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Conflicts and cooperation offer two kinds of surprises: ition, mathematical analysis shows that the use of rea- 
those generated by a participant and those generated by sonable and traditional rules of thumb can lead to sur- 
the situation. Surprises of the first kind are familiar. For prising results for all participants. Mathematical analyses 
example, in The Art of War (1521), the Florentine bureau- of these models appear elsewhere. Here I describe only 
crat Niccolb Machiavelli counseled military commanders the models and their properties. 
to surprise their opponents; he gave many historical Because the training and intuition of different peo- 
examples of such surprises. How best to achieve surprise ple are different, one person's surprise is often another 
in political and military conflicts is person's so-what. In the examples 
still under analysis (e. g., Axelrod that follow, the claims that findings 
1979). Mathematical models are surprising are accompanied by 

A second kind of surprise arises efforts to build up the appropriate 
when, because of the structure of of real-life problems intuition. To each such claim, the 
interaction among opponents or col- suggest that following qualification applies that the finding 
laborators, intuitively reasonable ac- is surprising at least to some people. 
tions or policies lead to an outcome one's intuition can It might be inferred from these 
that surprises everybody. I will call lead to results that examples that real conflict and coop- 
such surprises structural surprises. eration are, or can be, so complex and 
Examples could be drawn from his- nobody wants counterintuitive that they should be 
torical case studies (e.g., Tuchman left to the management of experts, 
1962; Bracken 1983,1988; Carter et al. particularly military experts. Such an 
1987). However, any example is open to the argument inference is not justified. On the contrary, these exam- 
that the participants did not analyze the situation suffi- ples show that conflict and cooperation require the fresh 
ciently. and unprejudiced analysis of thinkers who have no 

Structural surprises arise even in well defined, commitment, historical or bureaucratic, to established 
highly simplified mathematical models. As examples, rules of thumb. 
the iterated prisoners' dilemma (Axelrod 1984; Downs et 
al. 1985), rules for voting (Brams and Fishburn 1983; Saari When does redundancy enhance 
198%). social choice (Arrow 1963; Saari 1987a), and reliability? 
proportional representation (Balinski and Young 1982) all . 
sometimes generate surprising outcomes from appar- Figure 1 is a sketch of the United States strategic com- 
ently reasonable rules of thumb. Mathematics itself is mand and control system (Bracken 1983). Presumably an 
rich in paradoxes and surprises (e.g., Maxwell 1959; analogous network of command and control exists for 
Bunch 1982; Szekely 1987), so it is unsurprising that the nuclear forces of the Soviet Union (Steinbruner 1984; 
concrete interpretations of mathematics can be surpris- Zraket 1984). 
ing. In any strategic conflict, each side has an obvious 

In this article, recent examples of structural surprise interest in preserving the integrity of its own system of 
will be drawn from idealized models of conflict and command and communication. In the face of an impend- 
cooperation. The models describe communicatioi~ net- ing atomic attack, the vulnerability of one side's com- 
works under attack, pursuit and evasion, negotiations mand system "presents a much more powerful incentive 
for consensus, and congested traffic networks. While to initiate attack before damage has actually been suf- 
these simplified models appear transparent to the intu- fered, an incentive that is driven . . . by practical fears of 

a decisive defeat in a war that cannot be avoided 
(Steinbruner 1984). 

Photographs on the facing page illustrate classes of problems Each side also has a stake in the integrity of the 
discussed in this article. Clockwise, from upper left: reliability of communication network of the opposing side. ~ f ,  after a command systems against nuclear attack (an IM-99 Bomarc 
interceptor missile takes off from Patrick Air Force Base); pursuit nuclear attack, the command network of an opponent 
and evasion (the Keystone cops); approaching consensus through were longer connected (in the sense that each 'Om- 
negotiations (Mikhail Gorbachev and Ronald Reagan at a summit mander of nlIc1ear forces could with every 
meeting in Geneva, 21 November 1985); traffic flow on congested other), the ~ommander of an isolated component might 
roads (Interstate 80 in San Francisco). ~ 1 1  photos from the Bettmann react to the attack without knowing the responses or 
Archive. intentions of other commanders. Even if the National 
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graph with n vertices is n - 1. In any 
connected graph with n vertices and 
n - 1 edges, there is exactly one path 
from any vertex i to any other vertex 

g ~ c  Alr Command j .  A spanning tree of a graph is de- 
Integrated Operational NUC fined to be a subgraph of n - 1 edges 

Detonation Detection Sy that connects all n vertices. For exam- 
ple, in Figure 2, one spanning tree is 
the pair of edges from vertex 1 to 

Natlonal comm vertex 2 and from vertex 1 to vertex 3: 
these two edges connect all three 
vertices of the graph. A graph is con- 
nected if and only if it has at least one 
spanning tree as a subgraph. 

