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ABSTRACT

The model of Daisyworld showed that nonteleological mechanistic responses of life to the
physical environment can stabilize an exogenously perturbed environment. In the model, 2
species of daisies, black and white, stabilize the global temperature of a planet exposed to
different levels of insolation. In both species, the response of the growth rate to local temperature
is identical, but differences in albedo between the 2 species generate differences in local temper-
atures. The shifting balance between the daisies keeps the global temperature in a range suitable
for life. Watson and Lovelock made the stronger claim that ‘‘the model always shows greater
stability with daisies than it does without them.’’ We examined this claim by introducing an
extra source of competition into the equations that describe the interactions between the daisy
species. Depending on the parameters of competition, temperatures can vary more widely with
increasing insolation in the presence of daisies than without them. It now seems possible, timely
and perhaps necessary, to include an accurate representation of interspecific competition when
taking account of vegetational influences on climate.

1. Introduction suitability of Earth for life (Lovelock, 1988;

Lenton, 1998). To demonstrate that planetary
It has long been recognized that life influences ‘‘homeostasis by and for the biosphere’’ could in

physical and chemical environments and vice principle work by mechanisms that entailed no
versa, at all scales from the local to the global teleology, Watson and Lovelock (1983) proposed
(Lotka, 1925). Recent empirical and computa- a mathematical model called Daisyworld. They
tional studies (Beerling et al., 1998) of Earth’s analyzed this model numerically. Saunders (1994)
ménage à trois — vegetation, climate and atmo- analyzed it mathematically.
sphere — support that perspective. Watson and Lovelock (1983) made a further

One specific and controversial version of that strong claim for their ‘‘imaginary planet having .. .
widely accepted view is the Gaia hypothesis. In just 2 species of daisy of different colors . . . .
its early form (Kump, 1996), the Gaia hypothesis Regardless of the details of the interaction, the
proposed that life affects the physical planet effect of the daisies is to stabilize the temperature.
(including the climate and the chemical composi- . . . the model always shows greater stability with
tion of the atmosphere and ocean) in ways that daisies than it does without them.’’ Lovelock
invariably or usually increase or maintain the

(1988) later argued further for this claim but with

fewer technical details.

Watson (1999, p. 83) articulated a more refined* Corresponding author.
e-mail: cohen@rockefeller.edu view of the Daisyworld model. He recognized
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that even one species of daisies diminishes changes daisy area P is always taken as 1 (by Watson and
Lovelock and here). These areas are determinedin temperature in the midrange of insolation.

However, life amplifies the temperature effect of as the equilibrium of the growth equations of

Carter and Prince (1981):small changes in insolation at the extremes where
the daisies become just viable or just cease to be
viable. ‘‘What is the essential difference between dab

dt
=ab((P−ab−aw )b(Tb)−c) ,the behavior of the system with life and that

without it? It is not increased stability, for though
this is apparent in some regions, the opposite daw

dt
=aw((P−ab−aw)b(Tw )−c) ,occurs in others. Rather, it is a change in the

character of the system due to the non-linearity
that is introduced by the equations governing the

where c is the death rate of daisies per unit time,
population of daisies.’’

and the growth function b(T ) (per unit time, per
This note describes a further example of the

unit area) depends (identically for both species)
general statement of Watson (1999). We show that

on the local temperatures Tb , Tw in the areas of
if interspecific competition affects daisy growth

the planet covered by black and white daisies,
more than self-inhibition while all other assump-

respectively. Saunders (1994, p. 366) emphasizes
tions of the Daisyworld model remain unchanged,

that the patches of black and white daisies are
then temperatures can vary more widely over

spatially segregated, but a referee of this note
some intervals of increasing insolation in the

argues that the model need not necessarily be
presence of the daisies than without them. The

interpreted as assuming spatial segregation
daisies need not stabilize the temperature of

because adjacent black and white objects may
Daisyworld. This result suggests that global cli-

differ in temperature by several degrees. It would
matic dynamics may depend on the details of

appear that the use of different local temperatures
interactions within the biosphere.

for regions of black and white daisies may require
This example is one of a growing number of

some spatial segregation, rather than random
variations on the theme of Daisyworld. Other

intermixing, of black and white daisies if the
variations are given by Maddock (1991), Saunders

temperature differences between the black and
(1994), Harding and Lovelock (1996), Robertson

white daisies are large enough. The growth func-
and Robinson (1998) and the references cited by

tion b is assumed to be 0 below 5°C, to rise in an
them and above.

inverted parabolic U to a value of 1 at 22.5°C,

and to fall to 0 again at and above 40°C.
To represent interspecific competition we modi-

2. Daisyworld with interspecific competition
fied the above equations by assuming that

In Daisyworld, a gray planet (with albedo Ag=
0.5) is seeded with black daisies (albedo Ab=0.25)

dab
dt

=ab((P−bbab−wbaw )b(Tb)−cb ) ,and white daisies (albedo Aw=0.75). These 2

species have identical growth responses to local
temperature. A sun delivers insolation that is fixed daw

dt
=aw((P−bwab−wwaw)b(Tw)−cw ) ,

over time but is varied, in comparative statics,

from 0.6 to 1.6× the insolation currently reaching
earth. For each level of insolation, the Daisyworld where bb is the density-dependent inhibitory effect

of black daisies on black daisies, wb is the competi-model computes the planetary temperature using

the Stefan–Boltzmann law for black body radi- tive effect of white daisies on black daisies, and so
on. In our numerical explorations of the model,ation and the average planetary albedo. The aver-

age albedo is determined by the fraction of we held bb=ww=1 as in the original model and
varied only bw and wb. In all other respects, weplanetary area ab covered by black daisies, the

fraction of planetary area aw covered by white used exactly the equations and parameter values

of Watson and Lovelock (1983), with death ratesdaisies, and the fraction of remaining area of bare
gray ground (P−ab−aw), where the potential per unit time cb=cw=0.3.
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3. Method of analysis

