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Abstract. We give the first mathematically rigorous proof that disturbances allow
competing species to coexist. This work provides a mathematical framework to
explain the existence of fugitive species and the role played by disturbances in
increasing or decreasing the biodiversity of ecosystems. We study modifications of
the metapopulation model for patchy environments proposed by Caswell and
Cohen (1990, 1991). For the one- and two-species models we give necessary and
sufficient conditions on the parameters for the existence of a non-trivial equilib-
rium solution, which is shown to be always globally stable.
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1 Introduction

Species’ coexistence, competition and diversity are important elements in the
dynamics of ecosystems. Differences in local and regional processes can be very
important in the determination of diversity patterns (Slatkin 1974, Houston 1979,
Ricklefs 1987). A metapopulation approach makes it possible to deal properly with
concepts like that of fugitive species introduced by Hutchinson (1951): fugitive
species are excluded locally whenever they interact with stronger competitors, but
persist on a regional scale. Metapopulation models can also account for the
observation that species diversity in ecosystems seems to attain a maximum at an
intermediate disturbance frequency (Dayton and Hessler 1972, Connell 1978).
Many metapopulation models (or related models) that address species diversity
have been proposed and analyzed (e.g., Acevedo 1981; Chesson 1985; Connell and
Slatyer 1977; Grassle and Sanders 1973; Hanski 1983; Harper 1969, 1977; Hastings
1980, Horn and MacArthur 1972; Levin 1974; MacArthur and Wilson 1967; Pacala
1987; Palmer and Strathmann 1981; Shmida and Ellner 1984; Slatkin 1974).
Caswell and Cohen (1990, 1991) proposed a family of models for metapopula-
tions in patchy environments under perturbations. In these models, the rates of
interspecific interactions and disturbance appear explicitly. Extensive numerical
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simulations of these models suggest the existence of globally stable non-trivial
equilibrium solutions which describe the coexistence of spec_ies. Due to ‘the
mathematical difficulty of studying such non-linear Markov chains, no analytical
proof of these results has been obtained except in the case of a single species.
In the present work we study modifications of the Caswell-Cohen model for
one and two species and give necessary and sufficient conditions on the parameters
for the existence of a non-trivial equilibrium solution, which is shown to be
always globally stable. This work provides the first mathematically rigorous
proof of the existence of such non-trivial solutions. It provides a mathematical
framework to explain the presence of fugitive species, and to understand the
role played by disturbances in increasing or decreasing the biodiversity of
ecosystems.

2 The one-species model

We consider an environment consisting of an infinite number of identical patches,
each of which can be either empty or occupied by the only species present in
the landscape. The state of each single patch is defined by the presence or absence
of the species. We will denote the two possible patch states by 0 if the species
is absent, and by ‘1 if it is present. The state of the landscape is given by a
vector y in M2, whose entries, yo and y,, are the fraction of patches in state 0 and 1,
respectively.

The dynamics of the system is given by a non-linear Markov chain. The
transition matrix A, which depends on the state y(t) at time t, models persistence
and colonization from one time step to the next as these processes are affected by
disturbances:

Y+ D) =A,y(t) . (2.1)

The transition matrix A will be derived from hypotheses about the processes
of persistence and colonization. Disturbances are assumed to be of one of two
types, depending on whether they affect persistence or colonization. Disturbances
affecting persistence are supposed to occur independently for all patches with
a probability p,,0=<p,<1, which is constant in time and equal for all
patches. It is further assumed that an occupied patch affected by the disturbance
becomes empty. A disturbance that affects persistence has no effect on an empty
patch.

Disturbances affecting colonization are assumed to occur independently for all
patches with a probability p,, 0< p, <1, which is constant in time and equal for all
patches. Under such disturbances colonization does not take place. A disturbance
affecting colonization has no effect on an occupied patch, where colonization
would be effectively invisible because the occupied patch simply remains occupied.
The colonization of empty patches is assumed to be determined by a random
dispersal of propagules, without neighborhood effects. The mean number of
propagules reaching a patch is assumed to be directly proportional to the fraction
of occupied patches, and the distribution of the number of propagules is assumed
to be Poisson. Hence the probability that an empty patch is colonized by at least
one propagule is given by

C=1-exp(~dy,) 2.2)
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where d 20 denotes the dispersal coefficient of the species, and both y, and C may
depend on time t. These hypotheses yield a transition matrix

I=C(1=p.)  pa
A, =
; ( C(1-p.) 1~p.,) 23)

where C is given by (2.2). The one-species model considered by Caswell and Cohen
(1990, 1991) corresponds to the special case p,=0 here.