The reliability of a random graph 
is defined to be the probability that it 

Figure 1. A stylized command system for the United States strategic forces shows is connected. The reliability, denoted 
redundant lines of communication. A conventional rule of thumb is that redundancy by r, is thus the probability that the 
enhances reliability. The question is, when does this rule hold? (After Bracken 1983.) random graph has one or more span- 

ning trees. 
The design of a reliable network 

Command Authorities (NCA) wished to limit further would be easy if cost were no object. The designer would 
hostilities, they would have lost control of some forces, simply maximize the probability of survival of each edge 
say, the Pacific Command (PAC). Fearing that PAC may as far as physically possible. For real networks, the 
continue to attack and that the Soviet Union may react to design problem is to maximize reliability given limited 
the PAC attacks by attacking the NCA or the rest of the resources. A conventional rule of thumb in the design of 
United States, the NCA may see no incentive to limit networks is that, subject to a given total cost, redun- 
further hostilities (Bracken 1983). dancy enhances reliability. To find out when this rule of 

These arguments and others indicate that a potential thumb is valid, one needs a precise measure of the 
or actual loss of connectivity in the command system redundancy of an edge-random graph, as well as a 
makes the prevention and termination of conflict highly measure of cost. 
unstable (Kettelle 1981). The average or expected number of spanning trees 

A communication network can be modeled as a postattack, denoted by t (for trees), measures the average 
graph, and a network under attack or with other sources number of different ways the network could be con- 
of failure as a random graph (Bollobtis 1985; Palmer nected after edges have failed. This seems a reasonable 
1985). A graph, in the sense used here, consists of measure of redundancy, useful as a first approximation. 
vertices (or points) and edges. Each vertex corresponds To get a feeling for how the redundancy t is computed, 
to a command center or other node in a communication consider the simple random graph in Figure 2. There is a 
network. Each edge represents a two-way communica- certain probability that all three edges will fail postattack; 
tion link between two command centers. In a random in this case, there will be no spanning trees. Likewise, if 
graph, an edge may fail, leaving intact the vertices any pair of edges fails, there will be no spanning trees. If 
connected by the edge, or a vertex may fail, destroying only one edge fails, there will be exactly one spanning 
all the edges connected to the vertex. tree left, consisting of the two surviving edges. Finally, 

As a first approximation, simple enough to analyze there is a certain probability that no edges will fail 
mathematicqlly and complex enough to shed light on postattack; in this case, there will be three spanning 
reality, supplose that the vertices are hardened against trees, each possible pair of edges being one spanning 
attack, at least by comparison with the edges, and that tree. The redundancy t is just the average of the number 
only the edges fail. Assume that the network has n fixed of spanning trees in each of these cases, weighted by the 
vertices. In Figure 1, n = 6. In the still simpler hypothet- corresponding probability of each case. 
ical random graph in Figure 2, n = 3. Assume that the The general formulas for the reliability r and the 
edge between vertex i and vertex j will be present and redundancy t of random graphs with an arbitrary num- 
operational postattack with probability p, and will be not ber n of vertices are complex. But the formulas when n = 
operational (failed) with probability 1 - p . Assume that 3 (as in Fig. 2) are simple: 
each edge works or fails postattack independently of 
every other edge. These assumptions regarding fixed r = P1913 + P1923 + P13Pz3 - 2 ~ ~ ~ ~ 3 ~ z 3  

vertices and independently randomly failing edges de- = P1913 + P1923 + P13Pz3. 
fine an anisotropic edge-random graph. The graph is 
called anisotropic because the probabilities for failure The rule of thumb that, for a fixed cost, redundancy 
may be different for different edges. enhances reliability can be translated into a testable 

The graph, pre- or postattack, is said to be con- hypothesis, assuming that the formulas for r and t 
nected if at the time of observation, for every pair of capture what designers mean by reliability and redun- 
vertices i and 1, there is a path of edges between i and j. dancy, respectively. To state this hypothesis concisely, 
The smallest number of edges required to connect a we need a name for the list of edge probabilities of a 
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Figure 2. A graph with three vertices 
reduces Figure 1 to mathematical 
essentials. The vertices are 
analogous to command centers, 
and the edges (which connect 
vertices) are analogous to 

/\jr 

lines of communication. 
d. 