Watson and Lovelock solved their model by

numerical iteration of its differential equations
until the areas occupied by each species of daisy
converged to an apparent steady-state. They com-

pared different equilibria by repeated numerical
solutions of the model with different parameters.
By contrast, following the analytical approach of

Saunders (1994), we assumed a steady-state by
setting the right side of the above competition
equations equal to 0. We then manipulated the

resulting equations symbolically, together with the
other equations of Watson and Lovelock, to
obtain implicit equations for the state variables at
equilibrium. We solved the implicit equations

Fig. 1. Daisyworld temperature (T ) as a function ofnumerically and plotted the results. We carried
insolation (L ), expressed as a multiple of solar insolation,

out the symbolic manipulation, numerical solu-
when density-dependent self-inhibition of each daisy

tions and plotting using Derive (Soft Warehouse, species is considerably less than interspecific competition
1997). The reader who wishes the details of how (bb=ww=1, bw=2, wb=3). Between L =0.8 and L =

1.0, the effective planetary temperature in the presencewe analyzed the model may obtain a technical
of daisies varies far more abruptly than it would in theirdescription from either author.
absence or at lower levels of competition (bw=wb=1).
Daisy areas are scaled by 10× their actual values (which
always fall between 0 and 1).

4. Results

We first reproduced the prior results of Watson
and Lovelock (1983). We omit our reproduction tative conclusion that interspecific competition

can amplify the effect on temperature of smallof their Fig. 1 because it has already been repro-

duced by several others. Although their Fig. 1 did changes in insolation.
When competition between daisy species isnot display a hysteresis at low luminosity, hyster-

esis does occur when a gradual decrease in lumin- sufficiently intense, the abrupt temperature transi-

tion approximates a jump between the temper-osity is considered (Maddock, 1991, p. 332;
Saunders, 1994, p. 369). ature trajectory of a world with black daisies only

and the temperature trajectory of a world withWhen competition between the black daisies

and the white daisies is intense, a small change of white daisies only (T. M. Lenton, personal com-
munication). As long as both kinds of daisiesinsolation can drive a large change in steady-state

temperature (Fig. 1). Many additional examples survive, the actual temperature trajectory is inter-

mediate between these 2 extreme trajectories. Anfor other values of the competition parameters
could also be given. When one of the interspecific abrupt transition induced by interspecific competi-

tion does not drive the global temperature out ofcompetition coefficients retains its original value

of 1 and the other interspecific competition the range tolerable to life. Even with intense
interspecific competition, Daisyworld is habitablecoefficient is varied, the transition in temperature

is generally less dramatic. The abruptness of the over a wider range of insolation with daisies (of 1

species or 2) than it would be without them.transition can also be modified by changing the
parabolic dependence of plant growth on temper- By numerical experimentation (not shown), we

found that differences between the death rates ofature to a Gaussian dependence (Harding and
Lovelock, 1996, p. 110), as well as by many other the black and the white daisies had a much smaller

effect on the ruggedness of the temperature-insola-changes in the model. These variations of the

model modify the details of the effect of inter- tion profile than did competition between the
black and the white daisies.specific competition but do not change the quali-
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5. Discussion: relevance to earth The interspecific competition modeled here
could be produced by a well-known mechanism,

The underlying supposition of Watson and allelopathy (Rice, 1984, 1995). Harper (1977,
Lovelock (1983) is that vegetation can modify p. 369) wrote: ‘‘Some of the depressive effects of a
global climate. Supporting that view, Hayden plant upon its neighbours are so striking that an
(1998) reviews many examples of the ways that interpretation based on the monopolization of
vegetation modulates many aspects of climate at resources has often seemed inadequate. An alter-
all scales, including the global scale. For example, native is obviously that some plants may release
vegetation increases the water vapor in the atmo- into their environment toxic materials that harm
sphere through evapotranspiration. The increased or even kill neighbours.’’ Harper (1977) reviewed
moisture raises the minimum temperature and laboratory experiments that demonstrated the role
reduces the maximum temperature. Plants pro- of allelopathy. More recent studies (Rice, 1984,
duce non-methane hydrocarbons, about half of 1995) document the role of allelopathy in the field
which agglomerate as particulate hydrocarbons. and support the assumption made here that a
At high relative humidities, water vapor condenses species may inhibit the growth of another species
on particulate hydrocarbons to form haze and to substantially more than it inhibits its own growth.
raise minimum temperatures. The surface rough- It seems possible, timely and perhaps necessary,
ness of vegetation slows average wind speeds over to include an accurate representation of inter-
the interior of England and Scotland by half, specific competition when taking account of
compared to wind speeds over the oceans adjacent vegetational influences on climate. Some general
to the UK. Different plants have different rates of circulation models of the climate now include
evapotranspiration, produce different hydrocar- interaction with dynamic global vegetation models
bons, and have different forms of roughness and which allow for competition among functional
responses to wind velocity. Not all plants are types of vegetation (Foley et al., 1998; T. M.
interchangeable in their climatic effects. Lenton, personal communication). Such models

Plant competition has long been recognized as are clearly a step in the right direction.
significant in the composition of biotic communi-
ties (Clements et al., 1929; Grace and Tilman,
1990). Mathematical models have been developed

6. Acknowledgmentsto represent plant competition (Pakes and Maller,
1990). Maddock (1991, p. 336) considered inter-

JEC is grateful for the patient and constructivespecific competition in the context of the
suggestions of S. P. Harding, T. M. Lenton, andDaisyworld model, using a mathematical form
the referees. He acknowledges the support of USthat is slightly different from that used here,
National Science Foundation grant BSR92-07293without exploring the extremes of competition
and the hospitality of Mr. and Mrs. William T.considered here and without discussing possible

mechanisms. Golden.

