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Deterministic age-structured models of fish populations neglect apparently stochastic 
fluctuations in the catch per unit effort of yearlings and of adult fish. We describe a model 
of an age-structured population in which the survival of eggs to yearlings fluctuates randomly. 
but all other age-specific rates of survival and of egg-laying are constant. For such a stochastic 
model, two measures of the long-term population growth rate are the average growth rate of 
the population size and the growth rate of the average population size. We compute both 
measures analytically for a simplified model representing only eggs and reproductive adults. 
For a model of the striped bass (Morone sn.mri1i.s) population spawning in the Potomac River. 
we compute both point and interval estimates of the growth rate of the average population 
size. We illustrate some statistical tests of the correctness of our stochastic model. 
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Les modkles deterministes, structures par Ige, de populations de poissons negligent les 
fluctuations apparemment stochastiques des prises par unite d'effort de poissons de l'annee 
et de poissons adultes. Nous decrivons dans I'article qui suit une population structuree par Ige 
dans laquelle la survie des oeufs jusqu'a 1'Ige d'un an fluctue de fason aleatoire, alors que 
tous les autres taux particuliers a I'Ige de survie et de deposition des oeufs sont constants. 
Dans un modkle stochastique de ce genre. le taux de croissance moyen de I'effectif de la 
population et le taux de croissance de I'effectif moyen de la population sont deux mesures de 
la croissance a long terme de cette population. Nous calculons les deux mesures analyti- 
quement, dans un modele simplifie representant seulement les oeufs et les adultes repro- 
ducteurs. Dans le cas d'un modkle de population de bars ray& (Morone snxatilis) frayant dans 
le Potomac, nous produisons des estimations a la fois ponctuelles et par intervalles du taux 
de croissance de I'effectif moyen de la population. Nous donnons quelques exemples de tests 
statistiques de notre modele stochastique. 
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To  measure the actual and potential impact of power plant 
operations on fish populations. one must construct mathe- 
matical models of the fish populations. Deterministic age- 
structured models that employ the Leslie matrix (Keyfitz 
1968) neglect apparently stochastic fluctuations in fish popu- 
lations. Fisheries biologists have generalized the Leslie ma- 
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trix by incorporating stochastic fluctuations in one or more 
age-specific vital rates. The behavior of these models has 
been studied primarily by numerical computation (Allen and 
Basasibwaki 1974; Jensen 1975; Vaughan 1977a. 1977b; 
DeAngelis et al. 1977; Christensen et al. 1982; Deriso 1980; 
Ginzburg et al. 1983; D. Ludwig and C. J. Walters. unpub- 
lished data). 

Independently of these developments among students of 
fish populations, students of mallard (Anus planrhynchos) 
populations (Anderson 1975) and of human populations 
(LeBras 1974; Cohen 1976) investigated the effects on popu- 
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lation growth of random fluctuations in age-specific vital 
rates. Analytical approaches to computing long-run growth 
rates have been developed (Cohen 1977a, 1977b, 1979a. 
1979b, 1979c, 1980; Lange 1979; Lange and Hargrove 1980: 
Lange and Holmes 1981; Tuljapurkar and Orzack 1980). 

Our first purpose was to analyze a model developed by 
fisheries biologists. using the mathematical methods just 
cited, and then compute long-run growth rates of fish popu- 
lations subject to random fluctuations in the survival of eggs. 
Our second purpose was to show how to approximate the 
sampling variability in the estimate of the long-run growth 
rate of average population size. Our third purpose was to 
illustrate statistical methods for testing whether the model is 
appropriate to real data of the rather limited, and less than 
scientifically ideal, kind that are likely to be available in 
practical situations in which many managerial and regulatory 
decisions are required. 

We use data on the population of striped bass (Morone 
saratilis) spawning in the Potomac River. We anticipate that 
these results will aid evaluations of the aquatic impact of 
power plants by making it possible to calculate long-run 
effects on growth rates of fish populations. 

