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Abstract 

For graphs on a finite set of vertices with arbitrary probabilities of independently 
occurring edges, the reliability is defined as the probability that the graph is connected, 
and the redundancy as the expected number of spanning trees of the graph. Analogous 
measures of connectivity are defined for random finite directed graphs with arbitrary 
probabilities of independently occurring directed edges. Recursive formulas for com- 
puting the reliability are known. Determinantal formulas, based on matrix-tree 
theorems, for computing the redundancy are given here. Among random graphs with 
a given sum of edge probabilities, the more evenly the probabilities are distributed 
over potential edges, the larger the redundancy. This inequality, proved using the 
theory of majorization, in combination with examples shows unexpectedly that 
conficts between reliability and redundancy can arise in the design of communication 
networks modelled by such random graphs. The significance of these calculations for 
the command and control of nuclear forces is sketched. 

1. Introduction 

The purpose of this paper is to point out that in communication networks (modelled 
by certain anisotropic random graphs or random directed graphs), reliability and 
redundancy can differ markedly. If reliability is measured by the probability of 
connectedness and redundancy is measured by the average number of distinct ways 
all nodes in the network can communicate (the expected number of spanning trees), 
then the reliability of the network and the redundancy of the network are, in general, 
maximized by different assignments to individual links of probabilities of functioning, 
given a fixed sum of probabilities. The major new technical result in this paper is an 
inequality, based on majorization, that shows that, among random graphs with agiven 
sum of edge probabilities, the expected number of spanning trees is larger, the more 
evenly the probabilities are distributed over potential edges. 

As a possible practical application of this result, I suggest that anisotropic random 
graphs or digraphs form a natural family of models for the command system of the 
superpowers' nuclear forces. The interruption of communication between any part 
of the command system and its central political authority would be highly threatening 
both to that command system and to an opposing command system, since in such a 
case there would be no single locus of control or negotiation. It is therefore important 
to understand the reliability (probability of remaining connected) and redundancy 
(expected number of different ways of remaining connected) of such communication 



networks when communication links are randomly removed, e.g. by attack. The 
examples and theorems demonstrate a, potential conflict between reliability and 
redundancy. 

The connectivity of random graphs (measured by the probability that the graph is 
connected) seems to have been first investigated in three independent papers that 
appeared in the same year: Austin et al. [2], Erdos and RBnyi[13] and Gilbert[lS]. 
These and the further papers of Erdos and RBnyi([14], [15]; see [12] for reprints) 
consider only isotropic random graphs (of three different kinds). Other recent papers 
on the connectivity of various random graphs and random mappings include Stubbs 
andGood[33], Ross [31], Dorea[11] and Grimmett et al. [21]. Marshall ([26], chapter 7) 
Karoliski [23] and Grimmett [20] review random graphs extensively. 

I shall consider graphs ([4], [36]) and directed graphs or digraphs ([30], [36]) on the 
set V of vertices, V = {1,2, ..., n), 1 c n c co. To model random digraphs, I shall 
suppose throughout that the directed edge (hereafter called dart, following Tutte) (i, j) 
from tail vertex i to head vertex j occurs with fixed but arbitrary probability 

< 1, independently for all distinct pairs i + j, 1 ,< i, j d n. To model P ~ , O ~ P , .  
random (undirected) graphs, I shall suppose throughout that the (undirected) edge 
{i, j} between i and j occurs with probability pij, independently for all distinct pairs 
i < j ,  1 d i , j  ,< n. Such random digraphs and graphs will be called anisotropic to 
distinguish them from isotropic random digraphs and graphs in which necessarily 
pij = p, for all i + j. 

Three analogues of a tree will be defined for digraphs. An outtree ([22], p. 201) from 
vertex i is a set of vertices and darts whose underlying graph (the graph obtained by 
ignoring the orientation of darts) is a tree such that i is the head of no dart in the set 
and every other vertex in the set is the head of exactly one dart in the set. An outtree 
from i is identical to Tutte's ([36], p. 126) arborescence diverging from i (but easier to 
say). An intree ([22], p. 201 ) to i is a digraph such that, if the orientation of every dart is 
reversed, the result is an outtree from i. Since the labelling of vertices is arbitrary, it 
entails no loss of generality when considering digraphs to deal only with outtrees from 
vertex 1 and intrees to vertex 1. A bitree is a digraph such that the underlying graph is 
a tree and, for every edge {i, j) of the underlying tree, both (i, j) and ( j ,  i) are darts of 
the digraph and there are no other darts. 

In a digraph, apath is a sequence (Dl, D,, . . ., Dm) of m 2 1 darts Dj, not necessarily 
all distinct, such that the head of Dj is the tail of Dj+, for 1 d j < m. The tail of Dl and 
the head of Dm are called the tail and head of the path, respectively, and the path is 
said to go from its tail to its head. Analogous language will be used for paths of edges in 
graphs, except that in graphs paths have two ends (the end vertices) rather than a tail 
and a head. 

A digraph is strongly connected if, for every pair i, j of vertices, there is a path from 
i to j. A graph is connected if, for every pair i, j of vertices, there is a path with ends i 
and j. 

A tree (in-, out-, bi-, or garden-variety undirected) is spanning if its vertices include 
all of V. So a digraph with a spanning bitree is strongly connected, but a strongly 
connected digraph need not have a spanning bitree. However, a graph has a spanning 
tree if and only if it is connected. 