PZ 3 
The graph is "random" in the sense 
that any edge may randomly fail. The probability that an edge 
will survive an attack is denoted here as p (for e;ample, p,,,;efers 
to the edge between vertices 1 and 2). In Figures 3 and 4, these 
probabilities are given as specific numbers. 

total cost = 2 
reliability = 1 
redundancy = 1 

total cost = 2 
reliability - 20127 
redundancy = 413 

Figure 3. Two random graphs show different strategies for 
surviving an attack. Both have the same total cost (computed using 
the function c, described in the text). In the graph on the left, two 
edges are hardened to guarantee survival (p = 1) while the third 
edge is sacrificed ( p  = 0). Each vertex is thus assured of communi- 
cation with the others (1 and 3 can communicate through 2). In the 
graph on the right, each edge is hardened to give it a 213 probability 
of surviving. The graph on the left is more reliable even though the 
one on the right has more redundancy built into the network, 
according to a mathematical model described in the text. 

total cost - 1008.54 
reliability = 0.93 
redundancy = 1.56 

total cost = 1008.54 
reliability - 0.86 
redundancy = 1.64 

Figure 4. Two random graphs have the same total cost (calculated 
using the function c, described in the text), but their edges have 
different probabilities of survival. The graph on the right is less 
reliable even though more redundant. 

random graph. Let us call that list P; for example, in 
Figure 2, P = (p,,, p13, P,~). We also need a name for the 
total cost of attaining the probabilities of edge survival P; 
let us call that total cost c(P). Now suppose P, and P, are 
edge-probability lists of two different random graphs that 
have the same number n of vertices. Suppose that c(P,) = 
c(P,), so that achieving the survival probabilities of the 
edges in the two random graphs costs the same total 
amount. If redundancy enhances reliability, then it 
should be true that, whenever t(P,) < t(P,), it is also true 
that r(P,) I r(P2). In words, the rule of thumb suggests 
that, for a fixed total cost, if the network described by P, 
is less redundant than the network described by P,, then 

the network described by P, should be less reliable than 
the network described by P,. 

One measure of the total cost associated with an 
edge-probability matrix P is the sum of all the edge 
probabilities: 

cl(P) = Pij. 

The designer faces the choice of allocating a fixed sum of 
probabilities among the possible edges. 

Figure 3 contradicts the expectation that, for a given 
total cost, redundancy enhances reliability (Cohen 1986). 
In the graph on the left, the edge between vertices 1 and 
2 is guaranteed not to fail (has probability 1) and similarly 
for the edge between vertices 2 and 3 .  Thus the network 
has reliability 1; it is perfectly reliable. The total cost of the 
network, using c,, is 2.  In the graph on the right, the 
probabilities of all three possible edges are 213. The sum 
of edge probabilities (total cost) is the same as in the 
graph on the left. Though the random graph on the right 
has greater redundancy than that on the left, it has lower 
reliability. Hence, redundancy need not enhance reliabil- 
ity. 

In this design problem, when the total cost c,(P) 
exceeds 1, the designer apparently can guarantee that at 
least one edge will work with certainty, that is, with 
probability 1. This seems unrealistic. A better measure of 
cost is the sum, over all edges, of some function of edge 
probabilities that is 0 when the edge probability is 0, 
increases faster and faster as the edge probability in- 
creases (is convex in the edge probability), and goes to 
infinity as the edge probability approaches 1. For 
example: 

CAP) = zi<i pij - pij). 
Figure 4 shows two random networks with the same 

total cost using c,. In the graph on the right, the edge 
probabilities between vertices 1 and 2 and between 
vertices 1 and 3 are the average of the two corresponding 
edge probabilities in the graph on the left. The edge 
probability between vertices 2 and 3 was chosen to make 
the total cost, using c,, of the network on the right equal 
to that of the network on the left. The redundancy of the 
network on the right exceeds that of the one on the left, 
but the reliability is decreased. 

These examples raise a question for future research: 
When does redundancy enhance reliability? 