Age-Structured Model with Random Survival of 
Eggs 

We consider a female population of fish at yearly intervals 
just after the spawning of eggs in early spring. We take the 
unit of time to be 1 yr. We let t = 0 be the time of initial 
observation, yo([) the number of the newly spawned female 
eggs at time I, and yi(t) the number of i-yr-old female fish at 
the end of the spawning season in year t, where i = 1,2,  . . . , 
k and k is the maximum age of fish considered. We let y(t) be 
the column vector with elements yo(t), y,(t), . . . , yk(t). We 
shall call y(r) the age census at time t. 

It is realistic to attribute the eggs spawned in year t to the 
female population alive in year t. Assuming no density de- 
pendence in the laying of eggs, we suppose, with F, = 0 for 
all nonreproductive age-classes, that 

where F, is the average number of female eggs laid in 
year r per female fish aged i in that year and Fh > 0. Define 
F,, = 0, since eggs lay no eggs. The post-egg female popula- 
tion at time t (neglecting immigration) consists of the survi- 
vors of the female population (including eggs) at time t - 1 : 

where s, > 0 is the fraction of female individuals (eggs or fish) 
aged i at t - I who survive in the population (neither dying 
nor emigrating) to age i + I at time t. 

In conventional Leslie matrix models, this year's births 
(eggs) are usually attributed to last year's female population, 
rather than to this year's, as in the first equation above. To 
express y,(t) in terms of the post-egg female population at 
time t - I, we define sl = 0. Fk+ = 1 (we could pick any 
finite value for F,,,), and the effective fecundity of age 

class i by 

Then upon substitution. since EL = 0, 

k 

= J = O  C E,\; (t- 1) .  

Thus, changes over time in the age census can be described 
in the conventional way by 

where L(t) is a (k + I) x (k + I) Leslie matrix: 

We assume in (2) that all elements of the Leslie matrix are 
constant over time except so([), the survival of eggs at time 
t - 1 to age class 1 at time t. For Eo = FIso(t) to be indepen- 
dent o f t ,  we must have Eo = F l  = 0. The assumption that all 
elements of L(t) are constant except so(t) is a simplification as 
a first step in model building. Although we recognize that 
other elements of L(t) vary, we believe that the overwhelming 
source of variation lies in the survival of eggs (Hunter 1976). 
In particular, we assume that the variation in the survival of 
eggs is large compared even with the variation in adult mor- 
tality due to changes in fishing over time. If this last assump- 
tion is false, the effect on our results is outlined briefly below, 
at the end of the summary of our data analytic procedure and 
results, and in greater detail by C. P. Goodyear, J. E. Cohen. 
and S. W. Christensen (unpublished data). The present model 
and methods should not be used without modification in situ- 
ations in which this assumption is known to be false. 

This model is relevant to cases other than fish populations. 
Among white-crowned sparrows (Zonotrichia leucophrys 
nurtali) in coastal California, mortality varies mainly during 
the period from fledging to January 1 and not significantly 
thereafter (Baker et al. 1981, p. 643). If annual age classes 
were used for these birds, mortality variation would be con- 
centrated in survival to age 1,  as in the model (2). 

As is standard in probability theory, we shall use the sym- 
bol E() to denote the average, mean, or expected value of 
whatever random variable is enclosed in parentheses. 

To complete the description of the model, we specify that 
the average survival E(s,(r)) of eggs is identical from year to 
year and that the survival in any one year is independent of the 
survival in any other year. Thus, the random variables so(t) are 
independent and E(so(r)) is independent of r. These strong 
assumptions can be tested. 
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If the weather at the time of spawning is the principal 
influence on the survival of eggs (Ulanowicz and Polgar 
1980), it may be reasonable to guess that the weather at that 
season is independent from year to year. However, analytical 
methods exist for analyzing models in which the distribution 
of Leslie matrix elements in one year does depend on the 
Leslie matrix elements that occurred the previous year. For 
the present model of independence from year to year, we shall 
be applying only a special case of those methods. 