Although the analysis of system (2.1) and (2.3) in the next section is only made
for p.<1, similar results are also valid for p,=1. (Of course, if p,=1, no coloni-
zation occurs, so the situation p, =1 is not of ecological interest.) The only change
required is either to write all expressions so that 1—p, does not appear in the
denominator, or allow d=00 and when necessary take the limit as p,— 1.

3 Analysis of the one-species model

The set
X ={(y0, y1)ER*|yo+y,=1, yo, ¥, =0} (3.1

is invariant under (2.1). Moreover, y=(yo, y;) in X is a fixed point of (2.1) if and
only if

(1= =e ™)1 —pe)] yo+pay1=Jo (3.2)
and

(L=e™ ) (1=pe) yo+(1—pa) y1=71 . (3.3)

Because yo+y; =1, (3.2) and (3.3) are equivalent. So we will analyze (3.3) in the
form

(I1—e ™)1 =p)(I =y} +(L=ps) y1 —y1 =0. (3.4)

h(y)=(1—e ™)1 =pe)(1=y)—pay . (3.5)

A fixed point of (2.1) corresponds to a zero of h. Moreover, h(y;)>0 implies that
yi Increases in time, i.e., y,(t+1)>y,(t), and h(y;) <0 implies that y, decreases in
time. Since h is a concave function of y with h(0)=0 and k(1) <0, (3.4) has a unique
positive solution, S(d, py, p.), if and only if K'(0)>0, i.e.,

Define

Pd

d> .
l_pe

(3.6)

Moreover h(y)>0 for S>>0, and h(y)<0 for 1= y>S. This implies that the
point (1§, §) is a global attractor for (2.1) on the subset of X where y,>0. The
same argument also shows that (1, 0) is a global attractor if

<Pl 3.7)
l_pe

Observe that § increases with d and decreases with p, and p,. For fixed p; and Pe
the highest prevalence S of the species is obtained for d=oo, i, when y, is
a solution of

(I=p)(1—y)=psy; =0, (3.8)
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which implies

1-p
= 39
N l+pd_p¢ ( )

Since the level of occupancy attained by the species at equilibrium depends on both
pasand p., it is of interest to know whether that value is more sensitive to changes in
psorin p,. The answer can be calculated by comparing the partial derivatives of the
right side of (3.6) with respect to p, and p.. Thus

o ( p4 1 d ( Pa ) Pe
-— =—, —-— = (3.10)
an(l_Pe) l—pe ape l_pe (l—pe)z
imply that
d Pa ) 0 ( Da )
— > (3.11)
6pd(l—pe Op. \1—p.
if and only if
patpe.<l. (3.12)

This means that, if disturbances are rare (p,+ p. < 1), the payoff (measured by the
equilibrium fraction (t —oc) of patches in which the species is present) from reducing
ps is higher than that from reducing p,, i.e., environments affected rarely by
disturbances should be expected to include species that invest more energy in
persisting after colonization than in colonizing. On the other hand, if disturbances
are common {p,+p.> 1), a species should increase its ability to colonize rather
than to persist after colonization.

4 The two-species model

As in the one-species model, we consider an environment consisting of an infinite
number of identical patches. Each patch can be occupied by individuals of two
species E; and E,, and can be in one of the states numbered 0, 1,2, or 3,
defined as follows; 0 if the patch is empty, 1 if it is occupied only by species one, 2 if
it is occupied only by species two, and 3 if both species are present in it. In
summary:

Species 1 Species 2 State
absent absent 0
present absent 1
absent present 2
present present 3

The state of the whole collection of patches is described by a vector y
in R4, whose entries y; are the proportion of patches in state i. In the two-species
model, the patches are assumed to change state as a result of colonization and
disturbances, as before, and, as a new element, as a result of within-patch
interactions. Within-patch interactions are assumed to consist of competition
in which species one eliminates species two with a probability per unit of time of
P, 05p. 1.
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Disturbances are assumed to occur independently in all patches with a
constant probability, p;, 0= p, < 1. Any occupied patch affected by a disturbance
becomes empty, i, it returns to the state 0. Disturbances of empty patches
cause colonization to fail. As in the one-species model, analogous results hold
true for p;=1 after rewriting all expressions to avoid denominators that tend
to zcro.