Pursuit-evasion games on graphs 
Many physical conflicts include pursuit and evasion, 
hunting and fleeing, chase and flight. The mathematical 
theory of pursuit and evasion, in its minimally realistic 
forms, is notoriously difficult and resistant to the intu- 
ition. An extremely simplified, admittedly unrealistic, 
formulation of pursuit and evasion offered here com- 
bines the theory of simple graphs with von Neumann's 
classical theory of zero-sum two-person games (von 
Neumann 1928; Dresher 1961). 

Suppose that the field of combat for pursuit and 
evasion can be modeled by a connected simple graph G. 
G consists of a finite number of vertices, which may be 
thought of as physical locations, and some edges. An 
edge between two vertices models a possible route of 
travel in either direction between the two corresponding 
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locations. (Loops and multiple edges are excluded. A 
loop is an edge from a vertex to itself. Multiple edges are 
more than one edge between a given pair of vertices.) 
That the graph is connected means, as before, that there 
exists a path-or sequence of edges from any vertex to any 
other. 

Suppose there are two players: Red, the pursuer, 
and Blue, the evader. Red and Blue each choose a vertex 
independently and without knowing the choice of the 
other player. If Red chooses vertex i and Blue chooses 
vertex j, then Red must pay Blue an amount in dollars 
equal to the distance d(i,j) between vertices i and j. The 
distance d(i,j) is defined as the smallest number of edges 
that must be traversed to travel from i to j (or from j to i). 
For example, in the graph in Figure 5, the path from 
vertex 1 to vertex 2 that passes through vertex 3 traverses 
4 edges, while the path from vertex 1 to vertex 2 that does 
not pass through vertex 3 traverses 3 edges; therefore, 
the distance from vertex 1 to vertex 2 is 3, the lesser of the 
two lengths. In this game, the pursuer Red has an 
incentive to choose a vertex as close as possible to the 
vertex chosen by the evader Blue, and Red's loss is Blue's 
gain. 

A pure strategy in this game is a choice of a single 
vertex (with probability 1). An optimal strategy for Red is 
one that minimizes the maximum Red must vav Blue. 

I ,  

whatever Blue does. Red's optimal pure strategies are 
easy to describe, once some standard graph-theoretic 
terms (Harary 1969) are defined and illustrated. 

The eccentricity of a vertex i is the maximum dis- 
tance from i of any vertex j in the graph. For example, in 
Figure 5, the eccentricity of vertex 1 is 3 because vertex 1 
is 3 edges distant from vertex 2 and every other vertex is 
closer to vertex 1. Similarly, the eccentricities of vertices 
3, 4, and 5 are all 2. The radius of a graph is the smallest 
eccentricity of any vertex. In Figure 5, the radius of the 
graph is 2 because some vertices have eccentricity 2 and 
none have smaller eccentricity. The center of a graph is 
the set of all vertices whose eccentricity equals the radius 
of the graph. In Figure 5, the center of the graph consists 
of the vertices 3, 4, and 5. 

If Red chooses any vertex in the center of the graph, 
that position minimizes the maximum Red must pay 
Blue, no matter which vertex Blue chooses. Hence, the 
center of the graph contains all the optimal pure strate- 
gies for Red. Intuitively speaking, Red can minimize the 
farthest Blue can run from him by sitting somewhere in 

Figure 5. In graphs of pursuit and evasion, vertices are analogous to 
stopping points and edges to routes of travel. One way of using this 
graph to simulate real conflicts is to have the pursuer and evader 
each choose a vertex independently, without knowing the other's 
choice. The pursuer then pays the evader an amount of dollars 
equal to the distance between them. A pursuer might intuitively 
choose vertex 3, which minimizes the maximal distance to any 
vertex. However, if the evader chooses vertices at random, every 
optimal strategy for the pursuer avoids vertex 3 completely. 

Figure 6. In this graph of 
14 vertices, a pursuer 
might intuitively choose 
to wait at the center 
(vertex 11, but no optimal 
strategy includes this 
vertex. The pursuer would 
do better to wait at 
vertices 2, 3, or 4. 

the center of the graph. 
However, Red and Blue can play using pure strate- 

gies or mixed strateges. If Red randomizes his or her 
choice of a vertex, say by flipping a coin, spinning a 
roulette wheel, or using any other random device, or if 
Red plays the pursuit-evasion game repeatedly and ran- 
domly chooses different vertices in different plays of the 
game, Red is using not a pure strategy but a mixed 
strategy. 