How should the long-run growth rate of a population with 
stochastic vital rates be measured? When the Leslie matrix is 
constant over time, so that L(t) = L, there is only one answer 
(Keyfitz 1968): the intrinsic rate of natural increase r of the 
population is the natural logarithm of the dominant eigenvalue 
of L. (Henceforth, we shall always use log and logarithm to 
mean natural logarithm.) Following is the reason for this 
choice when L(r) = L. For large times r, nonzero elements of 
L' are proportional to the rth power of the dominant eigen- 
value of L, which is the same as en, and therefore so are all 
elements of the age census y(t). If Y(t) is the total population 
size at time t, then for large values of r, Y(t) is proportional 
to err. Using c for the constant of proportionality, we have, 
when the Leslie matrix is constant, 

(3) Y(t)/e" = c for large t. 

Taking logarithms of both sides of (3), dividing by t, and 
letting t become large gives 

(4) r = lim ( l l r )  log Y(t). 
I-- 

Since the asymptotic rate of growth is the same for all age 
classes in both the deterministic measure (4) and the sto- 
chastic measures (5) and (6 ) ,  it makes no difference here 
whether nonreproductive age classes are included in Y(t) or 
excluded. 

When L(t) varies randomly, so does Y(t), and there is no 
unique "intrinsic rate of natural increase." Instead, there are 
several possible generalizations of (4). It becomes necessary 
to choose some overall measure of the behavior of lim,, 
( l / t )  log Y(t). One possibility is to take the median of lim,, 
(lit) log Y(t) as a measure of population growth rate. Two 
other possibilities that have been studied analytically, and 
which we shall now describe in more detail, are to compute 
the average of the growth rate of population size and the 
growth rate of the average population size. It is important to 
realize that these two are different measures of population 
growth rate. Both measures of population growth rate have 
been studied in the context of fishing yield by Vaughan 
(1977a). 

The average of the growth rate of population size is, by 
definition, 

(5) log A = lim E[(l/t) log Y(t)]. 
C= 

The growth rate of the average population size is, by 
definition, 

(6) log p. = lim (]It) log E[Y(r)]. 
Ct 

tion of E(). In log A, the growth rate of each separate real- 
ization of the population is computed first (think of each 
realization as one computer simulation, or as one of a large 
number of demes), and then the growth rates are averaged. In . . 

log p., the average population size at each time r is computed 
(averaged over all simulations or over all demes), and then the 
growth rate of the average is found. If the Leslie matrices L(r) 
do not vary at all, so that so(() is actually constant. then the . -, 
three measures, the median of lim,-, (I It) log Y(t), log A, and 
log p., are all identical to r .  

In general, the exact computation of log A, even for inde- 
pendently distributed Leslie matrices with constant mean, is 
quite difficult (Cohen 1977a, 1979a), although we will find 
log A easily in a simple example in the next section. The 
computation of log p., on the other hand, is generally easy, as 
we now show. Equation (1) implies that, given y(O), 

Take the average of both sides: 

Since successive Leslie matrices are independent, the expec- 
tation of the product is the product of the expectations; and 
since the mean of L(t) is identical over time, 

Substituting (9) into (8) gives 

Assuming that E(so(r)) > 0, so that on the average at least 
some eggs survive to age 1, and provided that the initial 
population is positive in all age classes, E[Y(r)] grows propor- 
tionally to p' for large t, where p is the dominant eigenvalue 
of the average Leslie matrix E(L(1)). Consequently, for some 
constant of proportionality c, 

(1 1) EIY(t)]/(pl) -+ c for large r. 

Taking logarithms of both sides of (1 1), dividing by t, and 
letting t become large gives log p = lim (I l t )  log E[Y(r)]. 
Comparison with (6) shows that p must equal p., i.e. for this 
model, p. is exactly the dominant eigenvalue of the average 
Leslie matrix E(L(1)). 

