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Abstract 

We prove the existence of unique limits and establish inequalities for matrix 
generalizations of the arithmetic-geometric mean of Lagrange and Gauss. For 
example, for a matrix A = (a f j )  with positive elements aij, define (contrary to custom) 
A: elementwise by [Ailfj = (aij):. Let A(0)  and B(0) be d x d matrices ( 1  < d < a) 
with all elements positive real numbers. Let A ( n + l )  = ( A ( n ) + B ( n ) ) / 2  and 
B(n+ 1 )  = (d-'A(n) B(n))i .  Then all elements of A(n) and B(n) approach a common 
positive limit L.  When A(0) and B(0) are both row-stochastic or both column- 
stochastic, dL is less than or equal to the arithmetic average of the spectral radii of 
A(0)  and B(0) .  

1 .  A limit theorem for positive matrices 

Let a and b be positive numbers. Define the sequences a = { ~ ( n ) ) : = ~  and 

b = {b(n)):-O by 

Because max (a ,  b) >, (a+  b) /2  >, (ab): 2 min (a ,  b) > 0 ,  

with strict inequality everywhere if a b, the sequences a and b each have a limit 
and it is the same limit. Denote the common limit by M(a, b ) .  

According to Cox[3], Lagrange defined the sequences ( 1 )  in 1785, noted that  they 
have a common limit M(a, b), and showed how to use them to compute elliptic 
integrals. In 1791, Gauss, then 14, independently discovered the sequences ( 1 )  and 
defined M(a, b) to be the arithmetic-geometric mean, which he abbreviated to agM, 
of two positive numbers a, b. The agM has deep connections with elliptic integrals 
and diverse applications [I-31. 

The iteration ( 1 )  applies as well to complex numbers a and b with positive real 
parts; the square root can be chosen so that every b(n) has a positive real part. Stickel 
[7] established the convergence of the iteration ( 1 )  when a is I, the d x d identity 
matrix, and b is any d x d complex matrix, the eigenvalues of which all have positive 
real parts. The matrix square root is chosen so that the eigenvalues of every b(n) have 
positive real parts. 

Here we propose some different matrix generalizations of the iteration ( I ) ,  show 



that they converge, and establish some inequalities governing the limiting values. 
Additional exact results and inequalities concerning the iteration (3) below have been 
established by P. D. Borwein and E .  U. Stickel (personal communication, 4 March 
1986) on the basis of a previous draft of this manuscript and correspondence. 

For a fixed positive integer d, let A and B be d x d positive matrices, i.e. matrices 
in which all elements are positive numbers. For such A = (aij), define At by 
[Ailij = (aij)$. This elementwise square root is not the usual definition of the square 
root of a non-singular matrix (e.g. [5]). Clearly AtAi +A,  but At * At = A, where * 
denotes the Schur or Hadamard product, i.e. elementwise multiplication 
([A * BIij = aij bij). 

If the sequences A* = {A(n))?=,, B* = {B(n)),",, of d x d positive matrices are 
defined by 

then obviously A* and B* have the common limit M*(A, B)  with elements 
[M*(A, B)Iij = M(aij, bij). 

The purpose of this note is to define and describe the limiting behaviour of slightly 
less trivial generalizations of the agM for positive matrices. Define the sequences 
{A(n))?=,, {B(n)}?=, of d x d positive matrices by 

where AB denotes the ordinary matrix product A times B. (When d = 1, (2) and (3) 
both reduce to ( I ) . )  Let J be the d x d matrix in which every element is 1. 

THEOREM 1. There exists a positive number p(A, B)  such that 

lim A(n) = lim B(n) = p(A, B)  J = M(A, B),  
n t m  n t m  

and conoergence to the limit is geometrically fast. 
Before proving (4), we note that if A(n) = B(n) = c J  for some positive number, c, 

then A(n+ 1) = B(n+ 1) = cJ, so c J  is a 'steady-state' solution of (3). The task is to  
prove that every solution of (3) converges to this steady-state solution with c 
depending on A and B. 