REFERENCES

Beerling, D. J., Chaloner, W. G. and Woodward, F. I. vegetation and climate. Global Change Biology 4,
561–579.1998. Vegetation–climate–atmosphere interactions:

past, present and future. Phil. T rans. Roy. Soc. L ondon Grace, J. B. and Tilman, D. (eds.). 1990. Perspectives on
plant competition. San Diego: Academic Press, 1990.353, 1–171.

Carter, R. N. and Prince, S. D. 1981. Epidemic models Harding, S. P. and Lovelock, J. E. 1996. Exploiter-medi-
ated coexistence and frequency-dependent selection inused to explain biogeographical distribution limits.

Nature 293, 644–645. a numerical model of biodiversity. J. T heor. Biol.
182, 109–116.Clements, F. E., Weaver, J. E. and Hanson, H. C. 1929.

Plant competition; an analysis of community functions. Harper, J. L. 1977. Population biology of plants. Academic
Press, Orlando.Carnegie Institution of Washington. Reprinted: New

York: Arno Press, 1977. Hayden, B. P. 1998. Ecosystem feedbacks on climate at
the landscape scale. Phil. T rans. Roy. Soc. L ondonFoley, J. A., Levis, S., Prentice, I. C., Pollard, D. and

Thompson, S. L. 1998. Coupling dynamic models of 353, 5–18.

Tellus 52B (2000), 3



. .   . . 984

Kump, L. R. 1996. The physiology of the planet. Nature Rice, E. L. 1995. Biological control of weeds and plant
diseases: advances in applied allelopathy. Norman: Uni-381, 111–112.

Lenton, T. M. 1998. Gaia and natural selection. Nature versity of Oklahoma Press.
Robertson, D. and Robinson, J. 1998. Darwinian394, 439–447.

Lotka, A. J. 1925. Elements of physical biology. Baltimore: Daisyworld. J. T heor. Biol. 195, 129–134.
Saunders, P. T. 1994. Evolution without natural selec-Williams and Wilkins. Reprinted 1956: Elements of

mathematical biology. New York: Dover. tion: further implications of the Daisyworld parable.
J. T heor. Biol. 166, 365–373.Lovelock, J. E. 1988. T he ages of Gaia: a biography of

our living earth. W. W. Norton, New York and Soft Warehouse, Inc. 1997. Derive, a mathematical assist-
ant, version no. 4. Computer Algebra System. Soft Ware-London.

Maddock, L. 1991. Effects of simple environmental feed- house, Inc., Honolulu, Hawaii, USA.
Watson, A. J. 1999. Co-evolution of the Earth’s environ-back on some population models. T ellus 43B, 331–337.

Pakes, A. G. and Maller, R. A. 1990. Mathematical eco- ment and life: Goldilocks, Gaia and the anthropic
principle. In: James Hutton — present and future (eds.logy of plant species competition: a class of deterministic

models for binary mixtures of plant genotypes. Cam- Craig, G. Y. and Hall, J. H.). Geological Society,
London, Special Publications, 150, 75–88.bridge, England; New York: Cambridge University

Press. Watson, A. J. and Lovelock, J. E. 1983. Biological
homeostasis of the global environment: the parable ofRice, E. L. 1984. Allelopathy, 2nd edition. Orlando, FL:

Academic Press. Daisyworld. T ellus 35B, 284–289.

Tellus 52B (2000), 3



The Effect of Competition on 
the Biological Homeostasis of Daisyworld 

Andrew Watson and James Lovelock [I9831 present equations describing a hypothetical planet 
they call Daisyworld. Two species of daisies grow on the planet - one dark colored (black) and one light 
colored (white). The authors aim to show that the plants will moderate the temperature to their own 
advantage despite changing amounts of solar luminosity. 

To produce their results, Watson and Lovelock use a time simulation technique to compute the 
daisy areas and effective planet temperature at steady state for a given solar luminosity. We take a more 
analytical approach to the problem by determining the chain of equations that describes the model and 
then numerically solving these equations for a given luminosity. In addition, we include parameters in 
the equations to account for varying amounts of competition between the daisies. The following 
summarizes the procedure we use to model Daisyworld: 

The growth rate ,8 of either typ y is defined to be a parabolic function of the local 

temperature T, between 5°C and reaching a maximum of one at 22.5"C. The growth rate is J 

zero below 5°C and above 40°C. This leads to the equation 

The radiation absorbed by the planet is S L . (1 - A) where S is 9.17 lo2 watts/m2, L is the 

solar luminosity, and A is the average albedo of the planet. The radiation emitted by the planet is 

a . (Te  + 273)' where a (Stefan's constant) is 5.67 10" watts/m2/K4 and Te is the effective 
temperature in "C at which the planet radiates. Since the absorbed and emitted radiation must be equal at 
steady state, this leads to the equation 

s . L . ( ~ -  A) = a.(Te+273)' (2) 

Solving this equation for the albedo A(L, Te) of the planet as a function of the solar luminosity 

and the effective temperature yields 

The radiation per unit area emitted by a region of daisies is set equal to the radiation per unit area 
emitted by the planet as a whole plus a positive constant q times the difference between the average 
planet albedo A and the local albedo of the daisies A,. This leads to the equation 

(1; + 273)' = (Te + 273)' + q ( A  - A,) (4) 

Solving this equation for the local temperature 1; (Te, A, A,) as a function of the effective planet 

temperature and the planet and local albedos yields 

Watson and Lovelock use the comparative growth equations 



due to Carter and Prince [198:1] to describe the rate of change of the areas a of black and white daisies 

versus time. P is the fraction of the planet's area capable of growing daisies, ~ ( q )  is the growth rate 

per unit time per unit area, and y is the death rate per unit time. 

