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Rockefeller University 

Dr, Pyke: We turn now to the biological and medical sciences. Statistics - 
has been involved there for years, possibly much longer than it has been 
involved in government statistics, and I am going to call directly on Dr. 
Joel Cohen, who is professor of populations at the Rockefeller University. 
He has been very active in the mathematical sciences and biological 
sciences and was a MacArthur Fellow. He will speak on statistical concepts 
relevant to AIDS. 

Dr. Cohen: Thank you. I am pleased to be here. My title is "Statistical 
Concepts Relevant to AIDS," rather than the statistics of AIDS. If you 
want to find out about the statistics of AIDS, there is an article in the 
March 23, 1987 issue of a well-known scientific journal called New York 
Magazine which covers the numbers and describes f'airly our understanding of 
AIDS. 

My talk is going to be a talk in pure statistics. That means there 
won't be any data in it whatsoever. That reminds me of a story about a 
statistician and a physician who cared for AIDS patients. They were in 
jail the night before they were going to be executed for crimes that can 
only be imagined. The executioner came in and said to the statistician, 
"Do you have any last requests?" The statistician said, "I have been doing 
some work on statistical concepts relevant to AIDS, and I would like to 
give a seminar on my results, which are extremely interesting, to someone 
with a medical background who could evaluate them." He looked over at the 
doctor. The executioner said, "That is no problem. First thing tomorrow 
morning you will have your seminar." Then he turned to the doctor and 
said, "What is your last request?" The doctor's request was, "I want to be 
executed before the seminar." 

Now, that story doesn't apply to me because I am not a statistician, 
and this talk is not for statistical professionals. I just study 
populations and use statistics to try to understand them. I try to develop 
tools, when the statisticians haven't provided them, that can then be used 
by statisticians. 

There are many statistical concepts relevant to AIDS, and I am not 
going to talk about them all. I am going to talk briefly about a model of 
how an infectious disease spreads. This ridiculously simplified model has 
the great advantage of clarity. You can see what you need to measure. I 
am going to talk about diagnostic tests for the presence of the AIDS virus, 
since those are essential to knowing whether there is AIDS in a 
population. I am going to talk about survival time, and I am going to talk 
about surveys of sexual behavior because we know very little about people's 
normal sexual behavior. 



What I am not goi:lg to talk about is uses of statistics in the 
evaluation of alternn.:ive treatments, such as in clinical trials. I am not 
going to talk about tl.le use of statistics in evaluating or designing care 
by decision trees. I am not going to talk about the uses of statistics in 
laboratory research or experimental design and analysis. 

BRANCHING P R O )  

Let us start by talking about the spread of infection in a popu1at:Lon. 
There is a very simple model called a branching process. A newly-infected 
person infects a random number of what we may call offspring, that is, 
other newly-infected people. It is assumed in this model of a branching 
process that the probability rule that generates the number of offspring of 
any person is the same as the probability rule that generates the number of 
offspring of any other person, and that the offspring of one person are 
generated independently of the offspring of anybody else. 

The spread of infection in the population depends largely on a single 
number, M, which is just the average number of offspring in repeated trials 
of this infection process. 

"The spread o f  i n f e c t i o n  i n  the population 
depends l a r g e l y  on a s i n g l e  number M ,  
which i s  j u s t  the average number o f  o f f s p r i n g  
i n  repeated t r i a l s  o f  t h i s  i n f e c t i o n  process .  " 

If the mean offspring number M is greater than 1, it is likely that 
the infection will spread throughout the population. If M is less than 1, 
then it is certain that the infection will die out. M is an average over 
individuals of a product of several factors. The first factor is the 
probability for an individual that a sexual contact transmits a new 
infection. (I am ignoring the difference between transmission from males 
to females, females to males, males to males, or females to females.) A 
second factor is an individual's duration of infectivity. A person becomes 
infective at a certain time and remains infective for a period of time, 
which may end either when the person gets rid of the infection or when the 
person dies. A third fzctor is an individual's number of different sex 
partners per unit of time. So each individual has a period of exposure, a 
number of different partners per unit of time, and a probability of 
transmission at each contact. These are obviously central things one wants 
to know: transmission, duration, and number of sex partners. The average 
over individuals of the product of these three factors gives you M, and M 
predicts the spread or disappearance of infection in the population. You 
can get the same conclusions about spread of infection from much more 
complicated models. 