The easy analysis of pure strategies leads to a 
plausible rule of thumb for Red: in optimal mixed strat- 
egies, Red should assign a positive probability to some or 
all of the vertices in the center of the graph and zero 
probabilities to the vertices outside the center of the 
graph. It also seems plausible that for every vertex in the 
center of a graph, there exists at least one mixed strategy 
that assigns positive probability to that vertex. 

These plausible rules of thumb are wrong. In the 
graph in Figure 5, vertex 3, which belongs to the center, 
is assigned no probability by any optimal mixed strategy 
for Red (Chung et al. 1987). To see why, suppose that 
Red did assign some positive probability, say E, to vertex 
3, and that Blue chose vertex 1 with probability 112 and 
vertex 2 with probability 112. Then Red must assign its 
remaining probability 1 - E to the remaining vertices 1,2, 
4, and 5. The distance from any one of these four vertices 
to vertex 1, plus the distance from that same vertex to 
vertex 2, is exactly 3, so the average cost to Red of 
probability assigned to any of these four vertices is just 
312. The sum of the distances from vertex 3 to vertices 1 
and 2, however, is 4, so the average cost to Red of the 
probability E assigned to vertex 3 is (412)~ > 0. Thus when 
Red assigns positive probability to vertex 3, Red's aver- 
age cost strictly exceeds 312. Red can do better by sitting 
with probability 112 on each of the vertices 4 and 5. The 
latter strategy assures that Red will not have to pay more 
than 312 on average. 

In the graph in Figure 6, no optimal mixed strategy 
for Red places any probability in the center of the graph, 
which here consists just of vertex 1. A short mathernat- 
ical argument (Chung et al. 1987) shows that Red can 
improve on any strategy that uses vertex 1 with positive 
probability by a strategy that uses vertex 2 with proba- 
bility 115 and vertices 3 and 4 each with probability 215. 
(The lack of symmetry in these probabilities reflects the 
lack of symmetry in the graph.) Intuitively, in this 
specially contrived example, vertices 2,3, and 4 are closer 
to where the action is, though they all fall outside the 
center of the graph. 

The examples in Figures 5 and 6 show that a 
plausible rule of thumb based on pure strategies can be 
misleading when applied to mixed strategies. What is 
optimal when players are constrained to make a single 
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choice with probability 1 may be far from optimal when 
players' actions are uncertain or contain a random ele- 
ment. 

Approaching consensus can be delicate 
Suppose that two negotiators (call them Red and Blue 
again) are trying to reach agreement on an estimate of 
some unknown numerical quantity F (for example, the 
forces permitted under an arms agreement). A widely 
studied model (French 1956; Harary 1959; Roberts 1976; 
Genest and Zidek 1986) of an iterative negotiation sup- 
poses that at the start of the negotiation Red proposes the 
estimate $ and Blue proposes an estimate E. After 
completing k stages of ne otiation (initially k = 0), Red 
forms a new estimate F$ of F by taking a weighted 
average of his own most recent estimate F: and Blue's 
most recent estimate Fk,, using weights that may depend 
on the stage of the negotiation (DeGroot 1974). Thus FF' 
= a ( , ) ~ ;  + (1 - a(,))Fk,, where 0 5 a(,) 5 1. Blue similarly 
calculates his new estimate FF' as a weighted sum of his 
own and Red's most recent estimates, using his own 
weights, which may also depend on the stage of the 
negotiation. For simplicity, let us suppose here that the 
weights Blue uses at each stage are symmetrical to the 
weights Red uses at each stage, meaning for example 
that if Red weights his own most recent estimate by 314 
and weights Blue's most recent estimate by 114 then Blue 
weights Blue's own most recent estimate by 314 and 
Red's most recent estimate by 114. In general, suppose 
that ~ k , + '  = (1 - u ( ~ ) ) F ;  + a(,)Fk,. The weights used by both 
negotiators at stage k are described by a(,) .  

The negotiators approach consensus if, in the limit 
as the number k of stages in the negotiation becomes 
large, the absolute difference IF; - Fk,l between the 
estimate F: of Red and the estimate Fk, of Blue ap- 
proaches 0, no matter what the initial estimates F' of the 
negotiators may be. In reality, no negotiation can or WLU 
continue forever. The definition of approaching consen- 
sus just offered remains useful, however, because it 
discriminates between negotiations in which, if the ne- 
gotiators choose to continue, they can come arbitrarily 
close together, and negotiations in which, even if the 
negotiators persist, they cannot come arbitrarily close 
together. 