To account for varying levels of competition between the daisies and different black and white 
daisy death rates we generalize these simultaneous growth equations to 

where y, is the black death rate per unit time, y, is the white death rate per unit time, bb is the 

inhibitory effect of black daisies on black daisies, wb is the inhibitory effect of white daisies on black 
daisies, etc. 

If at steady state only black daisies are surviving (i.e. a, = 0), then the following equation must 
be satisfied 

(P- bb.ab).p(T,)- yb = 0 (8) 

Solving this equation for the black daisy area a, (T,) as a function of its local temperature 

yields 

Similarly, if at steady state only white daisies are surviving (i.e. a, = 0),  then the white daisy 

area a,(T,) as a function of its local temperature is 
"I  

If at steady state both black and white daisies are surviving (i.e. their areas are nonzero), then by 
equation set (7) the following equations must be satisfied 

Solving this simultaneous system of linear equations for the black and white daisy areas 

a, (T,  , T,) and a, (T,  , T,) as functions of local temperatures yields 



provided that the system is nonsingular (i.e. bb - ww # bw . wb). However, if the system is singular, it 
must be the case that 

provided that both black and white daisies are surviving. 

The average albedo of the planet can be found by summing the products of the albedos of the 
various regions on the planet times their respective areas. This ymkk the equation ) Pads t o  

4 A = a g . A g +  % . A b +  a w . A w  (14) 

Since the area of bare ground a, equals 1 - ab - aw , equation (14) can be rewritten as 

Now we have all the equations required to determine the planet's effective temperature Te for a 
given solar luminosity L . First, we consider the case when the system of equations (1 1) is nonsingular: 

If both black and white daisies are surviving, equation set (12) defines the areas ar, and aw as 

functions of the local temperatures T, and Tw . Equation (5) defines the local temperatures T, and Tw as 

functions of the effective temperature Te and planet albedo A . Equation (3) defines the planet albedo 
A as a function of solar luminosity L and effective temperature Te. In summary 

and A = A(L, Te) 

If only black daisies are surviving, the situation is much simpler since by equation (9) 

= (B (T,  ( T ~ ,  '('7 T~)))) 

a,= 0 

and A = A.(L, Te) 

Similarly if only white daisies are surviving, by equation (10) 
ab = 0 

and 



Substituting the expressions for ab , aw , and A in equation set (16) into equation (15) yields an 

equation that only depends on the solar luminosity L , the effective temperature Te, and various 
constant parameters. The same is true if the expressions for ab , aw , and A in equation sets (17) or (1 8) 
are substituted into equation (15). Therefore, in all three cases the effective temperature is an implicitly 
defined function of the solar luminosity. 

Now the question becomes: Which of the three equations is the appropriate one to use for a 
given luminosity? Our solution is to assume that both black and white daisies are surviving by 
substituting equation set (16) into equation (15) and numerically solving for the effective temperature. 
Then given this effective temperature, use equation set (16) to compute the black and white daisy areas 
and see if they are, in fact, positive. If so, the assumption is valid, and the effective temperature and 
daisy areas have been computed. 

If the white daisy area is nonpositive, assume that only black daisies are surviving by 
substituting equation set (17) into equation (15) and numerically solving for the effective temperature. 
Then given this effective temperature, use equation set (17) to compute the black daisy area and see if it 
is, in fact, positive. If so, the assumption is valid, and the effective temperature and daisy areas have 
been computed; if not, the planet is lifeless, and the albedo of the planet A equals the albedo of bare 

ground A,. Thus, the effective temperature of a lifeless planet Te,(L) as a function of solar luminosity 

can be derived from equation (3) to be 

Similarly, if the black daisy area is nonpositive, assume that only white daisies are surviving by 
using equation set (1 8) to compute the effective temperature and verifying that the white daisy area is 
positive. If the white daisy area is not positive, the planet is lifeless and equation (19) can again be used 
to compute the effective temperature. 

The above procedure for computing the effective temperature and daisy areas for a given solar 
luminosity assumed that the system of equations (1 1) is nonsingular. Now, we consider the case when 
the system is singular: 

Equation (5) defines the local temperatures Tb and Tw as functions of the effective temperature 

Te and planet albedo A . Equation (3) defines the planet albedo A as a function of solar luminosity L 
and effective temperature Te . In summary 

Substituting the expressions for T, and Tw in equation set (20) into equation (1 3) yields an 

equation that depends only on the solar luminosity L , the effective temperature Te, and various 
constant parameters. Therefore, the effective temperature is an implicitly defined function of the solar 
luminosity. Note that this equation is valid only if both black and white daisies are surviving, since 
equation (13) depends on this assumption. 

As with the nonsingular case, we begin by assuming that both black and white daisies are 
surviving by substituting equation set (20) into equation (13) and numerically solving for the effective 
temperature. Then given this effective temperature, we need to compute the black and white daisy areas 
and see if they are, in fact, positive. Unfortunately, equation set (20) does not provide formulas for 
computing daisy areas. However, equations (1 1) and (15) can be combined to make the system of 
equations 



Solving this system of linear equations for the black and white daisy areas ab(Tb , A) and 

aW(Tb, A) as functions of local black temperature and the planet albedo yields 

Using equations (I), (3), (9, and (22), the black and white daisy areas can be computed as a 
function of the solar luminosity and effective temperature. Now the same procedure used for the 
nonsingular case can be used to verify the assumption that both black and white daisies are surviving. If 
not, the fact that the system of equations (1 1) is singular is of no consequence. Thus, the same procedure 
described for the nonsingular case can be used to compute the effective temperature and daisy areas, if 
either black or white daisies are not surviving. 