The actual procedure to compute (6) is simple: when suc- 
cessive Leslie matrices are independently distributed with 
constant mean, take the average of the Leslie matrices (this 
means average each element of the matrix one at a time), find 
the largest eigenvalue of the matrix (using standard computer 
programs), take the natural logarithm of the eigenvalue, and 
the growth rate of the expected population size is found. Error 
estimates for p. are derived below. 

Since the logarithm is a concave function, i.e. its graph has 
decreasing slope, 

(12) log A 5 log p. k- 
The only difference between these two quantities is the p s i -  and the computation of (6) gives an upper bound for the value 
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of (5). This inequality (1 2) holds for any stochastic population 
model, not merely those analyzed here. 

Simple Example: One Reproductive Age Class 

To illustrate the computation of log A and log p in a simple 
example, let us approximate the structure of the fish popu- 
lation by two age classes, so that we have only nonreproduc- 
tive eggs and reproductive adults: 

(Here, we temporarily abandon the assumption, made in the 
previous section, that the effective fertility of the oldest age 
class, which is E l  in (13), is 0. If we did take E l  = 0, the 
population would go extinct after 2 yr. But taking E l  > 0, as 
we shall do in this section only, means that this year's eggs 
are produced by last year's adults, not by this year's adults. 
We accept this modification of the model described in the 
previous section in order to illustrate some calculations in a 
simple case.) 

First, we shall compute log A .  Nofice that 

which is nice because it is very easy to multiply diagonal 
matrices (a diagonal matrix has zero elements everywhere 
except possibly on the main diagonal): one simply multiplies 
correspondi?g diagonal elements. So we get, using (14) in 
(7), 

Hence 

For all p, log so(2u) and log so(2u- I) are observed or sam- 
pled values of the same random variable log so(t), which we 
shall assign the same probability distribution as log so(l). 
Now we assume that E[log so(l)] exists. Then, the strong law 
of large numbers applies to the right sides of (16) and implies 
that, with probability 1, 

(17) lim [2t]-' log yo(2t) = lim [2t]-I log yl(2t) 
C' C' 

= (112) log El 

+ ( 112) E(log SO( 1)). 

Since the almost sure limit is the same foryo(t) and yl(t), it is 
the same for their sum. Consequently, the mean and median 
growth rates of the total population size (eggs plus adults) for 
large t are also the same: 

(18) log A = (1 12) log E,  + (1 12) E(log so (1 )). 

This expression (18) for log A is valid if so([) > 0 are indepen- 
dently and identically distributed and if E(log sn(1)) exists. 

Now assume s,,(t) is approximately lognormally distrib- 
uted, specifically, 

where s is a positive constant and z(t) is a normally distributed 
random variable with mean 0 and variance I and independent 
from one time to another. Thus, mz(t) has mean 0 and vari- 
ance m2. This model (19) must be only an approximation 
because, when m > 0, mz(t) has a positive probability of 
being larger than any fixed bound, so that sen""' has a positive 
probability of being larger than I .  This makes no sense if so(t) 
is to be interpreted as a survival proportion. We shall assume 
now (and later will actually observe) that the probability that 
so(t) exceeds I is small enough to be neglected. 

If m = 0, L(t) is constant with dominant eigenvalue (E 
and we recover the deterministic intrinsic rate log A = r = 
(112) log (Els). If m # 0, we obtain, by substituting (19) 
into (18), 

(20) log A = (112) log (EIs) + (112) E(mz(1)) = r ,  

regardless of the value of m, because E(mz(1)) = 0. Thus, in 
this example, regardless of the variance of the randomly 
varying exponent in the survival of eggs, the mean growth rate 
of population size is identical to that of the deterministic 
population model of the same structure but with no variance 
in the survival of eggs. 