Let P = (pij) be the n x n matrix of edge (or dart) probabilities for random graphs 
(or random digraphs). Assume throughout that P has a zero diagonal, i.e. Pir = 0, 

- 
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i = 1, . . . , n. Say that random graphs are P-connected if there is a positive probability 
of their being connected. Similarly say that random digraphs are strongly P-connected 
if there is a positive probability of their being strongly connected. 

A non-negative n x n matrix A is defined to be irreducible if, for every i and j in V, 
there exists a positive integer k such that (Ak)ij > 0. Clearly, random graphs (digraphs) 
are (strongly) P-connected if and only if the matrix P is irreducible. 

Section 2 reviews a known recursive formula for the probabilities that a random 
digraph has a spanning outtree from 1, that a random digraph has a spanning intree 
to 1, that a random digraph has a spanning bitree, and that a random graph has a 
spanning tree or equivalently is connected. Section 3 gives exact determinantal 
formulas for the expected numbers, in random digraphs, of spanning outtrees from 1, 
of spanning intrees to 1, and of spanning bitrees; and, for random graphs, of spanning 
trees. Section 4 shows that, in random graphs, the more evenly spread out a given sum 
of edge probabilities is, the larger the expected number of spanning trees. Examples 
show that the edge probability matrix that maximizes the mean number of spanning 
trees need not maximize the probability that a random graph has a spanning tree. If 
different edges or darts are associated in the sense of Esary, Proschan and Walkup [16], 
then the expected number of spanning trees (of whatever variety) is not less than the 
expected number of (the corresponding kind of) spanning trees under the assumption 
of independence. Section 5 suggests a practical interpretation of the results. Section 6 
lists some open questions raised by the mathematics and by its applications. 

2. The probability of a spanning tree 

The probabilities of a connection between vertex 1 and all remaining vertices are 
given in Theorem 1 by a recursive formula (1) due to Kel'mans [24]. Let V = {1,2, . . . , n} 
denote the set of vertices, and for i ,  j in V, i + j ,  let F{ = V - {i}, 'V,, = V - {i, j}. For 
S E K, let PI(#) be the probability that vertex 1 is connected by a tree (of type to be 
specified) to exactly the vertices in 8 in a random digraph or graph on the vertex set 
8 u (1) only. Thus P1(K) is the probability that vertex 1 is connected to all remaining 
vertices in V by a tree (of type to be specified). Define Hk to be the family of all subsets 
of 'V, containing exactly k - 1 elements of 'V,, 1 < k ,< n. E.g. HI = { a ) ,  H, = {'V,}. Also 
define null products (products of no factors) to equal 1. 

THEOREM 1. Let Pi( 0 ) = 1. Then 

1 - p1(v,) = .Z;- c P,(s) n A,~ .  
k-1 S E H ~  i E S u ( l ) . j s  V,-S 

The symbols in this recursive formula are to be interpreted as follows. I n  random digraphs, 

(A 1) i f  A,, = qfj = 1 -pij, then P,(K) is the probability of a spanning outtree from 1; 

(A 2) if A,, = qji, then P,('V,) is the probability of a spanning intree to 1; 

(A 3) if A,, = qfj +qji- qfr qri, then P,(K) is the probability of a spanning bitree. 

I n  random graphs, 

(A 4) if A, = qij, then P,(K) i s  the probability of a spanning tree. 

Kel'mans ([24] equation (3)) and independently Buzacott ([7], p. 314) derive (1) for 
graphs. Buzacott[8] extends (1) to outtrees and intrees. The extension to bitrees is 
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trivial. I illustrate ( 1 )  for spanning outtrees of random digraphs and for spanning trees 
of random graphs. When qij = qj, for all i, j ,  these formulas reduce to the examples 
given by Kel'mans ( [24], appendix 1) .  When qij = q for all i 4 j ,  these equations reduce 
to the illustrative equations Gilbert ( [ I S ] ,  p. 1142) gives for isotropic random graphs: 

n = 2: 1 - P1({2)) = q12. 

= 3: -&({2, 3)) = q12q13 + q13q23 + q12q32 

= P i 2  Pi3 + 413 P23 + Pi2432 - Pia  913 P23 - Pi3 P i2  432 ; 

n = 4:  1 - P1({2,3,4)) = q12q13 q14 + Pl((2)) q13 q14 q23 q24 

+ &({3)) q12 914 432 434 + P~ (i4))  q12 q13 442 443 

+ P1({2, 3)) 414~24 q34 + P1({214)) 913 ~ 2 3  q43 + G({3, 4)) qieqsaq4z 

- q u  ~ 2 4  q34(q12 qi3 + ~ 1 3  q23 + ~ 1 2  43-21 

- ql3 423 ~43(q12 414 + q14 q24 + q12 ~ 4 2 )  

- PI2 q32 !?42(q14 q13 + q13 443 + q14 q34) 

+ ~ 1 4 ~ 2 4  ~34(!?12 913 q23 + 413 ~ 1 2  q32) 

+ q13 q23 ~ 4 3 ( ~ 1 2  ~ 1 4  q24 + q14 412 ~ 4 2 )  

+ 912 438 442 ( ~ 1 4  q13 q43 + Pi3 414 434). 

PI(%) involves none of q,,, 1 < i < n, but does depend on all n2 - 2n+ 1 remaining off- 
diagonal elements of the matrix (qij). 

Similar recursive formulas for the probability that there is a path with t,ail vertex 1 
and head vertex 2 in a random digraph on n > 1 vertices, and the probability that there 
is a path with end vertices 1 and 2 in a random graph, are given by Buzacott ( [7] ,  
pp. 321-322; [S],  pp. 244-245) and Provan and Ball ([29],  p. 520). 

