s links
[Fig. 11(d)], while the probability of persistence
almost coincides with the lower bound for sys-
tems with only r and s links (r"s) [Fig. 11(b)].

5. Discussion and Conclusion

This study appears to be the "rst to explore
explicitly the general relationship between com-
plexity and stability of food webs when perma-
nence is used to measure stability. Our result
shows that three measures of stability predict
qualitatively consistent relationships between
complexity and stability of food webs. The prob-
abilities that LVCM food webs have QGAS, LAS
and permanence all decrease monotonically as
food web complexity increases, when complexity
is measured by the number of species or by
connectance. However, there are important
quantitative di!erences among the probabilities
of the three measures of stability.

Law & Blackford (1992) and Law and Morton
(1993) reported that communities with more
omnivory links have more prevalent permanent
paths and suggested that communities of high
connectance are more ready to reassemble them-
selves. Based on that, they argued that complex
communities may be less vulnerable to distur-
bance than simple ones. Their results do not
necessarily have to be considered as being in
contradiction with our results as well as results
from previous asymptotic stability analysis. The
results of Law and colleagues (1992, 1993) em-
phasize that, within self-assembled communities,
complex communities have more alternative per-
manent states than simple ones. Our results em-
phasize that within stochastically assembled food
webs, complex food webs are less likely to be
permanent than simple webs.

This study generates six predictions about the
e!ects of di!erent types of trophic links on the sta-
bility measured by the three criteria. Predictions 1,
3 and 5 concern the e!ects of coupled positive}
negative pairs of directed links (t or consumer}
victim links) and uncoupled positive}negative
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pairs of unidirectional links (r and s, or recipient-
controlled and donor-controlled links) on the
probability of stability measured by QGAS, LAS
and permanence, respectively. Prediction 1 states
that, if food webs are considered as directed
graphs, coupled positive}negative pairs (t or con-
sumer}victim links) yield a larger probability of
QGAS than the same number of uncoupled pos-
itive}negative pairs of directed links (r and s, or
recipient-controlled and donor-controlled links).
On the other hand, if food webs are considered as
undirected graphs, consumer}victim links yield
a smaller probability of QGAS than the same
number of r and s links, assuming t"r"s. In
contrast, predictions 3 and 5 state that, whether
food webs are viewed as directed or undirected
graphs, t links yield larger probabilities of LAS
and permanence than the equivalent number of
paired r and s links.

Predictions 2, 4 and 6 are concerned with the
e!ects of uncoupled negative links (r or recipient-
controlled links) and uncoupled positive links
(s or donor-controlled links) on the probability
of QGAS, LAS and permanence, respectively.
Prediction 2 says that with the same number
of consumer}victim links and the same number
of recipient-controlled plus donor-controlled
links, webs with more even proportions of posit-
ive (donor-controlled) and negative (recipient-
controlled) unidirectional links are less stable
than those with less even proportions, regardless
of the sign of the imbalance. This prediction im-
plies that food webs with even proportions of
donor-controlled and recipient-controlled links
are expected to be rare compared with webs with
less even proportions of these two types of links.
In contrast, predictions 4 and 6 state that food
webs with more donor-controlled links have
a greater probability of LAS and permanence
than do the webs with more recipient-controlled
links. This prediction agrees with the observation
that donor-controlled interaction is rather com-
mon in natural communities (Hawkins, 1992;
Hall & Ra!aelli, 1993; Polis & Strong, 1996). It is
also consistent with the evolutionary trend that
many species that serve as food resources of other
species have evolved traits to secure reproduc-
tion, such as protection of the part of organisms
or populations that are important for reproduc-
tion, while allowing predators to feed on
the parts that have a trivial contribution to
reproduction. There has been hardly any theoret-
ical proof or empirical evidence for the ecological
or evolutionary bene"ts of recipient-controlled
interactions. Stability constraints may be a mech-
anism favoring the donor-controlled interaction,
in addition to energetic and demographic mecha-
nisms. Previous theoretical studies showed that
food webs rich in donor-controlled interactions
require shorter times of return to the equilibrium
following a small perturbation (Pimm, 1982;
Chen & Cohen, 2001), but have greater transient
growth of perturbation (Chen & Cohen, 2001)
than webs rich in recipient-controlled interactions.

Combining the above predictions, the food
web con"gurations favored by stability criteria in
LVCMs emerge: consumer}victim and donor-
controlled links are expected to be the major
trophic interactions and recipient-controlled
links are expected to be rare.

If food webs are constrained by stability, then
which stability measure represents the operative
constraint in natural systems? Perhaps the three
stability measures operate in di!erent situations.
In #uctuating environments, where food webs
undergo frequent perturbations of both the
population sizes and the coe$cients of interac-
tions and reproduction, QGAS is more likely the
stability constraint in operation, since LAS and
the probability of permanence are structurally
unstable and LAS is only locally stable. Here,
being structurally unstable means that a small
change in the parameters (interaction coe$-
cients) may change qualitatively the dynamic
behavior of the system (Hofbauer & Sigmund,
1998). In constant environments, LAS or perma-
nence may be su$cient to maintain food web
persistence. Donor-controlled links seem more
likely to become established in constant environ-
ments than in #uctuating environments, since
such links are more likely to appear in web con-
"gurations constrained by LAS and permanence.
These predictions should be tested empirically.
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