Now we compute log p. We shall use the standard facts that 
(Aitchison and Brown 1957) 

and that the expectation of a product of independent random 
variables is the product of the expectations. Taking the aver- 
age of both sides in (15) gives 

so that 

(23) log p = (112) log (Els) + m2/4. 

Comparing (23) with (20) confirms the general inequality 
log p 2 log A. In addition, we see that log is a linearly 
increasing function of the variance of the exponent mz(t) in the 
survival of eggs. In this example, when there is variation in 
the survival of eggs, the growth rate in the mean population 
size always exceeds the intrinsic rate of natural increase in the 
deterministic model of the same structure. However, if the 
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variation in the survival of eggs becomes too large. the spe- 
cific model (19) becomes inappropriate because it permits 
so(r) to exceed 1 with nonnegligible probability. 

As a check on the correctness of (23). we may apply the 
procedure described at the end of the previous section. with- 
out the necessity of relying on the explicit formula (15). The 
procedure says first to find the expected Leslie matrix: 

The largest eigenvalue is (E,s)"~ en''/4, and the logarithm of 
the eigenvalue is identical to (23). 

Although this simple example is artificial, because it con- 
siders only one adult age class, it illustrates the meaning of 
log A and log CL. It also illustrates the relations between these 
measures of growth and the intrinsic rate of natural increase 
of a deterministic model. 

Under the conditions of this example, the median value 
of lim,, (111) log Y(t) is identical to log A; in fact, all 
realizations except for a set of probability 0 have growth 
rates given by log A .  More general conditions under which 
log A is the growth rate of almost all realizations of a product 
of random matrices are given by the pioneering paper of 
Furstenberg and Kesten ( 1  960). 

Approximate Standard Deviation of the Estimate 
of a Growth Rate 

We now return to the general model (1) and (2). Suppose 
that all the ejements in the Leslie matrix (2), except so([), are 
known eithe; exactly or with negligible uncertainty. Suppose 
su(l), so(2), . . . , so(N) are a sample of N observed values of 
so([). Let the sample mean be To and the variance of the sample 
mean be Var(io). (Recall that the variance of the sample mean 
is the sample variance divided by N.) Here, we assume that 
Var(so(t)) is independent of t in addition to assuming that 
E(so(t)) is independent of t. 

The sample mean Leslie matrix i is obtained by replacing 
so@) in (2) with so. Let F, be the dominant eigenvalue of L. 
This F, is the sample estimate of the dominant eigenvalue p 
of the expected Leslie matrix E(L(t)). 

The purpose of this section is to derive an approximation to 
the variance of log 6. Notice that the dominant eigenvalue CL 
is a constant, not a random variable; variation in F, arises from 
the sampling variability of So around its true mean E(so(t)). 

Our approximation to Var(log G) rests on the crude but 
commonly used Taylor series technique, and neglects the 
uncertainty in all other elements of L(r). 

~ e t  f be~the function that produces log p., given E(a,(t)), i.e. 

(25) log CL = f(E(~o(t))). 

This function is simply the log of the dominant eigenvalue of 
the matrix L(t) with so(t) replaced by E(s,(t)). Thus 

(26) log il = f (So). 

Now, expand /(So) in a Taylor series about /(E(so(t))) and 
drop all but the first two terms: 

Then subtract (25) from (26) and approximate f(5,) by its 
truncated Taylor series expression (27): 

Square both sides of (28) and take expected values. Then 
assume E(f(So)) is close to f (E(s,,(r))), which will asymp- . , 
totically be true for large numbers of data points. We obtain 

To compute df/dsn. we can use formula ( 1  1 )  of Caswell 
(1978, p. 218): 

where u is the left row eigenvector and v is the right column 
eigenvector corresponding to the dominant eigenvalue of L 
and (u, v )  = 1 .  The particular elements u, and vo appear 
because of the position of so in L. The easiest numerical 
method to compute the dominant eigenvalue of a Leslie 
matrix, namely the power method. produces u and v with no 
extra effort. 