3. The  expected number of connections 

For any n x n real matrix A = (ai j ) ,  following the terminology of Tutte([36], p. 138), 
define the n x n Kirchhoff matrix K ( A )  of A by 

Kit = 2 a,, ( i=  1, ..., n), 
j + i  

K ( A )  depends only on the off-diagonal elements of A. K is singular since all its row 
sums are 0. If B is also a real n x n matrix and a and b are real scalars, then 

K ( a A  + bB)  = a K ( A )  + b K ( B ) .  
Also K ( K ( K ( A ) ) )  = K ( A ) .  

For any n x n matrix A, let det A be the determinant of A and let A(il, . . . , i,) be the 
( n - q )  x ( n - q )  principal submatrix of A formed by striking out rows and columns 
i,, ..., i,, for 1 < q < n. If q = 0,  define A ( 0 )  = A. If {i,, ..., i,) = Q E  V ,  abbreviate 
A ( Q )  = A(il, ..., i,). 



Connectivity of random graph 319 
TEEOREM 2. The expected number E ( T )  of spanning trees (of a type to be specijed) is  

given by 
E ( T )  = d e t K ( A )  ( I ) ,  

i .e. the determinant of the matrix formed from the Kirchhoff matrix K ( A )  of A by striking 
out the jrst row and wlumn of K ( A )  [not the Kirchhoff malrix of A after thejrst row and 
column of A have been been struck out] when A is  interpreted as follows. I n  randmr 
digraphs, 

( B  1) if aij = pi, (the probability of a dart from i to j ) ,  then E ( T )  is  the expected number 
of spanning intrees to 1; 

( B  2) if aij = pji, then E ( T )  is the expected number of spanning outtrees from 1 ;  

( B  3) i f  aij = pijpji,  then E ( T )  is  the expected number of spanning bitrees. 

I n  random graphs, 

( B  4)  if aij = pij (the probability of an edge between i and j ) ,  then E ( T )  is  the expected 
number of spanning trees. 

Proof. ( B  1) I f  A is any spanning intree t o  1, then the probability that A is con- 
tained as a subdigraph o f  a random digraph is the product n ( A )  ofpit over all darts (i, j )  
o f  A. Then the expected number E ( T )  o f  spanning intrees to 1 is 

where the sum is over all spanning intrees to 1. The  matrix-tree theorem for digraphs 
o f  Tutte ([36], p. 140) asserts that the sum on the right equals d e t K ( P )  ( 1 ) ,  where P 
is the n x n matrix o f  dart probabilities. 

( B  2) follows from ( B  1 )  upon reversing the orientation o f  darts and replacing pij b y  
pjc. The proof o f  ( B  4)  parallels that o f  ( B  I ) ,  using the matrix-tree theorem for graphs 
(Brooks et al. [6] (who suggest that their theorem is due 'in principle' to Kirchhoff in 
1847 and Borchardt in 1860), Trent [35], Tut te  ([36], p. 141)). ( B  3)  is immediate from 
( B 4 ) .  I 

An alternative probabilistic proof o f  Theorem 2 ( B  4 )  ( I  omit the elementary but  
lengthy details) uses induction on n and decomposes E ( T )  into a sum o f  conditional 
expectations. Instead o f  the matrix-tree theorem for nonrandom graphs, this proof 
uses the following interesting expansion o f  the determinant (e.g. Aitken [ I ] ,  pp. 87-88): 

PROPOSITION 1. Let A be an n x n matrix, X an n x n diagonal matrix, i.e. xij = 0 if 
i + j ,  xii = xi. Let A (  V )  denote the matrix A with all of its rows and columns struck out; let 
det A( V )  = 1 and n a xj  = 1 (i.e. let the determinant of the null matrix and the product 
of no factors equal 1 ) ;  let # ( Q )  denote the number of vertices i n  the subset Q of V .  Then 

n 
det ( A  + X )  = x ( d e t A ( Q ) )  n 2,. 

q-0 QEV, #(Q)=(I  f c Q  

For example, if n = 2, det ( A  + X )  = x1 x, + all x, + a,, x1 + det A .  
The speculation that there might be a determinantal formula for Pl(V,) analogous to 

that for E ( T )  is destroyed b y  the demonstration o f  Provan and Ball [28] that  the two 
quantities are o f  different computational complexity. 

COROLLARY 2.1. The expected number of spanning trees i n  a random graph when all 



vertices in the subset H of the vertex set V have been collapsed to a single vertex is 
E ( T ;  n, H )  = det K ( P )  ( H ) .  

The preceding corollary generalizes the analogous result for multigraphs (e.g. [lo], 
p. 38). 

COROLLARY 2.2. I f  pl, . . . ,p ,  are the (nonrandom) eigenvalues, repeated according to 
their multiplicity, of the (symmetric) n x n Kirchhoff matrix K ( P )  of the edge probability 
matrix P ,  then they are real and non-negative and, when ordered p1 2 p, 2 . . . 2 p, = 0,  
satisfy 

n-1 
E ( T )  = n-l pi. 

i=l 
Thus E ( T )  > 0 i f  and only if p,-I > 0. 

