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ABSTRACT 

A twoperson non-zero-sum bimatrix game (A, B) is defined to be completely 

mixed if every solution gives a positive probability to each pure strategy of each 
player. Such a game is defined to be nonsingular if both payoff matrices are 
nonsingular. Suppose that A is perturbed to A + aG and B is perturbed to B + aH, 
where C and H are matrices of the same size as A and B, and OL is a small real 
number, i.e., suppose that multiple elements of each payoff matrix are perturbed 
simultaneously. We calculate the effect of such perturbations on the solution and 
values of the game for each player. When a player’s payoff matrix is an M-matrix and 
a single diagonal element of the payoff matrix is perturbed, then that player’s value is 
a concave function of the perturbation. A new class of completely mixed bimatrix 
games is analyzed. 

1. INTRODUCTION 

This paper develops the perturbation theory of finite, twoperson, non- 
zerosum games, or bimatrix games. Perturbation theory describes how small 
variations in the values of the parameters of payoff functions of a game affect 
the solutions and values of the game. 
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To our knowledge, the perturbation theory of bimatrix games has not 
been studied before, except in the special case of zerosum games. Studies of 
the perturbation theory of zero-sum matrix games began with Gross (1954) 
and are reviewed by Cohen (1986), who, however, overlooked the work of 
Mills (1956). Gal (1964) reviews the closely related perturbation theory of 
linear programs but does not discuss the connection with matrix games (see 
Mills 1956). 

The perturbation theory of games in general, and of bimatrix games in 
particular, is of practical interest for both estimation and control. When 
payoff functions are estimated from data, the first derivative of the value with 
respect to parameters of the payoff functions indicates its sensitivity to errors 
in the values of those parameters, and therefore indicates which parameters 
should be estimated with greatest precision. Kuhn and Tucker (1956, p. viii) 
recognized the importance of perturbation theory for the control of games: 
“This study [Mills 19561 promises practical application whenever these 
parameters [the elements of the payoff matrix] can be controlled or altered 
since it indicates which changes will have a beneficial effect on the value.” 

A bimatrix game with m pure strategies for player 1 and n pure 
strategies for player 2, where 1 < m, n -C CO, is specified by two real m X n 

matrices A and B. If player 1 chooses pure strategy i and player 2 chooses 
pure strategy j, the payoffs of the bimatrix game (A, B) to players 1 and 2 
are aij and bi j, respectively, for i = 1,. . . , m and j = 1,. . . , n. Let 

P,,= {xER”:x~>,O, i=1,2 ,..., n,andE~=,xi=l) 

and Pz = {x~P,,:x~>0, i=l,..., n }. Vectors are assumed to be column 
vectors, and T denotes transpose. The vectors in P,, are called mixed strate- 
gies. A pair (x, y), where x E P,,, and y E P,,, is defined to be a solution of 
the game specified by (A, B) if and only if 

forall 5EPm. tTAy < xTAy 

and 

forall rjEP,, xTBq < xTBy. 

Given a solution (x, y), the value of the game for player i, i = 1,2, is defined 

by 

or(x, Y) = xTAy, 

v2( x, y) = xTBy. 
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Define the bimatrix game (A, B) to be nonsingular if A and B are both 
nonsingular. 

A bimatrix game is defined to be completely mixed when every solution 
(x, y ) has all positive elements, i.e., x E I’, , y E P,’ (Jansen 1981, p. 535). 
This paper describes how a solution and the corresponding values of a 
nonsingular, completely mixed bimatrix game are affected by small perturba- 
tions of A and B. 

Completely mixed bimatrix non-zerosum games exist. For example, if 

then the set of solutions is 

This game is a special case for n = 2 of the “diagonal-cyclic” game analyzed 
in Section 3. 

2. GENERAL RESULTS 

THEOREM 1. Suppose that the bimatrix game (A, B) is nonsingular and 
completely mixed (cm). Then m = n, and the game has a unique solution 
and nonzero values. The solution and values of the game for each player are 
given by 

1%’ 
rr=_-- 

A-11 
~ LrB-‘1 ’ Y= lrA-‘1 ’ 

1 
v,=v,(r,y)=- 

ITB-‘1 ’ 

where 1 is the column vector of length n with every element equal to 1. 