Watson and Lovelock use the following values for the various Daisyworld parameters: 
A, = 0.5 the albedo of bare ground not covered daisies 

A, = 0.25 the albedo of ground covered by black daisies 

A, = 0.75 the albedo of ground covered by white daisies 
P = 1 the fraction planet area that is fertile 
y, = yw = 0.3 the death rate per unit time 

q = 4. (273 + 22.5)3 - 20 = 2.06425 1 09 the insulation factor 

Their model is the special case when bb = bw = wb = ww = 1. 
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File: Daisyworld-mth 07/09/97 

[Input~ode := Word, CaseMode := Sensitive, PrecisionDigits := 81 

"Physical constants:" 

Stefan's constant 

Flux constapt 

"Daisyworld equations:" 

3 
q := 4.(273 + 22.5) .qprime Solar energy redistribution constant 

Planet albedo 

T~(L, Te) := qprime- (A(L, ~ e )  - Ab) + Te Black daisy local temperature approximation 

Tw(L, Te) := qprime. (A(L, Te) - AW) + Te White daisy local temperature approximation 

4 1/4 
Tb(L, ~ e )  := (~.(A(L, Te) - hb) + ( ~ e  + 273) ) - 273 Black daisy local temperatuhe 

4 1/4 
TW(L, Te) := (q- (A(L, Te) - AW) + (Te + 273) ) - 273 White daisy local temperature 

22.5 - T ~ ( L ,  Te) 
Pb(L, Te) := 1 - [ 17.5 

Black daisy growth rate 

Black daisy area w/ zero determinant 

\p - 
yb \ (Ag - Aw) + wb- (A(L, Te) - Ag) 

abO(~, Te) := 
Ag.(bb - wb) + Ab-wb - Aw-bb 

White daisy area w/ zero determinant 

Black daisy area (nonsingular) 

I I 
a b ( ~ ,  Te) := MAX(O, IF(P~(L, Te) 0 v pw(L, Te) s 0, ? ,  

White daisy growth rate 



File: Daisyworld-mth 

White daisy area (nonsingular) 

f I 
aw(L, ~ e )  := MAX 0, IF pw(L, Te) g 0 v pb(L, Te) g 0, ? ,  I I 

Converts a data matrix to matrices of pairs 
PairOff(matrix) := VECTOR(VECTOR( , row , row, matrix), i, 2, 

i I 
DIMENSION (matrix ) ) 

1 

Extend Daisyworld data matrix 
FixUp(data1 :=  VECTOR([^^, r , 10.r , 10.r , IF(r > 0, Tb(r , r ) ,  ? ) ,  IF(r > 0, 

2 3 4 3 1 2  4 

data ) 

A(L, Te) - Ag 
BlackOnly(L, Te) := BlackOnlyAux 

Ab - Ag 

i A(L, Te) - Ag 
WhiteOnly(L, ~ e )  := WhiteOnlyAux L, Te, 

Aw - Ag 1 



File: Daisyworld.mth 

1 I 

I I 
/ 

yb 
P - 

MAx(0, Pb(L, Te)) 
IF w < 0, Blackonly L, RHS SOLVE A(L, Te) = Ag + 

\ 

i \ 

(Ab - 
bb 

/ I I 

Daisy~ero~et(L, Te) := Black~ndor~hite(L, Te, abO(L, Te), awO(L, Te)) 

~aisy~onzeroDet(L, ~ e )  := Black~nd~rWhite(L, Te, ab(L, Te), a w ( ~ ,  Te)) 

DaisyData(lower, upper, step) := FixUp bb.ww = bw-wb, DaisyZeroDet L, I 

YW 
P - 

MAX(O, Pw(L, Te)) 
A(L, Te) = Ag + .(AW - Ag), Te, -20, 32 RHS 

60))Jl , Daisy~onzero~et(~, RHS((SOLVE(A(L, Te) = Ag + ab(L, Te).(Ab - Ag) + aw(L, 

\ \ WW 
\ 

SOLVE 

Te)-(Aw - Ag), Te, -20, 80)) ) )  , L, lower, upper, step 
1 

Generate plot matrix 
DaisyPlot(lower, upper, step) := ~ a i r ~ f f ( ~ a i s y ~ a t a ( l o w e r ,  upper, step)) 

"Daisyworld parameters:" 

Daisy albedos 

Daisy death rates 

P := 1 Fraction of planet's area that is fertile ground 



File: Daisyworld.mth 07/09/97 09:58:32 AM 

qprime := 20 q' - Solar energy redistribution constant 

[bb := 1, wb := 1, bw := 1, ww := 1) 

DaisyPlot(0.56, 1.64, 0.02) To generate plot data matrix 



; File: DAISY-LSP 07/03/37 

(FLAG '"compete" 'FUNCTION) 
(DEFUN "corr~ete" (AXG1 ARG2 m G 3  mG4) 

( (AND (NUMBERF ARG1) (NUMBERF ARG2) (NUMBERF ARG3) (XUMDERP MG4) ) 
(GETQ BB M G 1  BW ARG2 WW M G 3  WB ARG4) 
(SETQ DESCRIM ( -  ( *  Dl3 WW) ( +  l3W WB) ) )  ) 

(YX<E-VECTOR (LIST (== "bb" BB) (== "bw" BW) (== "ww" WW) (== "wb" WE))) ) 

(FLAG '"albedo" 'FUNCTION) 
(DEFUN "albedo" (ARG1 ARG2 ARG3 ARG4) 

( (AND (NUMBERF ARG1) (NUMBERP ARG2 ) (NUMBERF ARG3) (NUMBERF ARG4 ) ) 
(SETQ AG ARGl AB ARG2 AW ARG3 AN ARG4) ) 