Proof. It follows readily from theorem 3 of Trent ([35], p. 1007) that K ( P )  is non- 
negative definite, so p, 2 0,  i = 1 ,  . .., n. Also p, = 0 because det K ( P )  = n Z 1 p c  = 0. 
Since E ( T )  = det K ( P )  (i), i = 1 ,  . . ., n, E ( T )  = n-l Cr=L=, det K ( P )  (i). By the theory 
of elementary symmetric functions of matrix spectra, 

n 5 det K ( P )  (i) = B II pi = I I  /., 
i=l i 3 1 j + i  j+n 

since those products that contain the factor p, vanish. Hence E ( T )  = n-lnG,lpi.  
Hence E ( T )  = 0 if and only if p,-I = 0. I 

CvetkoviE et al. ([lo], p. 39) give a formula analogous to that oSCorollary 2.2 for the 
number of spanning trees of a nonrandom connected multigraph. 

For each fixed graph G on n vertices, let KG be its Kirchhoff matrix, i.e. (KG) ,  is the 
number of vertices in V to which i is adjacent and for i $: j (KG),j = - 1 if {i, j )  is an edge 
of G, (KG)ii = 0 if not. Clearly E ( K G )  = K ( P ) .  

COROLLARY 2.3. For i in V, det K ( P )  (i) = E(det KG(i) )  = E ( T ) .  

Proof. de tKG(i )  is the number of spanning trees of G by the matrix-tree theorem 
for ordinary graphs, so E(detKG(i ) )  = E ( T ) .  I 

The probability that a random graph G is not connected, which is given recursively 
by Theorem 1 ,  equals the probability that det K,(i) equals 0 ,  for any i in 8, because Q 
is not connected if and only if G has no spanning trees. 

COROLLARY 2.4. I n  an  isotropic random graph (or digraph) on n vertices, the expected 
number of spanning trees (or outtrees or intrees to any vertex) is E ( T )  = ~"- ln , -~ .  For an  
isotropic random digraph, the expected number of spanning bitrees i s  p2(n-1)nn-2. 

This easy fact is given, for graphs, by Grimmett ([19], p. 1 18). 
Let J be the n x n matrix with all elements 1. 

COROLLARY 2.5. For random graphs on n vertices with matrix P of edge probabilities, 
the expected number of spanning trees is given by 

This corollary is a direct extension of a formula due to Temperley [34]. The proof 
repeats the proof of Biggs ([3], p. 35) step by step. The formula does not apply to 
spanning out- or intrees of random digraphs. The formula can be modified to apply to  
bitrees of random digraphs by replacing the matrix P with the matrix with ( i , j )  
element pij pig. 
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COROLLARY 2.6. POT random graphs with probability matrix P ,  the following statements 

are equivalent : 

(i) P is irreducible. 
(ii) The random graphs are P-connected. 
(iii) The probability of a spanning tree is positive, i.e. Pl(V,) > 0. 
(iv) The expected number of spanning trees is positive, i.e. E(T)  > 0. 
(v) det K(P)  (i) > 0, i = 1, .. . , n. 
(vi) The next-to-smallest eigenvalue pn-, of K(P)  is positive. 

4. Inequalities 

The main object of this section is a majorization inequality in Theorem 3 that 
compares the expected number of spanning trees in anisotropic random graphs with 
the expected number of spanning trees in isotropic random graphs with the same total 
of edge probabilities. 

If x and y are two real n-vectors, x = (x,, . . . , x , ) ~ ,  y = (yl, . . . , Y , ) ~ ,  let xrll 3 . . . 3 xr,,] 
denote the elements of x in decreasing order, and similarly for y. Following Marshall and 
Olkin [27], say that x is majorized by y and write 

LEMMA 3-1. Let x be a positive n-vector (xi > 0, i = 1, ..., n) and let jZ be the n-vector 
with a71 elements equal to 3 = n-I C,?=, xi. Let x(a) = (1 -a) x + ay ,  for 0 < a < 1. 
Then x(al) < x(a,) if al 3 a,. 

Proof. If al 3 a,, then, for k = 1, ..., n-  1, 

k k 

2 X ( ~ I ) I ~ I  = ( 1 - a11 C, %I+ a1 kz 
i= 1 i=l  

k k k k 

= C, xril -a1 C, - 3) < - a 2  C, (XM - 3) 
i=l i=l a = 1  i = l  

k 

= C, ~(a,)ri~ 
i= 1 

n n 
and obviously C, x(a1)1i1 = C, ~ ( ~ 2 ) i i l .  I 

1 1 

A similar result is given by Marshall and Olkin ([27], p. 130, B.2.a). 

LEMMA 3.2 ([27], p. 79, F.1.a.) Let x and y be positive n-vectors such t M  x < y. Then 
n r x {  3 I-J: y, with strict inequality unless x is a permutation of y. 

For strict inequality, i t  is not sufficient to assume merely that.% and y are non- 
'negative. E.g. i f x  = (0,1, and y = (0,&, #)T, then x < y but I-J = n yy, = 0. 

For any n x n real matrix A with zero diagonal, define the n x n real matrix A = (ti,,) 
to be the equisummed matrix of A if tiji = 0, i = 1, . .., n, and, 

- 
f o r a l i j ,  1 i ,  n, a i j=  C, agh/[n(n-l)]=p(A). 

9. h 



All the off-diagonal elements of K equal the average p ( A )  of the off-diagonal elements 
of A .  

LEMMA 3.3. Let A be a symmetric irreducible real n x n matrix with non-negative off- 
diagonal elements and zero diagonal elements, and let A be the equisummed matrix of A .  
If the eigenvalues of K ( A )  are p, 2 . . . >, pn-, > pn = 0, then the eigenvalues of 

areph(a) = (1 -a )ph+ap(A)n ,  for h = 1, ..., n- 1 andpn(a) = 0,  for 0 6 a Q 1. 