This result of Raghavan and Heuer is stated and proved by Jansen (1981, 
Theorem 3.12, p. 536). 

While it is not surprising that A uniquely determines vr and B uniquely 
determines va. it is somewhat surprising that B uniquely determines X, 
player l’s optimal mixed strategy, while A uniquely determines y. 
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For a pair (A, B) of real matrices that satisfies the hypotheses of Theorem 
I, it follows that 

lTB-’ A-‘1 
lTB_‘1 ’ OTT lT~-ll “, 

where 0 is the column vector with all n elements 0, and the inequalities > 
apply element by element. For a zero-sum game, these inequalities imply 
conversely that the game is completely mixed. However, these inequalities do 
not guarantee that the game (A, B) with nonzero sum is completely mixed. 
For example, if A = B = I,, where I, is the n X n identity matrix, then A 
and B satisfy the previous inequalities, but (A, B) is not cm, because one 
solution is 

For the remainder of this section, let A, B, G, and H be fixed n X n real 
matrices, and for each real number CY, define 

L = L(a) = A + aG, M=M(a)=B+aH. 

LEMMA 1. Zf (A, B) is a nonsingular, completely mixed bimutrix game, 
then there exists a real number r > 0 such that for all real (Y with 1~11 < T, 
(L(a), M(a)) is a nonsingular, completely mixed bimutrix game. 

Proof. Jansen (1981, Theorem 3.15, p. 536) proved that the class of all 
completely mixed bimatrix games is open in the set of pairs of m X n real 
matrices. It is also known that the set of nonsingular matrices is open. n 

LEMMA 2. The following derivatives exist and are equal to the formulas 
given: 

dL(a) 
-=G, 

dM(a) 
da 

~ = H, 
da 

and when L-‘(a) and M-‘(a), respectively, exist, 

dL-‘(a) 
= - L-l(~)GL-l(~), 

dM-‘(cx) 

da da 
= - M-‘(a)HM- ‘(a). 
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When a=O, 

dL-‘(0) dM-‘(0) 
=-- A-‘GA-‘, =- BP’HBP’. 

da da 

Proof. The existence of the derivatives follows from Lemma 1. The 
formulas for dL/dcu and dM/da are immediate. When L-’ exists, 
LL-’ = I,, so by the chain rule, (dL/da)L-‘+ L(dL-‘/da) = 0. Hence, 
dL-‘/da = - L-‘GL-‘. The computation of dM-‘/da is the same. W 

Given the nonsingular, completely mixed bimatrix games (A, B) and 
(L(a), M(a)), L(a) = A + aG, M(a) = B + aH, for real (Y such that JCY( < r 
where r is given by Lemma 1, define for ICYI < r 

x’(a) = 
lTM-‘(~) L-l(a)1 

lTM-‘(a)1 ’ 
y(a) = l%‘(a)1 ’ 

1 1 
Ul(4 = lTL-‘(cu)l’ 44 = lTM-‘(a)1 ’ 

Thus, Theorem 1 applied to the nonsingular, completely mixed game 
(L(a), M(a)) implies that (X((Y), y( cz)) is the unique solution of (L(a), M(a)) 
and vi(o) is the value of (L(a), M(a)) to player i, i = 1,2. 

THEOREM 2. Zf (A, B) is a nonsingular, completely mixed bimutrix 
game, G and H are n X n real matrices, and (Y is real, then 

dXT(o) (lT~-l~~-~l)lT~-~ lTB-‘HB-’ 
p= 

da (lq-‘1)’ - lTB-‘1 ’ 

dy(o) (I~A-~GA-~I)A-~I A-‘GA-‘1 
-= 

da (lTA-ll)2 - lTA-‘1 ’ 

du,(O) lTA-‘GA-‘1 du,(O) lTB-‘HB-‘1 
-= -= 

da (lTA-ll)2 ’ da (1TB-‘1)2 ’ 

d2u1W 2 (I~A-~GA-~~)~ (iT~-lGA-l~~pli) 
-= 

da2 (1TA-‘1)3 - 1 (lTA-11)2 ’ 

and the fmula fm d2u2(0)/da2 has the same form as the formula for 
d % X0)/d a2 with A replaced by B and G replaced by H. 
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Proof. The formulas follow by the formulas of Theorem 1 applied to the 
game (L( cu), M(o)), repeated use of the chain rule, and the formulas of 
Lemma 2. W 

As the solutions (~(a), y(o)) must be pairs of probability vectors, the 
sums of the derivatives of the elements of r(o) and y(o) should be 0. It is 
easy to check that the formulas of Theorem 2 satisfy [dxT(0)/da]l = 0 and 
lr [ dy(O)/da] = 0, as desired. 