"These are  obviously  centra l  things one 
wants t o  know: transmission, durat ion,  
and number o f  sex partners." 



The branching process is a rudimentary, unrealistic model, but it 
focuses your attention on the main thing: on the average, how many new 
infections are created by one new icfection? Before anyone swallows this 
branching process model as gc.spe1, I should say what's wrong with it as a 
representation of reality. For starters, it ignores heterogeneity in the 
population. It assumes, for example, that the infected "offspringn 
distribution of a swinger in Manhattan is the same as that of a nun in 
Nebraska. Obviously there are major differences in behavior in different 
subpopulations, which greatly affect the likelihood of infection spreading 
into or out of those subpopulations. The model also ignores changes in 
time: changes in the frequency of "safe sex," for example, or in the 
infectivity, virulence, or genetic make-up of the virus. The mean number 
M of offspring is like a speedometer reading that tells you whether a car 
is traveling above or below the speed limit right now; because the world 
changes, today's value of M doesn't necessarily tell you tomorrow's or 
next year's. 

In spite of its crudeness, the branching process is a useful model 
because it gives insight into what is happening at the moment. Unlike 
other models which may disguise equally crude assumptions in complex 
computer code or inaccessible mathematics, the branching process is 
transparent and raises questions that should be addressed by other models 
as well. 

DIAGNOSTIC SCREENING 

Now in order to talk about the probability of transmission, you have 
to talk about diagnosis. How do we measure whether there is an 
infection? A diagnostic test works in this way. You take a person who 
either does or does not have the infection, and you apply some kind of 
clinical procedure. The result is either positive or negative. In the 
case of AIDS, you take some blood, and you spin it in a centrifuge, and it 
separates into a solid part and a clear yellowish fluid part. That fluid 
is serum. You take the serum, and you put into it something which you 
hope will attach to antibodies which your body makes against the AIDS 
virus. The test looks for the chemical antibodies your body makes against 
the virus. 

Two stages of recognition are involved here. The cells in your body 
that make antibodies have to look for the molecules on the virus, and your 
test has to look for the antibody molecules. In both cases there can be 
errors. Sometimes antibodies that look like they are against the virus 
are against other things in your body because there may be molecular 
similarities. A glove may fit more than one hand. So the antibody can 
fit more than one antigenic molecule. Secondly, your detector or test for 
that antibody is subject to error. The sensitivity of a diagnostic test 
is defined to be the probability that the test is positive given that the 
infection is present. It is the probability that if you have the 
infection, you are going to get a positive test. Obviously, the more 



sensitive a test is the better, because you want to detect all the people 
who have the virus. The specificity is the probability, given that the 
person does not have the infection, that you get a negative test. It is 
the conditional probability of a negative test, given that the infection is 
absent. 

The sensitivity and specificity of a diagnostic test do not depend on 
the prevalence of the infection in the population, that is, the fraction of 
the people who have the virus. You can just take a bunch of people, look 
at their results on these tests, and later observe whether they die of 
AIDS. You can measure sensitivity and specificity in a clinic or a 
laboratory without having to go out into the population. 

When you are using a diagnostic test in a real population, you are less 
interested in the sensitivity and specificity than in the predictive value 
of the test. The predictive value of a positive test is the probability 
that the person has the virus given that he or she tests positive. The 
predictive value of a negative test is the probability that the person does 
not have the virus, given that he or she tests negative. 

In most of the popular, and even many of the scientific, accounts of 
new diagnostic procedures for AIDS, there is no attention paid to 
sensitivity, specificity, or predictive values. How do you compute these 
predictive values? It turns out that the predictive values can be computed 
from the sensitivity and the specificity if you know the population's 
prevalence of disease. You use a theorem that is due to the Reverend Mr. 
Bayes, and we will come back to Mr. Bayes later. 