(MAICE-VECTOR (LIST (== "hg" AG) (== "ab" m) (== "aw" AW) (== "an'' AN) ) ) ) 

(FLAG ' "misc" ' FUNCTION ) 
(DEFUN "misc" (ARG1 ARG2 ARG3 ARG4) 

( (AND (NUMBERP MG1) (NUMBEXF ARG2 ) (NUMBERF ARG3 ) (NLWERF ARG4 ) ) 
(SETQ G A l m  ARGl GAMMAW ARG2 QPRIME ARG3 F ARG4) 
(GETQ Q ( *  4 ( "  ( +  273 22.5) 3) QPRIME) ) 1 

(MAICE-VECTOR (LIST (== "garnmab" GANMAE)) (== "gammaw" G2WMA.W) 
(== "qprime" QPRIME) i== "P" F))) ) 

(FLAG '"descrim" 'FUNCTION) 
(DEFUN "descrim" (ARG) DESCRIM) 

(FLAG 'A 'FUNCTISN) 
(DEFUN A (L TE) 
(ALBEDO L TE) ) 

( F ~ G  '1'~~" ' LVNCTION) 
(DEFUN "Tw" (L TE) 
(TL TE (ALBEDO L TE) fsW) ) 

(FLAG '"Tb" 'FUNCTION) 
(DEFUN "Tb" (L TE) 
(TL TE (ALBEDO L TE) AB) ) 

(FLAG '"Teg" 'FUNCTION) 
(DEFeTN "Teg" (L) 

( -  ( "  ( /  ( *  L ( -  1 AG)) SS) 1/4) 273) ) 

(FLAG '"abO" ' FUNCTION) 
(DEFUN "abort (L TE ; Black daisy area on a black/white world 

AE 
( ( A N D  (NTJME?ERF L) (NUMBERP TE) ) 
(SETQ AE (ALBEDO L TE) ) 
i/ ( +  ( *  ( -  P ( /  GAMMAB ("beta" (TL TE AE A B ) ) ) )  ( -  AG AW)) 

( *  i -  AE AG) WB)) 
( t -  ( *  ( -  BB WB) AG) ( *  AB WE) ( *  AW BB -1))) ) 

(LIST '"abO" L TE) ) 



(FLAG 'llAwO1l 'FUNCTION) 
(DEFUN l'aw0l1 (L TE ; White daisy area on a black/white world 
- AE) 

( (AND (NUMBERP L) (NUMBERP TE) ) 
(SETQ AE (ALBEDO L TE)) 
( /  ( -  ( *  ( -  P ( /  GAMMAB ("beta1' (TL TE AE AB) ) ) ) ( -  AB AG) ) 

( *  ( -  AE AG) BB) ) 
( +  ( *  ( -  BB WB) AG) ( *  AB WB) ( *  AW BB -1))) ) 

(LIST '"Aw0" L TE) ) 

(FLAG ' "Ab" ' FUNCTION) 
(DEFUN "Ab" (L TE) ; Black daisy area on a black/white world 

( (AND (NUMBERP L) (NUMBERP TE) ) 
(CADR (BLACKWHITE-AREAS L TE) ) ) 

(LIST '"ab" L TE) ) 

(FLAG "law" 'FUNCTION) 
(DEFUN 'lawn (L TE) ; White daisy area on a black/white world 

( (AND (NUMBERP L) (NUMBERP TE) ) 
(CADDR (BLACKWHITE-AREAS L TE)) ) 

(LIST '"Aw" L TE) ) 

(FLAG '"BlackOnly" 'FUNCTION) 
(DEFUN l'BlackOnlyW (L TE 

AE AREA-B) 
(SETQ AE (ALBEDO L TE) 

AREA-B ( /  ( -  AE AG) ( -  AB AG))) 
((OR (<= AREA-B 0) (= TE 0)) 
(MAKE-VECTOR (LIST L ("Teg" L) 0 0)) ) 

(MAKE-VECTOR (LIST L TE AREA-B 0)) ) 

(FLAG '"WhiteOnly" 'FUNCTION) 
(DEFUN "WhiteOnly" (L TE 

AE AREA-W) 
(SETQ AE (ALBEDO L TE) 

AREA-W ( /  ( -  AE AG) ( -  AW AG))) 
( (OR (<= AREA-W 0) (= TE 0) ) 
(MAKE-VECTOR (LIST L ("Teg" L) 0 0) ) ) 

(MAKE-VECTOR (LIST L TE O AREA-W)) ) 

(FLAG ' "BlackEquationl' ' FUNCTION) 
(DEFUN "BlackEquation" (L TE 

PAIR) 
( (AND (NUMBERP L) (NUMBERP TE) ) 
(SETQ PAIR (BLACK-AREA L TE) ) 
( -  (CAR PAIR) AG ( *  (CADR PAIR) ( -  AB AG) ) ) ) 

(LIST '"BlackEquation" L TE) ) 

(FLAG 'llWhiteEquation" 'FUNCTION) 
(DEFUN "WhiteEquationW (L TE 

PA1 R) 
( (AND (NUMBERP L) (NUMBERP TE) ) 



(SETQ PAIR (WHITE-AREA L TE) ) 
( -  (CAR PAIR) AG ( *  (CADR PAIR) ( -  AW AG) ) ) ) 

(LIST '"WhiteEquation" L TE) ) 

(FLAG '"BlackWhiteEquationZeroDet" 'FUNCTION) 
(DEFUN "BlackWhiteEquationZeroDet" (L TE 

AE 
( (AND (NUMBERP L) (NUMBERP TE) ) 
(SETQ AE (ALBEDO L TE)) 
( -  ( *  BW ( -  P ( /  GAMMAB (MAX 0 ("beta" (TL TE AE AB)))))) 

( *  BB ( -  P ( /  GAMMAW (MAX 0 ("beta" (TL TE AE AW)))) ) ) )  ) 
(LIST ' "BlackWhiteEquationZeroDet" L TE) ) 

(FLAG '"BlackWhiteEquation" 'FUNCTION) 
(DEFUN "BlackWhiteEquation" (L TE 

PAIR) 
( (AND (NUMBERP L) (NUMBERP TE) ) 
(SETQ PAIR (BLACKWHITE-AREAS L TE) ) 
( -  (CAR PAIR) AG ( *  (CADR PAIR) ( -  AB AG) ) ( *  (CADDR PAIR) ( -  AW AG) ) ) ) 

(LIST ' "BlackWhiteEquation" L TE) ) 

(DEFUN BLACK-AREA (L TE 
; Returns a list of planet albedo and black daisy area. 