It is also easy to see, as David A. Cox pointed out (personal communication, 
23 January 1986) that  ,u(aJ, b J )  = M(a, b)  when a and b are positive real numbers. 

Proof of Theorem 1. Consider the directed graph D with 2d2 vertices labelled by Cij 
where C takes the values C = A or C = B, and i = 1, . . . , d, and j = 1, . . . , d. Each 
vertex of D represents one of the 2d2 elements of the matrices A and B. Let there 
be a directed edge to (17,)~~ from (C,),,, and write (Cl)ijt(C,)gh, if and only if, 
according to (3), 

- 

For example, All t Bll because All(n+ 1) = (All(n) + Bll(n))/2 so Bll a t  step n 
influences All a t  step n +  1 .  Similarly, for i = 1, . . . , d, Bll t B i l .  
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I t  follows from the chain rule that D has a directed path of k 2 1 directed edges 
from (C,),, to (Cl),j, and we write (Cl)ij+k (Cz)gh, if and only if 

Returning to the preceding examples, All t, Bil, for i = 1 ,  . . . , d ,  i.e. All a t  step n + 2 
is influenced by or depends on every element of the first column of B a t  step n. 

We next show that D is strongly connected, i.e., that there is a directed path from 
any vertex to any other. Since, for any i = 1 ,  . . . , d ,  we have B,, t Atj for all 
j = 1 ,  . . . , d ;  and since Aij t Bij for all i, j = 1 ,  . . . , d ,  we have the following paths : 

Allt ,A,i  and Al l t ,B t j ,  

Bl1+2Aij and Bll+,Btj, 

(for all i , j  = 1 ,  . . . , dl. I 
Since the choice of the ( 1 , l )  element of A or B is arbitrary, obviously the same is 
true for any other element of A or B. Thus D is strongly connected. 

Moreover, Ail+ Ail, for all i, j = 1 ,  . . . , d .  Therefore for all k 2 4, for all g, h, i, 
j = 1, . . . , d ,  and for C,, C, = A or B, 

For k 2 4, each element of C,(n+ k )  depends simultaneously on all elements of C,(n). 
Define the upper and lower bounds, for n = 0,1, . . . , 

U(n) = max max (A,(n), Bij(n)),  
i, l 

L(n) = min min (Atl(n), Bij(n)). 
i, j 

Then, from (3), 
U(n) 2 U(n+ 1 )  2 L(n+ 1 )  2 L(n), 

so the limits L = lim,,, L(n),  U = lim,,, U(n) exist and U 2 L. 
We now show that U = L and that U(n) and L(n) converge to their common limit 

geometrically fast. 
Fix n and let U* = U(n), L* = L(n). Since each element of A(n + 1 )  and B(n + 1 )  

is a monotone non-decreasing function of each element of A(n) and B(n), U(n + I ) ,  the 
largest of the elements of A(n + 1 )  and B(n + I ) ,  will be large as possible if some single 
element of A(n) or B(n) equals L* and all the remaining'elements of A(n) and B(n) 
equal U*. So suppose this is true. If Aij(n+ 1 )  and Bil(n+ 1 )  are elements of A(n+ 1 )  
and B(n+ 1 )  that depend on the element of A(n) or B(n) that is equal to L*, then 

Bij(n+ 1 )  = [d-'{(d- 1 )  U*,+ U*L*)]: = [U*{(l- lid) U*+ L*/d)]: 

using the inequality of arithmetic and geometric means. Thus every element of 
A(n + 1 )  and B(n+ 1 )  that  depends on the L* element of A(n) or B(n) is not greater 
than U* - (U* - L*)/(2d). (The other elements of A(n + 1 )  and B(n + 1 )  could be as 
large as U*.) By iteration, every element of A(n+ 2 )  and B(n + 2) that depends on 



any element of A ( n +  1 )  or B ( n +  1 )  that  in turn depends on the L* element of A ( n )  
or B ( n )  is not greater than 