Proof. The assumption that A is irreducible implies ph > 0, h = 1, . . . , n - 1, by 
Corollary 2.6 (possibly after rescaling A ) .  Let u be an eigenvector of K ( A )  corresponding 
to a positive eigenvalue p. Then K ( A )  u = pu implies l T K ( A )  u = OTu = 0 = plTu,  
hence 0 = lTu ,  where 1 is the n-vector with all elements 1. Therefore J u  = 0. Then 
K,  u = (1 - a )  K ( A )  u + a p ( A )  [nI - J ]  u = (1  - a )  pu + ap(A  ) nu, which implies that 
(1 - a )  p + ap(A  ) n is an eigenvalue of K ,  corresponding to the eigenvector u. Since 
K,1 = O,pn(a) = 0,for 0 6 a Q 1. 1 

We now drop the assumption in Lemma 3.3 that A is irreducible. 

THEOREM 3. Let A be a symmetric real n x n matrix with non-negative off-diagonal 
elements and zero diagonal elements. Let A be the equisummed matrix of A. Let 

for 0 6 a Q 1. If A + A, then det K,(i) is an increasing (i.e. strictly increasing) function 
of a on [O, I ] .  (K,(i) is the ( n -  1) x ( n  - 1) matrix formed from K ,  by deleting row and 
column i.) 

Proof. Since det K,(i) is a continuous function of a on [O, 11, it suffices to prove that 
det K,(i) increases with a on ( 0 , l ) .  Therefore pick 0 < a ,  < a ,  6 1. 

The hypothesis A += A implies that A p 0, which in turn implies that A and 
A ,  = (1 - a )  A + a 2  are irreducible for any a in (0,  I ] .  So for a in (0, 11, A ,  satisfies the 
hypotheses of Lemma 3.3. 

Applying Lemma 3.1 to the ( n  - 1)-vector @,(a), . . . , pn-, (a))T = p(a) of positive 
eigenvalues of K,  given explicitly in Lemma 3.3 shows that p(a,) < p(a,). By 
Lemma 3.2, 

n- 1 n- 1 

since, if A p A, p(a,) is not a permutation of p(a,) by Lemma 3.3. Therefore 

n-1 
det K,(i) = n-I TZ ph(a) 

h-1 

increases strictly with a.  1 
For any n x n matrix A ,  let sp A denote the spectrum of A ,  i.e. the set of eigenvalues 

of A ,  each repeated according to its multiplicity. 

LEMMA 3.4. Let A be a symmetric real n x n matrix with non-negative off-diagonal 
elements and zero diagonal elements, and let A be the equisummed matrix of A .  Then 
s p K ( A )  = s p K ( A )  if andonlyif A = A. 
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Proof. Assume fist that p(A) = 0. Since A is elementwise non-negative, p(A) = 0 

if and only ifA = 0. Therefore A = A = K(A) = K ( 2 )  = 0 so sp K(A) = sp K(A) = 0. 
The converse is equally obvious. 

Henceforth assumep(A) > 0. If an arbitrary n x n matrix L has k distinct eigenvalues 
A,, ..., A,, 1 Q k Q n, each with multiplicity m,, . . . , m,, m, + ... + mk = n, mh 2 1, 
h = 1, .. . , k, then let A = (A,, ..., A,), m = (m,, . .. , m,) and write sp (L) = (A; m). With 
this notation, i t  is easy to calculate sp K(A) explicitly. Since J is positive and of rank 
one with all row sums equal to n, sp (J) = ((n, 0); (1, n - 1)). (This means that the 
eigenvalues of J are n, with multiplicity one, and 0 with multiplicity n-  1.) 
Therefore 

sp ( - J )= ( (O , -n ) ; (n -1 , l ) )  and sp(nI-J)=((n ,O);(n-1 , l ) ) .  

With p(A) = CQ,h aQh/[n(n - I)], K(A) = p(A) (nI  - J). So 

Let the eigenvalues of K(A) be p, 2 . . . 2 p,-, 2 pn = 0. If A = A, then ph = p(A)n 
fo rh=  1 ,..., n-1, sospK(A) = spK(A). 

Conversely, suppose sp K(A) = SP K(A). Then ph = p(A)n for h = 1, .  .., n-  1 and 
pn = 0 so spK(A) = ((p(A)n, 0); (n- I), I)) and sp[p(A)-'K(A)I = ((n, 0); (n- 1,111 
and sp[-p(A)-l K(A)] = ((0, -n); (1, n -  1)) and 

sp [nI  -p(A)-I K(A)] = ((n, 0); (1, n - 1)). 

Let X = n I  -p(A)-I K(A). Since spX = ((n, 0); (1, n - I)), X is of rank 1, i.e. there 
exist n-vectors u, v such that X = uvT, where vT is the transpose of v. Since A is sym- 
metric, so are K(A) and X,  and hence u = v, i.e. X = uuT. If x is the right eigenvector 
of X corresponding to the eigenvalue n, then Xx = u(uTx) = nx implies u = x and 
uTx = uTu = C u: = n. Then 

so +1Tu= + C u I = n .  But + Cu, = ~ u : =  n imply u, = + I ,  i.e. X = J. Hence 
K(A) = p(A) (nI  - J) = K(A), so A = A. I 

COROLLARY 3- 1. Let A be a symmetric real n x n matrix with non-negative off-diagonal 
elements and zero diagonal elements, and let A be the equisummed matrix of A. Then for 
1 Q i , j Q n ,  

det K(A) (i) Q det K(A) (j) = [ ~ ( A ) ] " - l n ~ - ~ ,  

with equality if and only if A = A. [K(A) (j) denotes the (n - 1) x (n - 1) matrix formed 
by striking out row and column j of the Kirchhoff matrix K(A) of A, and similarly for 
K(A) w.1 

Proof. The inequality follows from Theorem 3 and the necessary and sufficient 
condition for equality follows from Lemma 3.4. 1 

In  the notation of Tutte ([36], p. 141), let A be any spanning tree of an electrical 
network on n vertices and let n(A) be the product of the conductivities of the edges of 
A. Let C n(A) denote the sum of n(A) over all spanning trees A of the network. 