In contrast to the one-species model, here the assumption that disturbances
affect persistence and colonization with the same probability is made in order to
keep calculations as simple as possible. Nevertheless it is worthwhile to remember
that whenever a term of the form p,/(1 — p;) appears, the numerator is related to
disturbance of persistence, whereas the denominator describes the effect of the
disturbance of colonization.

Colonization is assumed to occur at random, without neighborhood effects.
Further, it is assumed that the mean number of propagules of species E; arriving at
a patch is directly proportional to the fraction of patches containing E;, and the
distribution of the number of propagules is assumed to be Poisson. Hence the
probability that an empty patch is colonized by at least one propagule of species
E; is given by

Ci=1—exp(—d.f) (4.1)

where d; is the dispersal coefficient of species i, and fi(r) its frequency, i.e.,
Sit)=y1(t)+y3(t), and f5(t)=y,(t)+ y3(t). Under these hypotheses, the dynamics
of the system is described by

y(t+1)=A4, y(t) (4.2)
where the transition matrix is
A=
1—=(1=p)(C+C,—C,C,) Pa Pd Pa
(1-p)C(1=C,) (I=pa)(1-C3) 0 (1—pa)p.
(1-ps)(1—-C,)C, 0 (I—pa)(1=Cy) 0
(1-p4)C,C, (1-pa)C, (1-ps)Cy (1-pa)(1=p.)

4.3)
and the C; are given by (4.1). The differences between this model and the two-

species model of Caswell and Cohen (1990, 1991) are analyzed in the discussion
below.

5 Analysis of the two-species model

The set

X={(yo, Y1, ¥2, ¥3)ER*|yo+y1 +y2+y3=1, yo, y1, y2, y3 20}

is invariant under (4.2).
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A vector y=(yo, ¥1, V2, ¥3) in X is a fixed point of (4.2) if and only il
(11 =pa)(Cy +C2—C1C2)]yo+payr+Pa Y2 +Pays=Yo
(I=pa)Ci(1 = C3)yo+ (1 —pa)(1 = Cy )y + (1= pa)pc y3 =1,
(1=pa)(1 = C1)Cy yo+(1—ps)(1=Cy )y, =7y,
(1=pa)Cy Cay0+(1 =pa)C2 y1 +(1=pa)Cy y2+ (1= pa)(1 = p)ys=y3 ,

or
(— 1 +e @t n= )| — pyo+pa(5y+y2+13)=0 (5.1)
(l _e—d,(y, +_\',))e’d;()'g+)'.-)(1 “Pd))’o —_ [pd(l _e‘d:()'z*‘)'.\))+e"dz(_Vz+.":)]yl
+(1—pa)pc y3=0 (5.2)

e“dl(."l +.“3)(l _e_dz(."z"')'s))(l —Pd)yo+ [(1 _pd)e'dl(."l R 1]_}’2 =0 (5.3)
(1= €780 3)(1 — ™0 9)(1 —p,)yg +(1 = pa)(1 e~ 0459y,
+(1—e N1 —pg) s +(pepa—Pe—pa)ys =0 . (5.4)

Define go. gy, g5, and g3: X =R to be the left side of (5.1), (5.2), (5.3) and (5.4),
respectively. The behavior of a solution of (4.2) in X is determined only by the sign
of the functions g;. So if g; <0, the corresponding variable decreases over time, and
if g;>0, it increases in time. Finally if g;=0, the corresponding variable does not
change. The same can be said about g, +g;, and g,+g;, which describe the
changes in frequency of species 1 and 2, respectively.

Because species one is not affected by species two, its equilibrial frequency
depends only on the parameters p; and d;, as in the one-species model. The
following lemma states this more precisely.

Lemma 1 Let y(t)=(yo(t), ¥1(t), y2(t), ¥3(t)) be the solution of (4.2) with initial
condition (yo(0), y,(0), ¥2(0), ¥3(0)).