If ui > 0, then 

sign(f3$-) = ’ ( sign (I*A~1GA~‘1)2-(I’~~1~)[I’~~1(~~-’~21]). 

It would be desirable to find general conditions on A and G which 
determine the sign on the right. 

A useful special case arises when A and G are both diagonal matrices and 
all diagonal elements of A are positive. Then the matrices F = GA --r and 
D = A -’ are also diagonal matrices and all diagonal elements of D are 
positive. If F = diag(J), then 

where the inequality follows from the Cauchy-Schwarz inequality This in- 
equality applies to the diagonalcyclic game considered in the next section. 
The referee generously pointed out that, more generally, if A and G are both 
symmetric and A is positive definite, then by the Cauchy-Schwarz inequality 

iI)2- (I~A-~I)[I~A-~(GA-~)~~] < 0. (l=A - ‘GA 

3. SPECIAL CASES 

Zero-Sum Case 
When the bimatrix game has sum zero, then B = - A, G = - H, xT = 

~~(0) = lrA_‘/lrA-‘1, and y = y(0) = A-‘l/lrA-‘1. Then Theorem 2 as- 
serts that ,du,(O)/da = - duz(0)/do = xrGy. This formula is the special case 
when A is completely mixed of Theorem 1 of Mills (1956, pp. 184-165). 
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Perturbation of a Single Element 
Theorem 2 also describes as a special case the perturbation of a single 

element aii of the payoff matrix A of a zero-sum two-person completely 
mixed matrix game (Cohen 1986). Let Ei denote the n x n matrix with all 
elements equal to 0 except for the (i, j) i e ement, which equals 1. If ei is the 
column vector with ith element equal to 1 and all other elements equal to 0, 
then Eij = eieT. Replacing G by Eij gives, for example, from Theorem 2, 

d'u, 
-= 
&lfj 

ith column sum of A-’ 

lTA - ‘1 

X 
jthrowsumof A-’ 

lTA - ‘1 
+jitA)T 

where 

+ji( A) = (jth row sum of A-‘)( ith column sum of A-‘) 

The factor l/(lTA - ‘1) corresponds to ui( A), and in a zero-sum game, the 
succeeding factors correspond to lci, yi, and (pii( A) as in the formula (2.5) of 
Cohen (1986, p. 158). 

Lkgonal-Cyclic Case 
Fix a,>Oand bi>Ofor i=l,...,n. 

THEOREM 3. Zf 

I 
a1 0 . . . 0 0' 0 b, 0 ..a 0 

0 a2 .a. 0 0 0 0 b, ... 0 

A= , B= 

0 0 ..I a,_, 0 0 0 0 ..I b,_, 

,O 0 *.- 0 a,, b,, 0 0 ... 0 

\ 

3 

I 

then the bimutrix game (A, B) is nonsingular and completely mixed. The 
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game (A, B) has a unique solution (x, y) with 

where 

Xi = vz/‘bi, Yi = 0,/a,, i=l,...,n, 

Proof. Clearly A and B are nonsingular. We shall first show that there 
exists a solution (x, y) with all positive elements, and then that every solution 
has all positive elements. It is immediate that 

‘l/a, 0 ... 0 ’ 