"In  most o f  the  popular, and even many 
o f  the  s c i e n t i f i c ,  accounts o f  new 
d i a g n o s t i c  procedures f o r  A I D S ,  t he re  
i s  no a t t e n t i o n  paid t o  s e n s i t i v i t y ,  
s p e c i f i c i t y ,  o r  p r e d i c t i v e  v a l u e s .  " 

Now, all of this is very abstract, but I would like to give you a 
numerical example of what this may imply which I hope will stimulate your 
intuition a little bit. As I said, there are no real data here. I am 
going to make up some numbers. Suppose you have a diagnostic test that is 
99 percent sensitive. In every 100 people who have the infection, this 
test gives you a positive result for 99. Suppose also that it is 99 
percent specific. For every 100 people who are free of the infection, it 
gives you a negative result for 99. Let us say the prevalence of infection 
in the population (like that of AIDS) is rare, say one percent. What is 
the predictive value of a positive test? Does anybody want to make a 
guess, leaving out the statisticians? 

The answer is one-half. It means that if somebody tells you that some 
guy has a positive AIDS test, the probability is one-half that he really 
has the AIDS virus, and the probability is one-half that he doesn't. 



If that is shocking to you, consider the pool of people wl~o get 
positive test results; 99 percent of the infected people are [joing to be in 
that pool, but only one percent of the uninfected people are /going to be in 
that pool. However, there are 99 times as many uninfected people as there 
are infected. So, the uninfected people contribute exactly as many people 
to'the pool of people with positive results as do the infected people. 

You may think you have a pretty good diagnostic procedure. When you 
apply it to a rare disease, you are going to get a lot of false positives. 
I don't think that all the people who use these diagnostic procedures are 
aware of this. Incidentally, the same problem (among others) afflicts the 
use of polygraphs to detect security risks. Until we really know what 
these sensitivity and specificity numbers are and until we have a good 
estimate of prevalence, we may be causing a lot of havoc. We should 
recognize the limits of our diagnostic tests. 

Dr. Gerr (OFFICE OF NAVAL RESEARCH): What then is the predictive value of 
two successive positive tests? 

Dr. Cohen: Suppose you take all the people who are positive after the 
first test. The prevalence of disease in that population is one-half. 
After another application of the diagnostic test, the predictive value of 
two positive results is 99 percent, provided you make one major assumption, 
namely, that the two tests are independent. If the two tests were strictly 
dependent, admittedly an extreme case, then the predictive value of two 
positive tests would be the same as the predictive value of one positive 
test, namely, one-half. Testing whether repeated applications of a given 
test to a given Joe Shmoe are independent requires a whole investigation in 
itself, which would ask a great deal of Joe Schmoe. If there exist 
empirical studies of the independence of different or repeated diagnostic 
tests for the AIDS virus, I am not aware of those studies. My conclusion: 
be careful with conclusions, or gather the facts needed to justify 
assumptions. 

A last comment on diagnosis before we proceed to the next topic. We 
cannot evaluate a diagnostic test without attention to the costs of 
errors. Let me take two cases. 

"We cannot evaluate a diagnostic t e s t  
without a t t en t ion  t o  the cos t s  o f  errors .  " 

Suppose I am screening blood in a blood bank. If I have a false 
positive, that means some blood tests positive even though there is no AIDS 
virus in it. I throw the blood away unnecessarily. But if I have a test 
that is a false negative, so there is AIDS virus in there, but I think it 
is okay, I am condemning someone who receives the blood to death. There 
you have one set of payoffs. 



Now suppose I am applying for a job and somebody gives an AIDS test to 
me. If I don't have the AIDS virus and I test positive, my career may be 
severely damaged if I am refused the job. If I have AIDS and I get a 
negative test result I get the job, and I may be a source of risk for my 
fellow workers or I may not, depending on how I behave with my fellov 
workers. The point is that there are different sets of payoffs for 
different situations. I think we have to think much more conscientiously 
about sensitivity, specificity, and predictive values (positive and 
negative) as well as about payoffs before we decide whether and how to 
promote testing. 

"I think we have to think much more 
conscientiously about sensitivity, 
specificity, and predictive values (positive 
and negative) as well as payoffs before we 
decide whether and how to promote testing." 

Dr. Koch (UNIVERSITY OF NORTH CAROLINAI: Sometimes in cases like this one 
might want to adjust the background prevalence by noting that the subject 
being evaluated has certain risk factors in terms of behaviors and other 
exposures that would cause the prevalence for people like them to be higher 
than one in 100. Thirt may then make the predictive value better. 