1
(i) If d, >

@) Ifd, £ p.;p s then f1(t)= y,(t)+ y5(t) decreases monotonically to 0 as t— 0.
—Pd

£ "p and y;(0)+ y3(0)%0, then f,(t)=y, (1) + ys(t)= S, as t—0,
—Vd

where S, is the only positive solution of
(I—e )1 =pa)(1 = y)—pay=0.
(Note the similarity to (3.5).)
Proof. The behavior of y,(t)+ y;(t) is determined by the sign of
91(¥os Y1, Y2, ¥3)+g3(¥os Y15 ¥2, ¥a)=(1—pa)(1 —e " hO I (ot ya)—pa(yi +y3)
=(1=pg)(1—e™ 409 (1 —(y; +y3)) = pa(y1 +3)
=th(y1+y3).
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As in the one-species model, h is a concave fu.nction such that h({0)=0 an_d
h(1)<0. Therefore the existence of a point S; in (0, 1) such that h(§;)=0 is
equivalent to

(1 —pg)d—pa=H(0)>0.
Moreover h is positive in (0, S;) and negative in (S, 1]. O

Species two is eliminated locally by the winning species one. Consequently, for
species two to persist at equilibrium, it is not always enough that dz?pd/(l —Ppa); as
would be enough if specics one were absent or did not compete with species two.
Rather, the dispersal coefficient d, of species two must exceed a certain fup;ugn
&(d,) (illustrated in Fig. 1) that may exceegi pa/(1 —p,,), and even so the equxhbpal
frequency of species two may be lower than it \youlc! be in the absence of competition
from species one. All this is stated more precisely in the following Jemma.

dz |
Pa D D
1-p, P, 3 4 (D(d1)
o D,
1-Py D1
Pa d
1-p, 1
Fig. 1.

Lemma 2 There is a continuous function (illustrated in Fig. 1)

. Pd Pa
$: [0,00) {———1 o r—y _pd+pc>

such that:

(i) d>(>:)=1 ba Jor xe[O,—pi—:I

—Pa 1—pa
(ii) @(x) is monotonically increasing for x> I id
i) lim ®(x)=~L4+p..
L 1- d

Define (yo(t), y1(t), y2(t), y3(t)) to be the solution of (4.2) with initial condition
(0(0), y1(0), y2(0), y3(0)).
(iv) If dy S (d,), then [fr(t)=y2(t)+ ys(t)—0 as (0. .
() If d;>d(d;) and y;(0)+y3(0)%0, then fr(t)=y2(t)+ys(t)—=S2, with
§2=§2(pd’ Des d1)§S2 ’

e _____________________
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where S, is the only positive solution of (1 —e™**)(1 —ps)(1 — y)— pay =0. Moreover,

S,=S, ifand only if d, _S_”l Pap or p.=0.
~Pa

yah
Y(yz)

) |

Fig. 2.

Proof. From Lemma 1, we know that f;(t)=y,(t)+ y,(t)=S, as t— co. Thereforc
we will concentrate first on the set

S={(¥o, y1, ¥2, y3)€X|y1 +y3=5,} .
On this set, according to Lemma 1

d,s,=(l —pal(1—5,)
1-S;—ps

e (5.5

The f}r_st gpa] isto sh.ow that there is a convex curve y(y,) such that for any initial

condition in S, y,(t) increases {with t) above 7y, and decreases (with ) below it. (It

1rngzrxy he]sp to refer to Fig. 2.) y is obtained by substituting (5.5) in (5.3) and solving
Y3. 00

1, (1—=8,—p)(1=S;—y,)
P3=1(y2)=-r In — 1 J2
= P s =5,y 2 o
which is well defined for 0<y,<1-S§, — here it i i
< : P4, Where it is a convex function of y,.
For the rest of the proof y'(0) will play an important role. It is given by 72

O Da
YO = iTsa=s = " 5.7)

Since y, decreases below 7, it follows that y,(t)—~0as ¢ h
7'(0)>0. Such is the case if 1) 70 whenever y3(t)=>0 and

dysPL and d, <P

1—ps I1—py
which proves (iv) for those values of d,.
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Reversing the conditions on 7'(0) and d,, (v) is proved for d, §1—p"p— by observ-
—Vd

ing that 7'(0)<0 and y1(t)+y;3(t)—0 as t—co imply that (5.6) transforms into the
equation given in (v).