If the negotiators constantly use weights of 112 for 
their own and the other negotiator's estimates, they will 

Figure 7. Negotiations approach consensus or deadlock depending 
on how each side hardens its position. Hardening can be defined 
mathematically as a "weight" each side attaches to its own and its 
opponent's latest estimates (or offers). When negotiators harden 
their positions slowly (gray), they approach consensus (the 
difference between their estimates approaches zero). In this 
example, the weight that one side attaches to the estimate of the 
other varies inversely as the stage of the negotiation. When 
negotiators harden their positions rapidly (black), the difference 
between their estimates declines to 0.44 but never approaches zero. 
In this example, negotiators vary the weight attached to their 
opponents' estimates inversely as the square of the stage of 
negotiation. When randomness affects the weights assigned at 
afferent stages, as in real life, small changes in the negotiators' 
behavior can lead to dramatically different outcomes. 

approach consensus because any initial difference be- 
tween the estimates of Red and Blue is eliminated at the 
first stage of the negotiation. 

On the other hand, if Red attaches weight 1 to Red's 
own most recent estimate (a(,) = 1) and 0 to Blue's most 
recent estimate, while Blue attaches weight 0 to Red's 
most recent estimate and 1 to Blue's own most recent 
estimate, it is equally clear that the negotiators will never 
reach consensus. Each negotiator listens only to himself, 
and the estimates cease to change. 

It might be inferred from these examples 
that real conflict and cooperation should 
be left to the management of experts. 
Such an inference is not justified 

The negotiators harden their positions if the weight 
a(,) approaches 1 as k gets large. Surprisingly, the nego- 
tiators can come arbitrarily close to agreement in their 
estimates even if they harden their positions, provided 
that they do not harden their positions too quickly. 

To illustrate this claim, consider, for every stage k of 
the negotiation, k = 0, 1, 2, . . . , two ossible weights 5' A, = 1 - l/(k + 3) and B,  = 1 - l/(k + 3) . These weights 
differ only in the exponent of k + 3. For large k, Ak and Bk 
both approach the weight 1. When a(,) = A,, the negoti- 
ators harden their positions slowly. When a(,) = B,, the 
negotiators harden their positions more rapidly. 

If a(,) = A, at every stage k, the negotiators will 
inevitably reach consensus: whatever the negotiators' 
initial estimates F', the differences between their esti- 
mates will vanish as k gets large (Fig. 7). On the other 
hand, if a(,) = B ,  at every stage k, and if the initial 
estimates of the two negotiators differ, then their subse- 
quent estimates will never become arbitrarily close, 
though the negotiations persist through any number k of 
stages (Isaacson and Madsen 1976). It is not at first 
intuitively obvious why the former weights should lead 
to consensus while the latter weights should not. One 
can quickly get a feeling that the two sets of weights are 
qualitatively different by recalling that the sum for all 
positive integers k of Ilk goes to infinity while the sum 

0 
0 5 10 15 20 25 30 

Stage of negotiations 
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over k of 112 is finite. This elementary fact is key to 
proving that the first set of weights leads to consensus 
while the second does not. 

To make the model of negotiation slightly more 
realistic, assume that the weights a(,) are not fixed but are 
affected by random events in the environment of the 
negotiations. As a first example, suppose that a(,) = A, 
with probability p and a(,) = B, with probability 1 - p, 
where 0 I p I 1, and that the weights are chosen 
independently at each stage k. Since the current esti- 
mates F, of the negotiators are a continuous function of 
both the initial estimates and of all the weights a(,), it 
seems plausible that small changes, even over a pro- 
longed period of time, in the behavior of the negotiators 
should make a small difference in whether the negotia- 

Because In k increases quite slowly as k increases, p, 
decreases quite slowly as k increases. For values of C less 
than or equal to 1, the negotiators will approach consen- 
sus with probability 1. If C exceeds 1, however, the 
negotiators will approach consensus with probability 0. 
Thus an infinitesimal change in the value of C, from less 
than 1 to greater than 1, destroys the approach to 
consensus, even though the probabilities pk appear 
hardly to have changed at all. This example shows 
dramatically that small changes in the behavior of nego- 
tiators can lead to big changes in the outcome of a 
negotiation. 