A-‘= 
0 l/a, ... 0 

0 0 . . . . l/an, 

BP’= 

Then, as in Theoren 

0 0 . . . 0 l/b, 
l/b, 0 ... 0 0 

0 l/b, ... 0 0 

0 0 . . . l/b,-, 

-I 

1 ’ v2 = 

A solution (r, y) with all positive elements is 

xi = vz/bi, yi = VI/a,, i=l,...,n, 

0 

and no other solution with all positive elements is possible. 
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To prove that every solution has all elements positive, let (x, y) be any 
solution. For any E in P,, define the support of 5 by S( [) = { i : Ei > 0). Then 
since 

xTAy = C UiXiyi 2 ETAy forall .$EP,, 
i E S(Y) 

player 1 cannot maximize his payoff if he assigns any probability to pure 
strategies i that are not in S(y); hence S(x) c S(y). Similarly, if we interpret 
subscripts modulo n so that y, + i means y,, 

xTBy = c bixiyi+l a rTBq forall qEP,; 
iCS(*) 

hence if i + 1 (mod n) E S(y), then i E S(x). Since S(x) c S(y), 
i + 1 (mod n) E S(y) implies i E S(y). Because S(y) cannot be empty, the 
only possibility is that S(y) = { 1,. . . , n}. A similar argument gives also 
S(x)= (l,..., n }. Thus (A, B) is nonsingular and completely mixed. n 

Because the solution and values of (A, B) are known explicitly, the 
perturbation theory of the game (A, B) can also be carried out explicitly in 
certain cases. We consider first G = Eii = eie,r for some fixed i, 1~ i < n, 
and then G = diag(g,), which is the diagonal matrix with gii = gi. 

If G = Eii = eie,‘, then 

dv, dv, (1/ai)2 -=_= 
da duii @~,a,)” = ” ’ ‘* 

Hence 

O-C~CI and, 
II 

if n>l, o< i ><I. 
r-1 II 

Differentiating again, 

d2v, d2v, 
-= -= - 

da2 dafi 
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Hence d2v,/duf’i < 0 if n > 1. In words, the value for player 1 is a strictly 
increasing, strictly concave (if n > 1) function of the i th element of A. 
Concavity has the economic interpretation of decreasing returns: equal 
marginal increments in the ith element of A produce successively smaller 
increments in the value of player 1. Finally, 

if j+i, 

if j=i. 

Hence dyi/daii < 0 if n > 1. As expected, C’!= i dyj/duii = 0. 
metrical formulas hold for dv,/db,, d&,/dbf, and dxj/dbi. 

Exactly sym- 

Now if G = diag(g,), then by Theorem 2, 

By the Cauchy-Schwarz inequality, in the form used at the end of Section 2, 
d 2vl/d a2 < 0. Similarly, using Theorem 2 again, 

dyi_ l/aj 

da - @,~/a,)~ 

Thus, dyj/da>Oifgj/ai=min,g,/a,andforsomes+ j, g,/a,>gj/aj; 

dyj/da < 0 if gj/aj = max,g,/a, and for some s + j, g,/a, < gj/aj; and 
dyj/da = 0 if gj/a j is a constant independent of j. 

Analogous formulas may be derived for perturbations of the matrix B by 
the matrix H provided H has positive elements in exactly those positions 
where B has positive elements. 

M-Matrix Case 

A real n X n matrix A is called an M-matrix if A = sl, - M, where M 

has nonnegative elements and s is at least as big as the Perron-Frobenius root 
of M. If A is a nonsingular M-matrix, then A is completely mixed (Karlin 
1959, p. 52) as the payoff matrix of a zero-sum game; moreover, +ii(A) < 0, 
i=l , . . . , n (Cohen 1986). 
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THEOREM 4. Let (A, B) be a nonsingular, completely mixed bimatrtx 
game. If A is also an M-matrix, then for i, j = 1,. . . , n, 

dy. d2v, 
--I-<O, - 
&ji 

&fi <O. 

ZfBisalsoanM-matrix, thenfori,j=l,..., n, 

dx d2v2 
L<O, - 
daij db; <” 

Proof. In the formula of Theorem 2 for dy(O)/da, replace G by Eij to 
get dy/dadj. Using Theorem 1 gives easily dy,/daij = yjv&(A) as in 
Theorem 2 of Cohen (1986, p. 156). Then dy,/daij = yjvI+ii( A) < 0 because 
yj > 0, v1 > 0 and +ii(A) < 0. That d2vl/daFi < 0 follows from the more 
general formula above for d %~~/a!af~ and the fact that G,~(A) < 0. Similar 
calculations give the other two claimed inequalities. n 

It is easy to obtain completely explicit formulas for the expressions in 
Theorem 4 when A is diagonal, B = - A. 
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