Iterating two more steps, we observe that  every element of A ( n + 4 )  and B ( n + 4 )  
depends on the L* element of A ( n )  or B ( n )  (via a path given by the directed graph 
D) and is not greater than U* - (U* - L*) / (2d)4 ,  that  is, 

From the last inequality of ( 6 ) ,  we then have 

Hence U = L and, in the notation of ( 4 ) ,  both equal ,u(A, B ) .  I 
Since generally A B  =!= B A ,  generally p ( A ,  B )  =!= ,u(B, A ) .  
David A. Cox (personal communication, 23 January 1986) points out the following 

amusing corollary of Theorem 1 .  If A is a d x d positive matrix such that  (A2)$  = d$A, 
then. for some c > 0 ,  A = cJ. His proof is that  if A ( 0 )  = B ( 0 )  = A ,  then 
A ( n )  = B ( n )  = A for all n .  A direct proof of a stronger result involving the 
map A+(d-lA2)i is sketched in the next section. 

2. A general principle for the existence of a limit 

To keep this paper self-contained, we have given an ad hoc proof of the existence 
of ,u(A, B ) .  I n  this section, we explain how the results of Section 1 are a special case 
of a general theorem of Nussbaum [6].  That general theorem also contains other 
generalizations of the agM, for example, one of Everett and Metropolis [4] .  We now 
describe the general theorem and its relation to our problem. 

A closed, convex subset K of a Banach space X will be called a cone if tx  E K for 
all t 2 0 and x E K and if x E K-{0}  implies that - x  .$ K .  A cone induces a partial 
ordering by x < y if y-x  E K .  If the interior, KO, of K is non-empty and f :  KO + KO 
is a map, f is called order-preserving iff ( x )  ,< f ( y )  whenever x < y ; and f is homogeneous 
of degree I if f ( tx)  = t f (x )  for all t > 0 and x E K .  

THEOREM 2. (See theorem 3.2 in [6].)  Let K be a cone with non-empty interior in a 
Jinite-dimensional Banach space X and let f :  KO+ KO be a continuous, order-preserving 
map which is homogeneous of degree 1. Assume that there exists v E KO such that f (v )  = v 
and that f is C on an  open neighbourhood of v.  Let L = f '(v) be the Fre'chet derivative 
off  at v. Assume that there exists an  integer m 2 1 such that for each x E K -  {0},  Lmx E KO. 
Then for each x E G, there exists a positive number ,u(x) such that 

lim f n ( x )  = ,422)  v ,  
n+ m 

wherefn denotes the composition o f f  with itselfn times. The map x+,u(x) is  continuous, 
C1 on an  open neighbourhood of v ,  order-preserving and homogeneous of degree 1. If 
v* E X *  denotes the Fre'chet derivative ,u'(v) of ,u at v ,  then v* is  the unique element of X* 
such that L*v* = v* and v*(v)  = 1, where L* is  the Banach space adjoint of L.  I f f  is  
Ck (real analytic) on KO, then ,u is Ck (real analytic) on KO. 

A version of Theorem 2 is also proved in [6]  for general Banach spaces. 
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The results of [6] also imply that  the convergence in Theorem 2  is geometric : given 

a compact subset M of KO, there exist constants B and c, 0 < c < 1 ,  depending on 
M, such that 1 1  f n(x) -p(x) vll < Bcn, for all X E  M. 

Theorem 2  immediately implies that  f has a unique (to wit,hin positive scalar 
multiples) eigenvector in KO. However, iff extends continuously to K it may well 
have other eigenvectors in the boundary of K. This will be the case for f given by 

(3) .  
To apply Theorem 2  to (3), let X denote the Banach space of ordered pairs (A .  B) 

of d x d matrices. Let K denote the cone of ordered pairs ( A ,  B) in X all of whose 
components are non-negative. Define f :  KO -t KO by 

where, as before, the square root in (7) is the element,wise square root. It is easy to 
check that f is real analytic on KO, order-preserving. and homogeneous of degree 1 
and that f(J, J )  = (J.  J )  (where J  has every element 1). An easy application of the 
chain rule shows that the Frkchet derivative off a t  (J ,  J )  is the linear map L : X+X 
given by 