We shall illustrate the use of (29) below. 

Potomac River Striped Bass 

In this section, we shall use data on the striped bass popu- 
lation that spawns in the Potomac River to test the model (1) 
and (2) and to illustrate numerically how to estimate log CL, the 
long-run rate of growth of the average population size. 

A major assumption of the model (1)  is that mortality is 
density independent. While this assumption is open to contro- 
versy in general, two lines of evidence make it plausible for 
the Chesapeake striped bass populations, including the popu- 
lation spawning in the Potomac River. First, in an analysis of 
the striped bass landings, Van Winkle et al. (1979) found a 
significant periodicity of 6 yr. This period length is not consis- 
tent with the period length that would be expected if the stock 
density were the causative agent (Van Winkle et al. 1979; 
Goodyear 1980). In addition, studies of the influence of envi- 
ronmental variables indicate that a large part of the annual 
variations in year-class strength are caused by variations in 
environmental factors, principally freshwater discharge and 
water temperature (Kohlenstein 1980; Ulanowicz and Polgar 
1980). These observations indicate that the level of mortality 
is, at best, only weakly related to the size of the stock. We 
now proceed to a detailed analysis of data. 

We estimated F,, the number of femaleeggs per female fish 
of age i for striped bass in the Chesapeake Bay, for i = 1, 
2. . . . , 15, as shown in Table 1 .  These estimates are rounded 
to reflect the substantial uncertainty associated with them. 
The qualitative shape of the relation between age and female 
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TABLE I. Estimated age-specific fecundity F, of striped bass. 

Age ( i )" Fecundity (F,)' 

'Age is measured in years since spawning. 
' F ,  estimates the average fertile female eggs laid during the 

spawning season per female fish of age i as a function of age at 
maturity estimated by Merriman (1941) and estimated fecundity of 
mature females. Fecundity of mature females was estimated by con- 
verting lengths at annulus formation for females to weight (Mansueti 
1961) and calculating the number of eggs using the weight-fecundity 
relationship reported by Jackson and Tiller (1952). The number of 
mature ova was then divided by 2 on the assumption that half would 
be females upon fertilization. Fecundities of ages 13- 15 were esti- 
mated as the sum of the fecundity of the previous age plus the 
increment between the fecundity of age I I and that of age 12. 

eggs per fish is believed to be correct. We assume these data 
apply to the 'striped bass spawning in the Potomac River. 

Since the fecundity estimates are uncertain, possible fluctu- 
ations in fecundity from year to year can be neither excluded 
nor measured. If present, they would contribute to variability 
in the number of eggs spawned via (32) below and hence via 
(33) to the estimated variability in the survival proportion of 
eggs. Thus, possible variations in fecundity may contribute to 
the estimated variability in the survival of eggs. In terms of 
the model ( I )  and (2), we take the number of post-egg age- 
classes to be k = 15. 

Precise data on the age-specific survival proportions si are 
lacking. Different investigators report a substantial range of 
estimates of post-egg survival. We consider three sets of 
values for si, namely, for i = 1, . . . , 14, si = 0.4; or si = 0.5; 
or s, = 0.6.  These three cases are chosen to cover most of the 
range of uncertainty about the true survival proportions. It 
will appear that the inferences to be drawn are insensitive to 
the value chosen for s;. Calculations not presented here show 
that these inferences are also insensitive to minor refinements 
in the age distribution of mortality, e.g. to allow for a reported 
slightly increased mortality at ages 3-6 (Kohlenstein 1980; 
Polgar 1980). If, contrary to our assumption, the si are not 
constant in time, their fluctuations may contribute to the esti- 
mated variability in the survival of eggs in the same way that 
fluctuations in fecundity may, via (32) and (33). 