Now we turn to the case d2>1 .
—Pd
For a non-trivial fixed point of (4.2) to exist it is necessary that y intersects the
sct defined by

G={(}’03 Yis .VZ‘, y3)€S1g2(yos Y15 Y2» y3)+g3(Yos ¥is ¥ )’3)=0}

in a point with a positive fourth coordinate.
G does not depend on either y, or y;, and is given by points ye$S whose third
and fourth coordinates satisfy

(1—pa)(1 —e~ 402391 —yy —y3)—pa(y2 + ¥3)—p(1=pa)ys=0 (5.8)
which defines a function ¢(y,) such that
G ={(yo, ¥1» 2, y3)€S|y3=0(y2) or y3=1,=0} .

This follows from the fact that for positive ys the left side of (5.8) is a concave
function of y; which is nonnegative at 0 whenever its derivative at 0 is nonnegative.
After a substitution of the type y3=k+1y,, with 0=y, +y3S1,k, lin R, the left
side of (5.8) defines a concave function of y,. This guarantees that there are at most
two values of y, that make (5.8) hold true, i.e., ¢ is concave in that region. The same
argument also shows that ¢’'=—1, with ¢'=—1 if and only if p.=0. Since for
p.=0 the behavior of species two is independent of species one, the proof of
Lemma 1 applies to this case, too. Therefore we will assume p.>0 for the rest of
the proof.

Additional information on ¢ can be gained by analyzing special values of the
variables. If y3 =0, the left side of (5.8) is the same as in the one-species case. Thus it
is positive if and only if

P4
1—pq

d,>

If y, =0, the condition for ¢(0) to be positive is

Pd

— P«

d2>1 +pca

and it corresponds to the condition (3.6) in the one-species case with p,s in the
numerator replaced by py+ p.(1—pa) and p, in the denominator replaced by p,.
In any case ¢(y,) is clearly bounded from above.
These observations, the convexity of 7 and the concavity of ¢ prove that for

ba +pe, @(0)>0, and therefore the intersection of the two graphs consists of

d,>
1—pq
one point.
The condition for the graphs of y and ¢ to intersect, when @(0)=0, is

+'(0) < ¢’(0). Hence the next step is to calculate ¢'(0).
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Constraining (5.8) to straight lines of the form y;=ay,, with >0, and rear-
ranging terms it becomes
pa)

1—
(1=pa)(1 —e~ BT 7)1 — (2 + 1))’2)_[1’44'1)_‘(&—_—

T ](a+1)y2=0 . (59

This equation has a unique positive solution if and only if

pc(] -Pd)“

dy(1—pa)>pst+ ]

or

-+

| Z] oPc
d,> —_— .
2 —ps atl

Due to the special form of ¢, if ¢(0)=0 then ¢’(0) can be calculated by finding the
value x for which (5.9) has y;=y,=0 as a double zero.

Da Pa
1—pa’ 1—pa

Given d,e +p. |,d; can be written in a unique way as

dy=— 4 gp. (5.10)
—DPa
with #in (0, 1).
For that value, the above calculations show that <p'(0)=1=—1—ﬂ—, and after
solving (5.10) for B and substituting in this equality, we get B
dy(1—pa)—pa
~dy(1 = pa)+pa+(1—pa)pc

Finally, the condition 7'(0) < ¢'(0) transforms into

@' (0)=

Pa < dy(1—ps)—pa

-1 ,
dy(1=5,)(1—=58,—pa) —dy(1—pg)+ pa+(1—pa)p.
or

dy> P4 pa+{(1—ps)p.
1-py Pu+(1 S$1)(1 =S8y~ pa)p.

Since S, is an increasing continuous function of d;, and u is an increasing
continuous function of S;, we define

D(d, )= u(pa, pe, S1) -

=:“(pdy Des Sl) .

This definition satisfies (i), (u) and (iii) of the lemma. For d, <T_g_-1-,—- , {iv) and (v)

were proved above. For d; <

l , the definition of & guarantees that d, £ ¢(d,)

implies 7 and ¢ do not intersect. Thls in turn implies that y,(t) decreases whenever
y2(t)+ ya(t) increases, which proves y,(t)—0 as t—oco.