COROLLARY 3.2. If  p is  the average conductivity of the network, then the maximum of 
x H(A)  over all networks with average conductivity p is  ~ n - l n " - ~  and this maximum i s  
attained if and only if all conductivities equal the average p. 

Proof. Let aij be the conductivity between vertices i and j (i =/= j ) ;  apply Theorem 3 
to the matrix-tree theorem of Tutte ([36],  p. 141) which gives 

COROLLARY 3.3. If  the matrix P = (p i j )  of edge probabilities (symmetric, zero diagonal, 
and non-negative) i s  anisotropic (i.e. for some i 9 j ,  pit =/= p ( P )  = xi, j:i , jpij/[n(n - I ) ] ) ,  
then the expected number E a ( T )  of spanning trees of random graphs with edge probabilities 
Pa = (1  - a )  P + a p  (where fi is  the equisummed matrix of P ,  fi = p ( P )  ( J  - I ) )  increases 
strictly with a .  The maximum of E ( T )  over all P with xi, jpi j  = p ( P )  n(n - 1) for some 
fixed value of p ( P ) ,  0 < p ( P )  < 1, is p(P)n-1 nn-2. This  maximum is  attained if and only 
if P = p ( P )  ( J  - I ) ,  i.e. if and only if the random graphs are isotropic. 

Proof. Letting A = P ,  apply Theorem 3 and Theorem 2 (B 4).  1 
The conclusions of Theorem 3 and Corollary 3-3 may be strengthened to assert that 

det K a ( i )  and E,(T), respectively, are also strictly concave functions of a on [O,1] 
when n = 3,  but not in general if n > 3. 

Neither of the requirements in Theorem 3 that  A be symmetric and non-negative 
(off the main diagonal) can be relaxed. Hence Corollary 3.3 does not generalize to the 
expected number of spanning outtrees or intrees of anisotropic random digraphs. For 
example, if n = 2, the expected number of spanning outtrees from vertex 1 is p12. 
Since p = (p12 + ~ ~ ~ ) / 2 ,  the expected number p of spanning outtrees from vertex 1 in 
isotropic random digraphs will be smaller, contrary to  the conclusion of Corollary 3.3, 

if1321 < 1312. 
When P is not required to be symmetric, det K ( P )  (1 )  is entirely independent of 

plj,  j = 2, . . ., n, though not of pil, i = 2, . . . , n, because the latter affect the diagonal 
elements of K ( P )  even though they do not appear directly in K ( P )  (1) .  It might seem 
more natural therefore to  choose the probability p for isotropic random digraphs (to 
compare with anisotropic random digraphs that  have a given P )  without reference to 
the first row of P .  However, even if we require only that 

(recalling that  pri = 0 ,  i = 1, . . . , n), the inequality asserted by Corollary 3.3 for graphs 
may fail for digraphs. For example, if n = 3, letp,, = 0 . 2 , ~ ~ ~  = 0. l ,p3 ,  = 0. 1,p3, = 0.2 
(symmetry is violated because p23 =/= Then p = 0.15 and 

det [p(3I - J ) ]  ( 1 )  = (0.3)2 - (0.15)2 < det K ( P )  ( 1 )  = (0-3),- (0.1) (0.2). 

I n  Theorem 3, if A is permitted to  have negative off-diagonal elements but required 
to satisfy all the other given conditions, the desired inequality may fail. For example, 
if n = 4, let A have zero diagonal and all off-diagonal elements equal to - 1, except 
a,, = a,, = - 2. Hence p = - 14/12. Then 

detK(A) ( 1 )  = - 24 > nn-2pn-I = - 16(14/12)3 = - 25.407. 

Other examples show that, when A is not required to  be non-negative, i t  can happen 
that  lpn-Inn-2 1 < IdetK(A) (111. 
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Corollary 3.3 says that, for a fixed sum of probabilities of edges, the more evenly 

spread out the probabilities are, the greater the expected number of spanning trees. 
The expected number of spanning trees of random graphs is maximized when, and only 
when, the fixed sum of probabilities is evenly, i.e. isotropically, distributed. 

A few examples will now show that the behaviour of the probability P,(Pi) that a 
random graph is connected is not nearly so simple as that of E(T). To make explicit the 
dependence on the matrix P ,  let C(P) = Pl(v) be the probability that random graphs 
with probability matrix P are connected. Let 

Then C(A) = 0 < c(A) = 7/27, while C(B) = 1 > c(B) = 20/27. (To compute e.g. 
C(A), one finds p = C aij/[n(n - I)] = 9,  q = 8 and, using Gilbert's formula, 

Among edge-probability matrices P with xt, jpU 2 2(n- I), there is obviously a t  
least one, say P*, that guarantees C(P*) = 1, namely by assigning pX = p a  = 1, for 
i = 2, . . . , n, and distributing the balance (if any) of x,, ipij - 2(n - 1) arbitrarily among 
the remaining possible edges. According to P*, there is an edge between vertex 1 and 
each other vertex with probability 1 ; hence C(P*) = 1. 