L(A, B)  = ( ( A  + B)/2, (2d)-l(AJ+ JB)) .  (8) 

To see that L satisfies the hypotheses of Theorem 2, if (A ,  B ) E  K-{0), define 
(A,, B,) = Lk(A, B).  Since A and B are not both 0,  A, has some posit,ive entry, say 
in row i .  Equation (8) t.hen implies that all entries in row i of B, are positive. Thus, 
JB, and B, have all entries positive; and finally, A, and B, have all entries positive, 
i.e. L4(A, B)  E KO. 

Theorem 2  now implies that  

limfn(A, B)  = p(A, B )  ( J .  J )  (p(A, B)  > O), 
n+m 

for all ( A ,  B)  E KO, which is just Theorem 1. Furthermore, Theorem 2 implies that  
( A ,  B)  +p(A, B)  is real analytic. Let 1 be the d-vector with all elements 1. If 

then v* E X*, v*(J, J )  = 1 and L*v* = v*, so v* is the Frkchet derivative o fp  at. (J ,  J ) .  
Two other maps are closely related to f. First, define g : KO+ KO by 

g(A, B) = ( ( A  + B)/2,  ((2d)-l(AB + BA)):). (10) 

From Theorem 2  or the kind of argument employed in Section 1 ,  one obtains 

for all ( A ,  B)  E KO. The map ( A ,  B) +[(A, B) is real analytic, homogeneous of degree 
1 ,  order-preserving and has the same Frkchet derivative as f a t  (J ,  J ) .  In  addition. 
t ( A > B )  = [ (B ,A) .  

Second, if Y denotes the Banach space of d x d matrices and C is the cone of 
non-negative matrices. define h : C0 + C0 by 



where again the square root denotes the elementwise square root. The map h satisfies 
all assumptions of Theorem 2 and h ( J )  = J ,  so for each AECO there exists h ( A )  > 0 
such that  

lim hn(A)  = h ( A )  J .  
n t m  

Equation (13) implies that  h has a unique normalized eigenvector in CO, which is 
basically the observation made a t  t,he end of Section 1. 

3. Estimates for p ( A ,  B ) ,  [ ( A ,  B )  and h ( A )  

We now give some estimates for p ( A ,  B ) ,  [ ( A ,  B )  and h ( A ) .  In  certain important 
cases, our estimates use r ( A )  and r ( B ) ,  the spectral radii of A and B ,  respectively. 

First, we renormalize. If J is the d x d matrix with all elements 1, define J ,  by 

Then J ,  1 = 1, so the theory of positive matrices implies r (J l )  = 1. If A and B are 
positive d x d matrices and f ,  g and h are as defined in (7 ) ,  (10) and (12),  our previous 
results imply that  there are positive numbers p, (A,  B ) ,  [,(A, B )  and h l ( A )  such that  

lim h n ( A )  = h l ( A )  J1. 
n+ w 

Obviously p l (A ,  B )  = dp(A ,  B ) ,  etc. 
LEMMA 1. Let A E C  and B E  C ,  i.e. A and B are non-negative d x d matrices. Let x 

be a non-negative d x 1 column vector and xi be its elementwise square root. Let 
E = (d-'AB)! and F = ((2d)-'(AB+ BA))! .  I f ,  for y and z E Rd, one writes y ,< z when 
yi < zi for 1 ,< i ,< d ,  and i f  one has 

A X  ,< ax and Bx  ,< Px 

for positive scalars a and p, then 

E ( d )  ,< (ap)ixi and F(x4) ,< (aD);x!. 

Analogous conclusions are true if x is a 1 x d row vector and X A  ,< ax and X B  ,< px. 
Proof. We shall prove the theorem for t,he matrix E. The proof for F is essentially 

the same. 
The it,h component (EX+){ of Ex; is given by 

(Ex;), = C d-' C aiibikxk 
&=I j-1 

Applying the Cauchy-Schwartz inequality to the right side of (16) gives 
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A non-negative square matrix A is primitive if, for some m > 1, all entries of Am 

are positive. 