The final step in the proof of the lemma will be to show that if d, > &(d,), i,
if y and ¢ intersect, then as t—o0 every solution of (4.2) with initial condition
(y0(0), ¥1(0), y2(0), y3(0))€S such that y,(0)+ y3(0)+0 tends to y=(J,, J2, 3, Ja),
the intersection of y and ¢.
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Define the following subsets of S, as shown in Fig. 2:
Fy={(yo, y1, ¥2, ¥3)€S1y3<@(¥1), y3<i(y2)}
Fa={(yo, y1, ¥2, ¥3)€S1y3>@(y2), ¥3<3(y2)}
Fy={(yo, ¥1. ¥2, ¥3)€S|y3>@(y2), ya>7(y2)}
Fa={(yo, y1s Y2, ¥3)€SIys<o(y2) y3>7(y2)} .

Any solution of (4.2) starting in F3 will eventually reach either y or ¢. In the former
case there is a t; such that y;(t;)=7y(ys(t;)). Further we can assume
y3(ty)> @(yy(ty)); otherwise y,(t,)=y, and y;(t;)=y;. From the definitions of
vand ¢ we have that just after t,, y,(t)+ y;(t) decreases and y,(r) remains constant,
which implies that the solution of (4.2) enters F,.

On the other hand, if the solution of {4.2) with initial condition in F; reaches ¢,
ie., if y3(t;)=(r,(y,)), then the definitions of y and ¢ and the fact that ¢'>—1
imply that just after ty, y,(t)+ y;(t) remains constant, while y,(t) increases. This
implies that y(r) enters Fj.

A similar argument shows that any solution of (4.2) starting in F; eventually
enters F, or F, (or tends to F).

Finally, the definitions of 7 and ¢ imply that any solution of (4.2) starting in

F, or F, remains there, and tends to j.
Since ¢’ >--1 and y, =3, is the only positive root of ¢ (when d2>1 P ), it
~ — P4

follows that S,=7,+7;<S,. Moreover §,=5, if and only if ;=0 and

IPd . 0

d,>

For fixed p,e{0, 1), p.€[0, 1] consider now the four regions described in
Fig. 1, i.e,,

D, ={(d1, dz)e‘RZIO_S_dl =
— D4 1—pq

,0<d, <24 }

={(d1, dy)eR?|d, > fdp,,’ 0§d2§‘p(d1)}

{(d,,dz)em2|o<d, dy>—Fe }
1—' l—pd

D4={(d1, d2)5m2|d1>'1—p11')‘, d2>¢(d1)} .
— P4

The behavior of the solutions of (4.2) can be summarized:

Theorem 3 Let p,e[0, 1) and p.€[0, 1]. Further, let y(t)=(yo(t), y1(t) ¥2(t), y3(t))
be the solution of (4.2) mrh initial condition yo=(y0(0), y;(0), y;(O) y3(0)).

(i) If(dy, dy)eDy, then (1,0,0,0) is the only stationary solution of (4.2) in X and
it is globally stable, i.e., y(t)—=(1,0, 0, 0} as t— o, for every initial condition in X.
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(i) If (d,,d;)eD,, then (4.2) has at most three stationary solutions in X:
(1,0,0,0) and (1—-S2,0,ﬁ S5, 0), which are unstable, and (1—S8,, S,,0,0), which is
globally stable, ie., if y;(0)+ y;(0)£0 then y(t)—(1—-S,,5,,0,0) as t—o0. (If

d2§ pd
I—p,

(i) If(d, dy)eD,, then (4.2) has two stationary solutions in X: (1,0, 0, 0) which
is unstable, and (1—3S,, 0, S, 0), which is globally stable, i.e., if y,(0)+ y;(0) %0 then
}'(‘)"’(1 —Sz, 0, Sz, 0) as t— oo.

(iv) If (d,,d;)eDs, then (4.2) has only four stationary solutions in
X: (1,0,0,0), (1—54,5;,0,0) and (1—S5,,0,5,,0), which are unstable, and
(1 =9, —F1—7F1, F1, V2, P3), which is globally stable, ie., if y,(0)+y3(0)3:0
and y(0)+ y3(0)+0, then y (t)—=(1—y, = §2— V3, ¥1, V2, y3) where 3, +y3=S5, and
J2+93<S,. §2+J3=S; only if p.=0.