Since E, = s,F,+,, these assumptions plus Table I deter- 
mine all the elements of the Leslie matrix L(t) in (2) except 
dt). 

To estimate the distribution of the random variable so(t), 

TABLE 2. Average catch (number of individuals of both sexes) per 
beach seine haul of fingerling striped bass in the Potomac River 
breeding site of Chesapeake Bay, based on annual surveys conducted 
by the Maryland Department of Natural Resources. 

Survival of eggs 
assuming adult survival s; isth 

--  - 

Year Young-of-year" 0 .4  0.5 

- - 

Young-of-year t is taken as an index of y,(t  + I),  the number of 
I-yr-old female fish at the time of the spawning season in calendar 
year t + I. Thus, the average catch of 2.3 individuals in 1980 indexes 
the I-yr-old female population in 1981. (Data courtesy of Maryland 
Department of Natural Resources (B. Florence).) 

"urvival of eggs %(t) from year t - I to year t is y,(t)/.v,(t - I ) ,  
where yo(t - I), the number of eggs spawned in t - I ,  is calcu- 
lated assuming that the post-egg annual survival of females is s;, 
i =  1 . 2 ,  . . . ,  14. 

we exploit the time series reported by Florence (1980) and 
supplemented subsequently by the Maryland Department of 
Natural Resources. Table 2 shows the average catch (number 
of individual male and female fish) per beach seine haul of 
fingerling striped bass in the Potomac River, based on a 
standardized seining procedure conducted in late summer and 
early autumn of each year by the Maryland Department of 
Natural Resources. We have not been able to determine the 
standard deviation, due to sampling variability, that should be 
associated with each of these average annual values. It is 
therefore not possible for us, at this time, to determine what 
biological significance should be attached to the differences 
between years in average catches. Thus, the following calcu- 
lations should tentatively be treated as illustrative rather than 
as definitive. 

It is possible that the Maryland Department of Natural 
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Resources will release more detailed data in the future. The 
need to make intelligent practical use of data such as those in 
Table 2 seems to us to justify the presentation of useful 
methods now. 

Fingerlings are approximately 3-5 mo old and are assumed 
to have a sex ratio of approximately I : 1. We shall assume 
that the mortality between fingerling age and 1 yr of age is 
constant and therefore shall take the average number of 
fingerlings sampled in calendar year r as an index of the 
number y,(t + I )  of I-yr-old female striped bass in the popu- 
lation in the following spring of year r + I ,  r = 1954. . . . , 
1981. The total number of fingerlings differs from the number 
of female yearlings only by a constant of proportionality, so 
no error will be introduced in the computation of so(t) (see 
(33) below). 

CONSTRUCTING THE SPAWNING STOCK AND SURVIVAL 
PROPORTION OF EGGS 

We now use this time series of y,(t) in Table 2 plus the 
assumed post-egg survival coefficients to estimate the age 
structure of the post-egg population (i.e. the population aged 
1 - 15 yr) for the years 1969-81. In 1969, the I-yr-olds of 
1955 (i.e. the fingerlings caught in 1954) who have survived 
will be 15, since 1 + (1969- 1955) = 15. Therefore, the 
expected number of 15-yr-olds in 1969 is y,, (1969) = 
y,(1955)sls2 . . . sl4. Similarly, the expected number of 
14-yr-olds in 1969 is the number of I-yr-olds in 1956 who 
have survived 13 yr, i.e. ~ ~ ~ ( 1 9 6 9 )  = y,(1956)sl . . . s13. In 
general, for r = 1969, . . . , 1980, the post-egg age structure 
is given by the data for I-yr-olds and this computation for 
older fish: ' 

We do not know the entire age structure prior to 1969 
because we do not know the fingerling age-classes in years 
prior to 1954. Since the four oldest age-classes contribute 
approximately 3% to the net rate of reproduction of the pop- 
ulation, one could approximate those four age-classes by a 
single age-class, without much loss in accuracy, in order to 
extend the time series of post-egg censuses for a few addi- 
tional years. Computations not reported here suggest that 
combining the last few age-classes has little effect on the 
inferences that follow. ' 

Given the post-egg age structure for t = 1969-81, we 
compute the expected number of eggs spawned in 1969 to 
1981 by 

Then we compute the proportion of eggs surviving to 1 yr of 
age by the relation, which is a consequence of (1) and (2), 

This computation is independent of the form of the probability 
distribution assumed for so(t). 