THEOREM 3. Let C be the cone of non-negative d x d matrices (as before) and let h :  C+ C 
be defined as in (12).  If A E  C is a primitive matrix, then 

lim h n ( A )  = A1(A) J1, 
n+cc 

where h , (A)  is positive real and J ,  is as in (14). Furthermore, 

where r ( A )  is the spectral radius of A .  Equality holds i n  (19) if A = J,. 

Proof. If A E  CO, (18) was established in Section 2. However, if Am has all positive 
entries and k is such that 2k 2 m ,  it is easy to show that h k ( A )  E CO, so the existence 
of the limit in this case follows from the other case and A,(A) = Al(hk(A))  > 0. 

The theory of non-negative matrices implies that if B is primitive, B has an 
eigenvector with all components positive and with eigenvalue r (B) .  Furthermore. if 
B is any non-negative, square matrix and By  , (by  for some vector y with all 
components positive, then r ( B )  < p. 

In our case, A has a strictly positive eigenvector with eigenvalue a = r ( A ) .  If 
An = hn(A) ,  Lemma 1 implies (taking A = B )  

A ,  xi < ax:, 

and using Lemma 1 repeatedly one obtains 

 an(^*) < a ~ n ,  where en = 2-n. 

The previous observations imply that 

and taking the limit as n+ co gives 

r(A,(A) J,) = A,(A) r(J,)  = A,(A) < r ( A ) .  I 

THEOREM 4. Suppose that A = (ai j)  and B = (bij) are d x d positive matrices and 
define 

a = max X aij, P = max X bii, 
l<i<d j-1 l<i<dj-1 I 

d 

y = max X aij and S = max bij. 
l<j<di-1 l<j<di=l 

If M(a ,  p)  is the arithmetic-geometric mean of a wnd P, then 

p l (A.  B )  < min ( M ( a ,  B) .  M ( y ,  S) ) ,  1 
5,(A, B )  < min ( M ( a ,  p) ,  M ( y ,  8 ) ) .  ) (21 ) 

Equality holds in  (21) if A = a J ,  and B = PJ,. 

Proof. We shall prove inequality (21) for p,(A, B ) ,  since the argument for c,(A,  B )  
is essentially the same. As before, let 1 denote the d x 1 column vector with all entries 
1 and I T  its transpose. Then A1 < a1 and B l  < p l .  Lemma 1 implies 
A ,  1 < ( ( a + P ) / 2 )  1 and B ,  1 < (ap ) : l ,  where (A, ,  B,) = f ( A , B )  and f is as in (7). 



Generally, if $(a ,  P )  = ( ( a  + P) /2 ,  (up):) and (a,, P,) = $,(a, b) and (A,, B,) = 
f k ( A ,  B ) ,  then, by repeated applications of Lemma 1, we obtain A ,  1 < a ,  1 and 
B k  1 6 p, 1. Taking the limit as k + oo, 

p l ( A ,  B )  J1 1 = pl('4, B )  1 6 M ( a ,  P )  1, 

so p l ( A ,  B )  6 M(a ,P) .  Since IT  A < ylT and IT  B 6 61T, the argument that 
p l ( A ,  B )  < M ( y ,  6) is completely analogous. I 

If A is a d x d matrix, the formula 
d 

IIA- l l  , = max z laul 
l Q i Q d j - 1  

defines a norm. In  fact, if one defines for a d x 1 vector x the standard sup norm by 

then \(Allrn = max{IIAxll,: llxIrn 6 1). 

Thus Theorem 4 provides an estimate for p l ( A ,  B )  in terms of the agM of I(AII, and 

IIBII,. 
There is another natural norm on the set of d x d matrices for which one obtains 

similar estimates. If A is a d x d matrix, define IIAIIHs, the Hilbert-Schmidt norm of 

A ,  b s  

I t  is well-known that IIA((,, actually defines a norm. 