Traffic flow on congested roads 
tors approach consensus. This rule of thumb sukests Consider drivers who seek to travel by car from an origin 
that a small change in the probability p of a slow to a destination by means of a network of roads. (Think, 
hardening of positions (described by A,) should cause a for local color, of Manhattan, with cars traveling from 
small change in the probability that the negotiators reach Battery Park at the south end of the island to George 
consensus. This reasonable expectation turns out to be Washington Bridge at the north end, by routes along the 
true for a significant range of values of p, but also west or east sides.) The complexities of a real road 
significantly false. When p = 0, that is, when a(,) = B , network may be approximated by a directed graph 
with probability 1, the negotiators do not approach (Robinson and Foulds 1980), which consists of vertices 
consensus. However, for any positive value of p, no and arcs (directed edges). Vertices represent places or 
matter how close to 0, the negotiators will approach junctions of roads. Whenever there is a path from one 
consensus with probability 1, that is, almost surely. Thus vertex to another, place an arc (an edge directed from one 
the probability that negotiations will approach consensus vertex to another along the direction of possible traffic 
changes discontinuously from 0 to 1 as p, the probability flow). A directed graph differs from an undirected graph 
that the negotiators harden their positions at a slow rate, in that each edge is assigned a direction and called an arc. 
increases infinitesimally from 0 to any positive value, no The graphs in Figure 8 are two examples of directed 
matter how small (Cohen et al. 1986). graphs as models of road networks. (The graph on the 

This first example assumes that the probability that left represents major arteries along the east and west 
a(,) = A, is independent of the stage k of the negotiation. sides of Manhattan; the graph on the right represents, in 
Suppose now, as a second example, that the probability addition, an unfortunately nonexistent major artery 
that a(,) = A, is pk, where p, is a gradually decreasing across the middle of the island.) 
function of k. According to this assumption, the negoti- The traffic in a road network is described by the 
ators have a gradually declining probability of hardening number f ,  of cars moving along each arc (it]) from vertex 
their own positions at the slow rate described by A,, and i to vertex j. The cost to each car of travel from i to j along 
a gradually increasing probability of hardening their arc (i,j) when the flow isf, is described by c,](f,). The cost 
positions at the faster rate described by B,. For purposes may be measured by time spent in travel or by gasoline 
of illustration, suppose that pk = C/(ln k)', for some consumed, for example. It is assumed that the cost of 
number C r 0, where In means the 
natural logarithm (Cohen et al. 1986). 

I3 I3 @I3 
HI3 I3 I3 
@I3 HI3 

Figure 8. In a traffic network (left), cars 
traverse a grid, from vertex 1 to vertex 4, by 
way of either vertex 2 or vertex 3. In this 
example, both routes are congested, and 
traffic engineers consider building a new 
route between vertices 2 and 3 (tight). Will 
the added flexibility improve circulation? 
Not for this city. When traffic flow reaches a 
new equilibrium, the results are worse for 
everyone: it takes longer to traverse the grid 
than before. In this figure, the small cars 
associated with each route show the number 
of cars taking that route; in both cases, six 
cars enter and exit the network. The 
formulas associated with each route give the 
cost per car (say, in minutes) of traveling a 
route as a function of the number of cars, f, 
taking that route; for example, when 3 cars 
travel along a route with cost function 10f, HI3 HI3 
each one takes 30 minutes. (After Steinberg l3@ HI3 
and Zangwill1983.) @I3 MI3 
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traveling along an arc at a given level of traffic is the same 
for all cars traversing that arc. The cost defined here 
refers to the cost for each car, not to the aggregate cost for 
all the cars flowing along the arc. 

An arc from i to j is said to be uncongested if one 
more car in the flow along the arc results in no increase 
in the cost per car traveling along the arc. A network is 
said to be uncongested if, at the current levels of flow in 
each arc, each arc is uncongested. 

An arc is said to be congested if one more car 
flowing along the arc results in an increase in the cost per 
car traveling along that arc. Each arc in the networks in 
Figure 8 is congested. The network is said to be con- 
gested if one or more of its arcs is congested. Thus both 
networks in Figure 8 are congested. An arc or network 
may be uncongested at one level of traffic flow and 
congested at another. 