AE) 
(SETQ AE (ALBEDO L TE) ) 
(LIST AE ( /  ( -  P ( /  GAMMAB (MAX 0 ("beta" (TL TE AE AB) ) ) ) ) BB) ) 1 

(DE"FUN WHITE-AREA (L TE 
; Returns a list of planet albedo and white daisy area. 

AE) 
(SETQ AE (ALBEDO L TE) ) 
(LIST AE ( /  ( -  P ( /  GAMMAW (MAX 0 ("beta" (TL TE AE AW))))) WW)) ) 

(DEFUN BLACKWHITE-AREAS (L TE 
; Returns a list of planet albedo, black daisy area, and white daisy area 
; assuming both black and white daisies are surviving. 

AE BETAB BETAW DELTAB DELTAW AREA-B AREA-W) 
(SETQ AE (ALBEDO L TE) 

BETAB ("beta" (TL TE AE AB)) 
BETAW ("beta" (TL TE AE AW) ) 
DELTAB ( -  P ( /  GAMMAB BETAB) ) 
DELTAW ( -  P ( /  GAMMAW BETAW) ) ) 

( ((OR (<= BETAB 0) (<= BETAW 0)) 
(SETQ AREA-B *?*  

AREA-W * ? * )  ) 
(SETQ AREA-B ( /  ( -  ( *  WW DELTAB) ( *  WB DELTAW) ) DESCRIM) 

AREA-W ( /  ( -  ( *  BB DELTAW) ( *  BW DELTAB) ) DESCRIM) ) ) 
(LIST AE AREA-B AREA-W) ) 

(FLAG '"beta" 'FUNCTION) 
(DEFUN "beta" (TL) ; Growth rate equation 

( -  1 ( *  ( /  (-22.5TL) 17.5) 2)) ) 



(DEFUN ALBEDO (L TE) ; Planet albedo 
( -  1 ( /  ( *  SS ( "  ( +  TE 273) 4)) L)) ) 

(DEFUN TL (TE AE AL) ; Local temperature 
( -  ( "  ( +  ( *  Q ( -  AE AL)) ( "  ( +  TE 273) 4)) 1/4) 273) ) 

(DEFZSN TL (TE AE AL) ; Local temperature 
( +  ( *  QPRIME ( -  AE AL)) TE) ) 

("compete" 1 1 1 1) 
("albedo" 0.5 0.25 0.75 0.5) 
("misc" 0.3 0.3 20 1) 
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Daisyworld Temperatures Date: 06/05/97 Time: 05:06:12 



Competition Date: 06/17/97 Time: 01:50:16 PM 

6 0 
Te vs L with competition wb=bw=l, 1.2, 1.5, & 2 

5 0 

4 0 

3 0 

2 0 

10 

1 



File: Daisyplot.mth Date: 06/18/97 Time: 05:56:38 PM 

Area 



Competition Date: 06/17/97 Time: 01:50:16 PM 



B l a c k  Caisyworld Temperature Dare: 0 6 / 0 9 / 9 7  





White Daisyworid Temperat'ure Daie : ^"^ u o /  u 9 i 9 7  Time: G7:15:30 



White Daisyworld Temperatures Date: 06/05/97 Time: 11 : 28 : 52 

White Daisyworld Temperatures 



BlackWhite Daisyworld Date: 06/10/97 Time: 02:06:32 

.loo . 
BlackWhite daisy world temperature vs luminosity 

.80 , 

-with linear approximation 

.60 . 

.40 . 

.20 * 



File: Constant.mth 

"Physical constants:" 

Date: 06/28/97 Time: 06:46:56 PM 

Stefan's constant 

Flux constant 

"Daisyworld constants : '' 

[Ag := 0.5, Ab := 0.25, Aw := 0.75, An := 0.51 Daisy albedos 

P := 1 Fraction of planet's area that is fertile ground 

y := 0.3 Death rate 

qprime := 20 q' - Solar energy redistribution constant 

"Daisyworld equations:" 

Solar energy redistribution constant 

af := P - ab - aw - an Fraction of planet's area covered by fertile bare ground 

ag := 1 - ab - aw - an Fraction of planet's area covered by bare ground 

"Growth rate of daisies in term of local temperature" 

pn := MAX 0, 1 - ; [ 22.:7:5Tn 1 21 
Effective temperature of a bare ground world in terms of luminosity 

S - L a  (1 - Ag) 1/4 
Teg := ] - 273 

"Linear approximation of local temperature in terms of albedo and planet temperature" 

Tb := qprime.(A - Ab) + Te 

Tw := qprime-(A - Aw) + Te 
Tn := qprime- (A - An) + Te 

"Local temperature in terms of albedo and planet temperature" 

4 1/4 
Tb := (q- (A - Ab) + ( ~ e  + 273) ) - 273 



File: Competition.mth Date: 06/19/97 

"Daisy growth equations with competition:" 