LEMMA 2. Let A and B be non-negative matrices, neither of which i s  identically zero. 
If (A, ,  B,)  = f ( A ,  B )  is dejined by (7) ,  then 

Equality holds in (22)  if and only if B = a A  for some a > 0,  and equality holds in 
(23)  if and only there exists P > 0 such that ail = Pbjk for all i ,  j, k .  

Proof. For notational convenience, write 1) . ) I  for 1 1  . I I H s  Inequality (22)  and the 
condition for equality follow immediately from the Cauchy-Schwartz inequality. 

Bv definition 

The Cauchy-Schwartz inequality gives 

and equality holds in (24)  if and only if aii = 0 for 1 6 j 6 d or there exists Ad, > 0 
such that 
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If we define ai and fp, by 

inequality (24) gives 

The Cauchy-Schwartz inequality implies that  

d c ai < d i ( 5  a::): = di l l~l l ,  
i=l i-1 

and equality holds in (27) if and only if all the ai are equal (so none of the at equals 
zero). Similarly, 

and equality holds in (28) if and only if all the fp, are equal (and hence all non-zero). 
By substituting inequalities (27) and (28) in (26), we obtain inequality (23). 
Furthermore, our remarks show that  equality holds in (23) if and only if all the ai 
are equal and non-zero, all the fp, are equal and non-zero, and (25) holds. Using 
this information, one can easily see that  hi, is a positive constant independent of i 
and k. I 

COROLLARY 1 .  Let C be the cone of non-negative d x d matrices, let K = C x C and let 
f :  K +  K be defined as in (7). If (A,, B,) E dK and (A,, B,) = fk(Ao, B,) E dK for all 
k 2 1 ,  then lim,+,(A,, B,) = (0,O). 

Proof. If fp is such that  A ,< fpJ, and B < fpJl, it is easy to  see that  A, < fpJ, and 
B, h fpJ, for all k. Lemma 2 implies that  llAkll + llBkll (where the norm is the 
HilbertiSchmidt norm) is a decreasing function of k, so 

If the corollary is false, then (because A, and B, are bounded) we can select a 
subsequence (Aki, Bkl) which converges to  (E, F) E ~ K ,  (E, F) + (0.0). Equation (29) 
implies that  if (E,, F,) = fk(E, F), then 

If E or F is 0, one easily sees that  (E,, F,) converges to (O,O) ,  which contradicts (30) 
and the assumption that  L + 0. If E + 0 and F + 0, Lemma 2 implies that  equality 
can occur in (30) if and only if there exist positive numbers a: and fp such that  = aEii 
and PI$, = Eij for a11 i ,  j, k. These equations easily imply that  there exist constants 
c and d such that  Eii = c and = d for all i ,  j .  Since (E, F) E dK, this is impossible 
unless c = 0 or d = 0, and we assumed before that  E + 0 and F + 0. Thus we have 
obtained a contradiction, and the corollary is true. I 

If (A,, B,) E KO, an  examination of the argument in Corollary 1 shows that  the same 
sort of argument proves that  (A,, B,) approaches a positive multiple of (J, J), thus 
yielding a third approach to our basic Theorem 1. 



By using Corollary 1 we can define p ( A ,  B )  for all ( A ,  B ) E  K. If 
(A,, B,) = f k ( A ,  B )  E aK for a11 k 3 1, define p ( A ,  B )  = 0 ; if there exists k 3 0 such 
that f k ( A ,  B )  E KO, define p ( A ,  B )  = p( f k ( A ,  B ) ) .  We already know that p is real 
analytic on KO (see Theorem 2) ,  and i t  is an easy exercise to show by using Corollary 
1 that p is continuous on K. 

THEOREM 5 .  Suppose that A = (ai j)  and B = (bt j)  are d x d positive matrices. If 
M ( a ,  /3) denotes the agM of positive numbers a and /3, then 

and 

Proof. We shall only prove the inequality for pl (A,  B ) ,  since the argument for 
[ , (A ,  B )  is essentially the same. Again we write I (  . 1 1  for 1 )  . 1 1  ,,. 