Among edge-probability matrices P with x,, jpU r pn(n - 1) < 2(n - I), it appears 
reasonable to conjecture that C(P) would be maximized by P *  with 

p i1=p l i=pn /2  ( i=  2 ,..., n), 

for which C(P*) = (pn/2)"-l. Unfortunately this conjecture is false. Let 

By Theorem 1, C(P) = 0.098 > C(P*) = (0.3)2 = 0.09. 
Section 5 suggests an interpretation of the preceding inequalities. The balance of this 

section digresses to mention some related inequalities. 
Bounds for C(P) = PI(&) follow easily from the bounds on C(P) of Gilbert ([IS], 

p. 1143) for isotropic random graphs. Kel'mans [24] derives bounds for P, (v) for aniso- 
tropic random graphs independently of Gilbert [ls]. I n  addition, it is pretty obvious, 
though worth stating until an earlier source for the statement can be found, that 

with the same inequality for the probabilities and expected numbers of spanning out- 
trees, intrees and bitrees of random digraphs. Bonferroni's inequalities (e.g. [17], 
p. 110) imply both the inequality and conditions for equality. Kel'mans [25] gives more 
sophisticated relations between the probabilities of connectedness and the Kirchhoff 
matrix of anisotropic random graphs. 

For many applications, the assumption that darts or edges are present or absent 
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independently of one another may not be satisfactory. Following Esary, Proschan and 
Walkup [l6], define the random variables X,, . . . , XN to be associated if, for 

x = (XI1 . . ., XNIT, COV [f (XI, g(X)I > 0 

for all nondecreasing functions f and g for which Ef(X), Eg(X) and Ef (X)g(X) exist. 
If {X,) are associated binary random variables, i.e. taking only the values 0 and 1, then 

P(Xl = 1, ..., XN = 1) 2 P(X1 = 1) ... P(XN = 1). (3) 

The darts or edges of a random digraph or random graph are said to be associated if 
each dart or edge is represented by a binary random variable (equal to 0 when the dart 
or edge is absent and equal to 1 otherwise) and the collection of binary random 
variables is associated. 

PROPOSITION 2. Let Eo(T) be the expected number of spanning out-, in-, or bitrees in 
a random digraph or the expected number of spanning trees in a random graph, when darts 
or edges occur independently with probabilities given by the matrix P ;  Eo(T) is identical 
to E(T) in Theorem 2. Let E+(T) be the expected number of spanning trees (of corresponding 
type) in a random digraph or random graph when darts or edges are associated and have 
marginal probabilities P of occurring ; pi, is the marginal probability of a dart or edge from 
vertex i to vertex j. Then 

E+(T) 2 Eo(T). 
Proof. Let A be any spanning outtree from 1, P ( A )  be the probability that A is 

contained as a subdigraph of a random digraph in which darts are associated, and 
n(A) denote the product of pij over all darts (i, j) of A. Then, using (2) and (3), 

The proof for the other cases is the same. I 
A concept of negatively associated random variables that implied the reverse of the 

inequality (3) would imply the reverse of the inequality in Proposition 2. The referee 
suggests that the random graphs of Erdos and RBnyi [14] with a fixed number of edges 
may be candidates to consider here. 

Once again, the behaviour of C(P), the probability that a random graph is connected 
given edge probability matrix P ,  is more complicated than that of E(T). Consider a 
random graph on three vertices in which all edges are perfectly associated, i.e. with 
probability 1, if any one edge occurs, then all edges occur, and, if any one edge fails to 
occur, then no edges occur. If all edges occur with marginal probabilityp in [011], then 
C(P) = p. By contrast, for an isotropic random graph with independent edges, it is 
easy to see (from the formula for n = 3 following Theorem 1 or from the formula of 
Gilbert[lS]) that the probability of a spanning tree is less than p for p in (0, +), is 
greater than p for p in (3 ,  I), and equals p for p = 0,+, 1. Thus a general inequality for 
C(P) analogous to that of Proposition 2 for E(T) does not hold. 

5. Command and control of distributed forces 

Bracken ([5], p. 124) gives a stylized representation of the command system of the 
United States' strategic forces as a graph on six vertices, labelled EUR (European 
Command), LANT (Atlantic Command), PAC (Pacific Command), SAC (Strategic Air 
Command), NCA (National Command Authorities, the political command including 
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the President and the Joint Chiefs of Staff), and IONDS (Integrated Operational 
Nuclear Detonation Detection System, a damage-assessment system based on 
satellites). In  greater detail, according to Steinbruner ([32], p. 38), 'the U.S. has 
dispersed the physical ability to fire nuclear weapons among hundreds of military 
officers a t  numerous locations, some of them mobile. From all public indications the 
U.S.S.R. has done the same'. 

Bracken writes ([5], pp. 122-123), 'Any time a breakdown in communication 
channels is severe enough that individual commanders are essentially operating on 
their own with little knowledge of the overall strategic situation the powerful effect of 
information, or its absence, emerges. The tightly integrated nuclear command system 
will break up into separate islands of forces, each isolated from the other.. . . There will 
not be one assessment [of the strategic situation], in which the president looks over 
the situation and decides whether to retaliate, but several, each performed inde- 
pendently by isolated forces cut off from one another. Assessment then devolves 
downward in the command organization and decentralizes to the local commanders 
in charge of the separated islands [components of the graph].' 