Y 
bw-ab + ww-aw = p - -- 

Pw 

Time: 12:33:52 PM 

I 

To plot temperature vs luminosity of a planet with competing black and white daisies 

I Te := 1 

ab := MAX 

I Tb := qprime (A - ~ b )  + Te I 

0, 

I TW := qprime.(A - Aw) + Te l 

\ bb-ww - bw-wb 

a 4 
A := 1 - .  (Te + 273) 

s-L 



File: Transition.mth Date: 06/22/97 Time: 07:29:10 PM 

"At steady state with living black and white daisies:" 

Y Y 
~b + OW = MAX 0 P - -1 = MAX[O, P - -) = 0.6733 

Pb Pw 

ag = 1 - (ab + aw) = 0.3267 

"If ab=O , then aw=0.6733 and:" 

Te = Tb - qprime.(A - Ab) = 19.1335 

"If aw=O , then ab=0.6733 and: " 

Te = Tb - qprime.(~ - Ab) = 25.8664 

4 
a. (Te + 273) 

L = = 0.73816 
S. (1 - A) 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

User 

"Absolute minimum and maximum temperatures at which daisies can survive:" 

P-pb - y = 0 At transition from black daisies to none 

P.pw - y = 0 At transition from black daisies to none 

Minimum black daisy local temperature 

Minimum black daisy planet temperature 

Tecb = 22.5 - - qprime-(~g - ~ b )  = 2.85844 

Minimum black daisy planet temperature 



File: Transition-mth Date: 06 /22 /97  Time: 07 :29 :10  PM 

Twwh = 2 2 . 5  + Maximum white daisy local temperature 

Maximum white daisy planet temperature 

Tewh = 2 2 . 5  + 1 7 . 5 . T  1 - - - qprime.(Ag - Aw) = 4 2 . 1 4 1 5  I :I 
Maximum white daisy planet temperature 

q . ( ~ w  - Ag) + 2 2 . 5  + 1 7 . 5 - $ 1  [ - - 1 ) + 273)" "7 273  = 4 1  -37.6 



File: Daisyplot.mth Date: 06/18/97 Time: 06:30:20 PM 

To plot black daisy area vs luminosit 

I ab := 
of a planet with only black daisies 

TO plot white daisy area vs luminosity of a planet with only white daisies 

I ab := 0 1 

I [ 
Y 

aw M A X  0, P - 1  I 6 
Pw 

b To plot black daisy area vs luminosity of a planet with black and white daisies 

I ab := 1 



File: Daisyplot .lr~th Date: 06ii8/97 Time: 06:30:20 PM 

To plot white daisy area vs luminosity 
r ow := 1 

of a planet with black and white daisies 

L Tw = qprime. (A - Aw) + Te 1 
To plot temperature vs luminosity of a planet with only neutral daisies 

Te := 1 

I u 
~ = l - -  . (Te + 273) 

S.L 

To plot temperature vs luminosity of a planet with only black daisies 

I Te := 1 

To plot temperature vs luminosity of a planet with only white daisies 

I Te := 1 

u 4 
A := 1 - -. (Te + 273) 

S-L 



File: Daisyplot.mth Date: 06/18/97 Time: 06:30:20 PM 

To plot temperature vs luminosity of a planet with black and white daisies 
r Te := 1 

0 
A := 1 - .  (Te + 273) 



of black and white daisies:" 

Ay.eas if, y,iaek hi-li2e fiaisy d"rifi 

= 1 - ab - aw Area of fertile bare ground 

Area of all bare ground 

3.5 - 0.25~ab + 0.25.a~ Albedc of planet 

Tb = yprirne.(~ - A$) 5 - 5.(cxb - uw) + Te Local temperature of black daisies 

Tw = yprime. (A - Aw ) -5 - 5.(ub - uwj + Te Local temperature of white daisies 

rV l i r  ,- + TW = 2.Te - 10. (7'- uw) Sum of local temperatures 

Growth rate of 
2 

pb = MAx(O, 1 - - ~ b )  ) = MAx(0, 1 - 0.003265.(5.(ab - aw) - Te + 

Growth rate adwhite daisies 
7 - 

- 0.003265.(22.5 - Tw) ) = MAx(O, 1 - 0.003265.(5.(ab - aw) - Te + 

Effective in terms of luminosity and daisy areas 
1/4 

- 2 7 3  

terms of luminosity and effective temperature 

ab - aw = -. - 2 
L 

Steady state black daisy growth equation 

Steady state white daisy growth equation 

Strictly white daisy world solution 

Strictly black daisy world solution 



BlackWhite Daisyworld Date: 06/10/97 Time: 02:06:32 

f Y 
ab + OW = M A X  0 1 - 1  1 Pb 

i Y 
a b  a w = M A X  0, 1 --I 

Pw 

0.3 
ab + aw = MAX 

1 - 0.003265.(5.(ab - aw) - Te + 17.5) ) 

0.3 
ab + aw = MAX 

2 
MAX(0, 1 - 0.003265.(5.(ab - aw) - Te + 27.5) ) I 

0.3 

1 / 4 2 
0.003265.(5-(ab - aw) - 252.163-(~.(ab - aw + 2)) + 290.5) ) 

0.3 I 
= / 1 / 4 
A X ( O ,  1 - 0.003265.(5.(ab - aw) - 252.163.(L-(ab - aw + 2)) + 300.5) ) 

Tb + Tw = 45 = 2.Te - 10.(ab - aw) 

"Derivation NOT using the linear approximation to the heat balance equation:" 



BlackWhite Daisyworld Date: 06/10/97 Time: 02:06:32 

4 1/4 
Tb = (q. (A - Ab) + (Te + 273) ) - 273 

4 1/4 
Tw = (q. (A - AW) + (Te + 273) ) - 273 
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