If (A,, B,) = f k ( A ,  B )  and if q5 is defined as in the proof of Theorem 4 ,  Lemma 2 
implies (in the obvious notation) 

Repeatedly using this inequality and Lemma 2,  we obtain 

Since ( ( J ,  1 1  = 1 ,  the left side of (31) approaches (p,, p I ) ,  where p1 = p l (A ,  B ) ,  and 
the right side approaches ( M ,  M ) ,  where M = M((IAI1, IIB((). This proves the 
theorem. I 

If A and B are both multiples of row-stochastic matrices or both multiples of 
column-stochastic matrices, Theorem 4 implies that 

If x is a vector, let llxllz denote the standard Euclidean norm ( X i  lxi)2): of x ;  and 
if C is a d x d matrix, define 1 1  Cll by 

IICII, = su~~ l ICxI l z :  llxll, = 11. 
It is easy to show that 

If C is symmetric, it is well-known that  (JCI(, = r(C),  so if A and B are symmetric 
matrices, all of whose entries are positive, Theorem 5 implies that 

In  view of inequalities (32) to (34),  one might hope that there exists a constant 
c such that for all positive matrices A ,  

p ( A ,  A ) / r ( A )  G c. (35) 

Unfortunately, (35) is not true in general. To see this, define 
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for b  2 1 and define ( A k ,  Bk)  = fk (A ,  A ) .  If, a t  each stage one retains only the highest 
power of b  in each entry, an elementary but tedious calculation shows that  there 
exists 6  > 0 (6 independent of b  for b  2 1) such that  

where 
23/32 1 

) and (E, 
- - (49164 49/64) 

17/32 17/32 6 ,  eg 37/64 37/64 ' 

It follows that  for b  2 1, 

(A, ,  B,) 2 6bE(J, J ) ,  where e = 17/32. 

Since p(A6, B,) = p(A,  A )  and ,!L is order-preserving, 

On the other hand, we can directly solve for r (A)  
r ( A )  = 1 + b2, 

lim p(A,  A ) / r ( A )  = m. 
b+m 

Theorems 4 and 5 provide some estimates for p l (A ,  B)  and c,(A,  B )  in terms of the 
agM of certain numbers and hence in terms of elliptic integrals. Stickel [7] established 
a connection between his matrix generalization of the arithmetic-geometric mean 
and elliptic integrals, and derived from this connection algorithms for computing the 
matrix exponential and matrix logarithm. It remains to be seen whether there are 
connections between p(A,  B ) ,  c (A ,  B )  and elliptic integrals that  are deeper than the 
loose connections implied by Theorems 4 and 5. 

J .  E .  C. was partially supported by NSF grant BSR 84-07461. R. D. N. was partially 
supparted by NSF grant DMS 85-03316. We thank David A. Cox and Peter 
B. Borwein for helpful correspondence. J.E.C. is grateful for a fellowship from the 
John D. and Catherine T. MacArthur Foundation and the hospitality of Mr and Mrs 
William T. Golden during this work. 

REFERENCES 
[I] J. M. BORWEIN and P. B. BORWEIN. The arithmetic-geometric mean and fast computation of 

elementary functions. SIAM Review 26 (1984), 351-366. 
[2] D. A. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math. 30 (1984), 27&330. 
[3] D. A. Cox. Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (1985), 

147-151. 
[4] C. J. EVERETT and N. METROPOLIS. A generalization of the Gauss limit for iterated means. 

Adv. in Math. 7 (1971), 297-300. 
[5] F. R. GANTMACHER. Theory of Matrices (Chelsea, 1960). 
[6] R. D. NUSSBAUM. Iterated nonlinear maps and Hilbert's projective metric, in preparation. 
[7] E. U. STICKEL. Fast computation of matrix exponential and logarithm. Analysis (Muenchen) 

5 (1985), 163-173. 