The risk of breakdown in military communications is not new. What is essentially 
novel about modern nuclear weapons and delivery systems is that each local com- 
mander, e.g. of a single missile-carrying submarine, individually possesses the means 
of inflicting devastation that no isolated prenuclear armies, navies, and air forces could 
inflict. 

If the command system were no longer connected (in the graph-theoretic sense) 
after a nuclear attack, the commander of each isolated component might react to the 
attack without knowing the responses of other components. Even if the National 
Command Authorities wished to limit further hostilities, they would have lost control 
of some, say PAC, forces. Fearing that PAC may continue to attack and that the 
Soviet Union may react to the PAC attacks by attacking the NCA or the rest of the 
United States, the NCA may see no incentive to limit further hostilities ([5], pp. 126- 
128). As a consequence, a loss of connectivity in the command system makes conflict 
highly unstable. 

Further, if the connectivity of the United States' command system is destroyed, 
there is no single force that the Soviet Union can negotiate with, and conversely if the 
connectivity of the Soviet Union's command system is destroyed. Therefore there is a t  
least some incentive for each side to protect, or a t  least not seek actively to disrupt, the 
connectivity of the opposing side's command system. 

Steinbruner ([32], pp. 43-44) argues, on the contrary, that in the face of an im- 
pending atomic attack each side's own 'command-system vulnerability presents a 
much more powerful incentive to initiate attack before damage has actually been 
suffered, an incentive that is driven. . .by practical fears of decisive defeat in a war 
that cannot be avoided'. 

Whether desiring to preserve or to destroy its or the opposing command system, 
each side has an interest in knowing how to estimate the connectivity of the command 
systems of both sides. The physical means of strategic communication, their vulnera- 
bilities and prospects, are reviewed by Carter [9]. Of course, understanding connecti- 
vity is only a fist step toward understanding the dynamics of strategic performance, 
for which much more specific and sensitive measures are required (e.g. Steinbruner 
[321). 
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The probability that the NCA can communicate (issue orders, receive information, 

or both) with all its forces, directly or by means of intermediate links, is one measure of 
the reliability of the graph of the command system. The expected number of different 
ways of linking all the forces (the expected number of spanning trees) is a measure of 
the redundancy of the graph of the command system. Given a matrix of dart or edge 
probabilities and the assumption of independence between the survival of any edge 
or dart and the survival of any other, Section 2 shows one way to compute the 
reliability of the command system, while Section 3 shows one way to compute its 
redundancy. Section 4 shows unexpectedly that reliability and redundancy, so 
measured, may conflict. For a given sum of probabilities of edges in a random graph, 
the allocation of probability that maximizes redundancy (namely, an isotropic 
allocation) may not maximize reliability, and vice versa. 

6. Open questions 

Several open questions arise naturally from the mathematics and from the preceding 
interpretation of it. 

What is the probability that a random digraph is strongly connected? Equivalently, 
in a random digraph, what is the probability that, for every pair of distinct vertices i 
and j, there is a path with tail vertex i and head vertex j? 

What is the analogue of Theorem 3 for digraphs? Specifically, among all dart prob- 
ability matrices P with a given sum of probabilities TrK(P) ,  does there exist a 
distinguished dart probability matrix P *  for which the expected number of outtrees 
from vertex 1 is maximized? If so, what is P *  and is the maximum attained only a t  P*? 

For random graphs or random digraphs in which the sum of the probabilities (of 
edges or darts) is too small to permit the construction of a spanning (ordinary, in-, out-, 
or bi-) tree with probability 1, what is the allocation of the given sum of probabilities 
that maximizes reliability, measured by P,(K) ? 

What are the sensitivities or 'importance factors' (Buzacott[7], p. 323) for the 
reliability aP,(%)/apij and for the redundancy aE(T)/apij of random graphs and 
random digraphs? How do the sensitivities for reliability and redundancy compare? 
The sensitivities indicate which probabilities pij need to be measured with greater 
or lesser precision when estimating the reliability or redundancy of a particular 
network. 

The problem of designing a random graph or random digraph to maximize 
reliability or redundancy can be made more realistic, a t  the cost of increased com- 
plexity of the mathematics. For example, in random graphs, suppose that for each 
pair i, j of vertices there is a cost function fij(p) such that the cost of assuring an edge 
between i and j with probability pij = p is fij(p). As a first approximation, one might 
take fij(p) = aij + bijp, the sum of a fixed cost and a linearly increasing cost. Given the 
matrices A = (aij) and B = (bij) of cost coefficients and a total budget D, find the 
matrix P that maximizes reliability, or redundancy, or some convex combination of 
the two, subject to the budget constraint Cfij(pij) 6 D and the natural bounds 
0 < p i j  6 1. 

For random graphs or digraphs with a large but finite number of vertices, i t  may be 
difficult to estimate each pij from believable data or theory. I n  such cases, i t  would be 
of interest to investigate a doubly stochastic model in which eachpij is first drawn from 
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some distribution, e.g. beta with given parameters, and then a random graph or 
digraph is drawn from the distribution specified by P = (p i j ) .  

If the edge or dart probabilities were chosen from a beta or other parametric family 
of distributions, it would be interesting to investigate how the parameters should be 
scaled as the number of vertices increases so that the reliability or redundancy 
approach a limit, and to determine how the reliability or redundancy depend on the 
parameters in the limit of a large number of vertices. 
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