Dr. Cohen: That is right. The U.S. Army, for example, screens all of its 
potential new recruits. They are getting about two percent positive 
according to the article on AIDS from New York Magazine. In other cases, 
among people applying for marriage licenses, tests give a much lower 
prevalence. Dr. Koch's point is that the predictive value depends on the 
prevalence in the subpopulation you are screening, and that is absolutely 
right. Nevertheless, an essential point is that there are only fallible 
tests. A battery of tests may have lower probabilities of error. But I 
think that discussions of policy related to AIDS screening need the numbers 
on predictive values as part of the discussion so they can consider the 
consequences of those numbers. 

LIFE TABLES 

So far, we have talked about branching processes and Bayes' Theorem. 
Now let me describe a third tool. Durations of infection, infectivity, and 
survival are summarized and compared using life tables. Here is the 
concept . 

The life table describes the fraction of an original cohort surviving 
after some period of time. After a year you have say 90 percent surviving; 
after ten years you have 80 percent surviving, and so on. Life tables 
summarize survival and can be used to compare populations or treatments. 
You may treat one population with a drug and compare their survival with 
that of an untreated population. 



Dr. Goldfield (NATIONAL RESEARCH COUNCILL: Is that a cohort of infected 
persons? 

Dr. Cohen: You have asked the right question. What is this a cohort of? 
What is the beginning point? In this example, it is time since infection. 
The key problem is that you require a well-defined starting point. In 
discussions of survival of people with AIDS, I have read, for example, that 
middle-class patients are obviously getting better care because they 
survive two years, and the poor are getting worse care because they survive 
six months. But you don't know at what stage of the disease the diagnosis 
was originally made. You don't know whether there are differences in the 
starting point. So, as far as I am concerned, the comparison is 
meaningless without additional information. Let us standardize the 
starting point first. When do infection, infectivity, and disease begin? 
This is an issue that I think should be kept in mind in talking about 
survival. 

"When do i n f e c t i o n ,  i n f e c t i v i t y ,  and d i sease  
begin? This  i s  an i s sue  tha t . . . should  
be kept  i n  mind i n  talking about surv iva l ."  

Finally, a last topic. How do you find out about people's sexual 
behavior while you protect their privacy? We have not had a study of 
American sexual behavior since Kinsey. But we have had a statistical 
invention since Kinsey called randomized response. It has never been used 
for a national survey of sexual behavior to my knowledge, and I would like 
to propose that it be used. Fiddler and Kleinknecht in 1977, and Dawes and 
Moore in 1978, suggested using randomized response to study sexual behavior 
and did so on a small scale. The need to extend the use to a national 
scale is now urgent. 

"We have not  had a  study o f  American 
sexual behavior s ince  Kinsey . . . .  I would 
l i k e  t o  propose that  [randomized response] 
be used. " 

Here is how it works. Suppose I am interested in the fraction of 
people in this room who have had sex with a prostitute in the last month. 
Let me give you the simplest case of a randomized response. There are much 
more complicated ones, but I will start with the simplest. I call you up, 
and I say, "I want to find out what fraction of people had sex with a 
prostitute, but I don't want to invade your privacy. Please take a penny 
and flip it, but don't show it to me. If it comes up tails, and you did 
not have sex with a prostitute in the last month say 'No' to me. Under all 
other combinations, say 'Yes' to me. That is, say 'Yes' if it comes up 
heads and you did not have sex, or if it comes up heads and you did have 
sex, or if it comes up tails and you did have sex with a prostitute." 



If nobody is having sex with prostitutes then about half the time I am 
going to get Yes's, and half the time I am going to get No's. Suppose that 
I get 20 percent No's. The only way I get a No is if the person did not 
have sex with a prostitute and got a tail on the coin toss. So, if I get 
20 percent No's, then there must be another 20 percent who had no sex with 
prostitutes, because the coin does not know whether the person had sex with 
a prostitute. That means that 40 percent of the people were not having sex 
with prostitutes. That means, in turn, that 60 percent of the people were 
having sex with prostitutes. Equivalently, if I get 80 percent Yes's, I 
conclude that 60 percent of the people were having sex with prostitutes. 