The total travel cost of a car is the sum of the arc 
costs over all arcs in the travel route from origin to 
destination. Each driver is assumed to seek a route from 
origin to destination that minimizes his or her total travel 
cost. At equilibrium, the cars are distributed over arcs so 
that a change of path by any one car would raise the total 
travel cost for that car, given that all the other cars did not 
change their routes. At equilibrium, all cars travel by 
paths that have the same total travel cost. When the 
network is uncongested, the choice of route by one 
driver has no effect on the choice of route by another. All 
drivers travel by minimal cost routes, of which there may 
be several. In a congested network, on the other hand, a 
change of path by one car may affect the total travel cost 
of that car and of many other cars. 

In an uncongested network, adding additional arcs 
cannot increase the total travel cost of any car at equilib- 
rium. An additional arc simply opens more choices to 
each driver and may lead to no change or to decreases in 
total travel costs. This fact leads to a tempting rule of 
thumb for congested networks: more roads in a road 
network should save time for everybody (or at least 
somebody). 

A startling counterexample to this rule of thumb was 
discovered by Braess (1968) and is known as Braess's 
paradox. The network on the left of Figure 8 differs from 
that on the right only by the addition of an arc from 
vertex 3 to vertex 2. 

Let me describe a route through the network by the 
vertices through which a car passes. Consider a driver 
who drives the route (1,3,4) in the network on the left. 
After the addition of the new arc, if all of the other 
drivers retain their previous routes, one of the three 
drivers who originally travels (1,3,4) is in a position to 
lower his cost by traveling from vertex 3 to vertex 2 via 
the new arc (incurring a cost of 11 = 1 + 10 for that arc) 
and from vertex 2 to vertex 4, incurring a cost of 40 for 
that arc; his travel cost of 30 for the arc (1,3) remains the 
same, so his total travel cost would be reduced from 30 + 
53 = 83 to 30 + 11 + 40 = 81. Therefore he switches from 
the route (1,3,4) to the route (1,3,2,4). Now there are four 
cars flowing along the arc (2,4). The three original drivers 
along the route (1,2,4) are now paying 93 instead of the 
original 83. One of these three can lower her total travel 
cost by shifting the first portion of her route from (1,2) to 
(1,3). If she then continues along the arc (3,4), her total 

travel cost, 93, will be higher than if she follows the new 
arc along the route (1,3,2,4), for a total travel cost of 92. 
At this point, the traffic flows are as shown in the 
network on the right. Every driver is paying 92. Every 
driver now finds that he or she would be worse off if he 
or she changed routes, given what everyone else is 
doing. Thus when each driver reacts to the reactions of 
every other driver, the flows and costs stabilize at the 
new equilibrium shown on the right. The remarkable, 
and utterly counterintuitive, feature of this new equilib- 
rium is that everyone is worse off! The cost per car has 
risen from 83 to 92. 

Such counterintuitive effects should be by no means 
unusual in congested road networks (Steinberg and 
ZangMrlll1983). In this and similar examples (Cohen and 
Kelly, unpubl.), Adam Smith's Invisible Hand leads 
everyone astray. 

Let your imagination now wander from the benign 
chaos of Manhattan to the urgent logistical demands of a 
distant conflict, or the pressing envoy of messages to 
distant conversations that are aimed at preventing con- 
flict. Surely, enlarging the number of supply channels 
can only improve the efficiency of supply to the front. 
But if the channels are congested it need not be so! 

How relevant are the models? 
An argument against the relevance to real situations of 
the four examples given here is that they are so simple. 
Examples closer to the complexity of real life, it might be 
argued, would contain fewer surprises. The simple mod- 
els omit all the familiar features of real situations. Accord- 
ing to this criticism, the surprises in these examples arise 
from the many respects in which the examples differ 
from reality rather than from those aspects the examples 
share with reality. 

The force of this criticism depends on how well the 
models mirror key elements of complex real situations. If 
the criticism is intended in a constructive rather than 
dismissive mode, a constructive response is: propose 
better models, analyze them, and see how well they 
confirm intuitive rules of thumb. 

In defending the study of the iterated prisoners' 
dilemma, Axelrod wrote: "It is the very complexity of 
reality which makes the analysis of an abstract interac- 
tion so helpful as an aid to understanding" (1984, p. 19). 
That argument applies here as well. Interactions in 
conflict and cooperation are too complex to analyze 
without the help of clear models. 

These simple examples should at least shake any 
presumption that intuition alone suffices to anticipate the 
surprises of conflict and cooperation. The examples illus- 
trate that the structure of interactive situations may lead 
to results that are surprises for all participants. 
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