, then S;=0 and the first two stationary solutions coincide.)

6 Discussion

Theorem 3 gives exact conditions for the coexistence of competing species that
would not be present simultaneously in undisturbed environments. It proves, for
the first time we believe, that disturbances allow the coexistence of competing
species, thereby increasing the species diversity of ecosystems.

Although Theorem 3 is stated for the two-species model, an important general-
ization of it that includes one leader or keystone species and n— 1 fugitive species
can be proved in the same way. Lemma 1 shows that the dynamics of species one is
not affected by species two. So if any other interaction among the n—1 fugitive
species is neglected, the generalization to the n species model can be proved
separately for each fugitive species by dealing in each step only with the frequency
of the keystone species and the frequency of the single species.

Theorem 3 also explains why species diversity is maximized at intermediate
levels of disturbance. As can be seen from the conditions for the existence of
non-trivial equilibrium points, if p, tends to 1, D, blows up to include the whole
positive quadrant, i.e., for p, near 1 it is likely that both species become extinct.
Pollution and overgrazing are examples of perturbations with high frequencies
(values of p, close to 1), and Theorem 3 explains how they can lead to biotic
impoverishment.

On the other hand, for small values of p;, S; tends to 1, i.e., almost all patches
will eventually be occupied by species one. Once species one reaches a high level of
occupancy, species two will have to live under almost continuous competition,
being eventually eliminated whenever it meets species one. Even though species
two is theoretically still able to sustain a positive level of occupancy, that level will
be very small, so it is likely to become extinct due to any additional disturbance.
Since the number of fugitive species in an ecosystem can be very high, eliminating
natural disturbances like fire can cause a notable decrease in species diversity.

Once the winning species has reached its equilibrial level, the winner affects the
loser in the same way as an abiotic disturbance of the loser’s survival. So the
presence of a competitor or a predator is quantitatively equivalent to a higher
frequency of abiotic disturbances of survival at equilibrium.

The one-species model shows that there are two distinct kinds of disturbances,
with distinct effects. One kind of disturbance, occurring with probability p,, affects
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persistence; the other kind, occurring with probability p,, interferes with coloniz-
ation. The cffect on the equilibrium species {requency of disturbances of persistence
is strictly limited compared to the much stronger eflect, proportional to 1/(1 —p,),
of disturbances of colonization. Future work will explore whether there are
analogous results in a two-species model that allows for competition that affects
colonization. (The present two-species model considers competition that affects
persistence, through the parameter p., but does not consider competition that
affects colonization.) Extensive numerical simulation of a two-species model with
two kinds of competition, that affecting persistence and that affecting colonization,
suggests that competition that aflects colonization has a qualitatively different
effect on equilibrial species frequencies from that of competition affecting persist-
ence after colonization.

There are some important differences between the two-species model here and
the one studied by Caswell and Cohen (1990, 1991). They assume disturbances do
not affect empty patches, which leads to a different first column in (4.3). The first
column in their model is

(1-CU-Cy)
Ci(1=G)
(1-C1)C,

.G,

Further, they assume that species two is not able to colonize after species one. That
assumption, which is a plausible interpretation of the meaning of competitive
exclusion, but not the only plausible interpretation, makes their last entry in the
second column equal to zero. Because disturbances do not affect empty patches but
do affect patches occupied by any individual, regardless of the species (as is the case
of disturbances induced by occupancy, such as predation or forest fires), it follows
that the presence of species two reduces the probability of colonization by species
one, thereby reducing species one’s equilibrial frequency in the model of Caswell
and Cohen. In particular, Lemma 1 does not apply to their model, and therefore
the analysis of the system cannot be reduced to the study of the dynamics in a plane
as in Lemma 2.

Even though a zero in the last entry of the second column of 4, makes A4,
look simpler, the actual dynamics are more complex. The only way to make G
and (5.8) independent of y, is to have (yq+y;) as a factor in g, +¢s3, in order to
replace it by 1-—y,—y;. This replacement is not possible in the Caswell-Cohen
model.
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