If you say "Yes" to me, I will not have the slightest idea whether you 
had sex with a prostitute and I don't really care, because I want to know 
the frequency for the population. But if you say "No" (honestly), I know 
that you didn't have sex with a prostitute. "Yes" and "No" are not 
symmetric in this version of randomized response. 

Participant: There is a probability that a coin will not give tails exactly 
50 percent of the time. 

Dr. Cohen: Good point. In a sample of 100 coin tosses, you are not going 
to get exactly 50 tails. You have to allow for that variability when you 
estimate the uncertainty of your final results. 

Partici~ant: What if you want to measure the frequency of a rare 
phenomenon? 

Dr. Cohen: Then you use a biased coin that is tuned for the estimated 
probability in advance. You can make a smarter coin or other randomization 
device that will save you trouble. Randomized responses of this kind have 
actually been used in practice to estimate frequencies of tax evasion, drug 
use, illegal telephones, and illegal abortions (when they were illegal). 
There are versions for mail, for telephone, for personal interviews, and 
for quantitative questions like, "How many sex partners did you have in the 
last month?" 

FOUR CENTURIES O F  STATISTICS 

In conclusion, let me review where the concepts I've been describing 
came from. Branching processes were invented by Bienayme in 1845 and by 
Galton and Watson in 1873. Galton was related to Darwin. They were 
reinvented by some physicists and a statistician in the 20th century, but 
really they are 19th century objects. The rule for getting predictive 
values of diagnostic tests based on Bayes' Theorem was published in 1763, 
two years after Bayes died. The life table was invented by two Englishmen, 
Graunt in 1662 studying the London bills of mortality, and possibly by 
Petty in 1683. The idea of randomized response was invented by Stanley 
Warner in 1965. What I would like you to see is that we have a problem 
with AIDS today. We can draw on four centuries, the 20th century, the 19th 
century, the 18th century, and the 17th century, four centuries of the 
development of statistical ideas, to deal with that problem. 



"What I would l i k e  you t o  see i s  that 
we have a problem with AIDS today. 
We can draw on four centuries . .  . .of the 
development o f  s t a t i s t i c a l  ideas t o  deal 
with that problem. " 

According to Salomon Bochner, "Statistics founded on mobability is 
perhaps the most exclusive characteristic of our civi1i:cation since 1600; 
and it would be difficult to find even a trace of it anywhere before." 
Even if Bochner was a Princeton professor, this is probably true. 

Dr.: I have a question about the 
randomized response method. How do you convince your survey population 
that the whole situation really does protect their confidentiality? It 
seems to me that this is a real problem with that kind of survey. 

Dr. Cohen: I agree completely. It is a matter of empirical research with 
psychologists to find out what is the most persuasive way to present 
questions with randomized response so that people accept that their 
confidentiality is being protected. There have been field trials of 
randomized response. We have to continue to learn, just as we have had to 
learn about the phrasing , ordering, and presentation of ordinary direct 
questions. It is a matter for research. 

Dr.Hozvitz: I had some earlier experience 
with randomized response. We did a study around 1968 on illegal abortion. 
At that time the Supreme Court decision had not been made. The study was 
among women in urban places in North Carolina, and we had some reasonably 
good success with it, at least after the fact. From the study we estimated 
there was about 23 percent pregnancy wastage from illegal abortion. I 
think current statistics put the figure somewhere around 27 percent from 
abortion. 

We also tried to validate the study at a time when we felt that having 
an illegitimate birth was a stigma. We took a sample of births, both 
illegitimate and legitimate, and we inquired about whether there had been a 
birth in a household where we had identified from the birth certificate at 
that address that the woman was not married. In comparison with the 
randomized response approach, we were able to get rather good estimates of 
the actual proportion. We didn't design our study in a way that would have 
determined whether or not we could have gotten the answer anyway by direct 
question. That was a bit unfortunate. We also did a study with people who 
were known to have been arrested for driving under the influence, and here 
we got no success whatsoever. 

From my experience, randomized response is very worthwhile trying, but 
it does need a lot of research on the psychology of the public, and in what 
instances they would respond or not respond. It is worth developing. 