Although we started with a time series of data for finger- 

lings from 1954 to 1981, we are left with an estimate of the 
I-yr survival of eggs only for the years 1970-82 because of 
the long life and sustained fecundity of the striped bass. Fig- 
ure I plots log so(t) as a function of year r for each of the 
assumed values of s,. 

In linear regressions not reported here, we have investi- 
gated whether the proportion of eggs surviving, estimated 
from (33), appears to depend on the expected number of eggs 
spawned, estimated from (32). We found no significant evi- 
dence of density dependence in the survival of eggs. 

IS THE SURVIVAL PROPORTION OF EGGS INDEPENDENTLY 
DISTRIBUTED WITH CONSTANT MEAN? 

We now test the assumption that so(t) is distributed inde- 
pendently over time with constant mean. It is crucial to test 
this assumption before estimating log CL because the correct- 
ness of our method of estimation depends on this assumption. 
If so(t) is not independently distributed over time, the estimate 
of log p, obtained under the assumption of independence may 
be too high or too low. The more nearly independent so(t), the 
better the estimation procedure that assumes independence. 

The first test is visual inspection of Fig. I .  There appears 
to be no clear Increasing or decreasing trend of log so@) as a 
function o f t ,  for any value of s,. There also appear to be no 
excessively long runs of data points above or below the re- 
gression line, nor any clear alternation above and below. The I 

only possible suggestion of change over time may be in the ; 
variance of so([), which might decrease as time increases. We 
now test these observations more formally. 

In the linear regression log so([) = a + bt, plotted in Fig. 1, 
the coefficient b and its standard deviation are 0.095 C 0.089, 
0.095 +. 0.087, and 0.089 +. 0.086, corresponding to each of 
the values of s, = 0.4 ,0 .5 ,  and 0.6. The point estimates of b 
do not differ significantly from 0 at the 0.25 level for any of 
these values of s,. More ~mportantly, 95% confidence inter- 
vals for b include a substantial range of both positive and 
negative values. To illustrate with s, = 0.5, the data justify 
rejecting, at the 5% level of significance, an exponential 
increase in so(t) at a rate greater than 0.095 + 1.96(0.087) = 
0.266 or roughly 27% per year or a decrease at a rate larger 
in magnitude than 8% per year. Thus, the data are con- 
sistent with a broad range of values of b including that 
assumed in ( I ) ,  b = 0. 

One might suspect that no real set of only 13 data points 
could provide significant evidence for a linear trend in 
log so([). On the contrary. in work to be reported elsewhere, 
we find that at several Chesapeake Bay spawning sites 
other than the Potomac River, and in the bay as a whole, 
the correlation of log so(O with t is significantly negative 
(C. P. Goodyear, J. E. Cohen, andS. W. Christensen, unpub- 
lished data). For such populations, with declining survival of 
eggs, the present model and methods cannot be used directly. 

The autocorrelations of the residuals from the above linear 
regression at lags 1, 2, and 3 are not significantly different 
from 0 (the maximum of the t-ratios was 1.9) and decline in 
magnitude with increasing lag. Thus, there is no significant 
evidence for correlations in survival over time. 

To test whether the variance of log so([) changes over time, 
we computed the residuals of log so([) from the regression line 
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FIG. I .  Survival proponion o f  eggs to age I yr. plotted on logarithmic scale, from 1970 to 1982, at 
the Potomac River breeding site of  the Chesapeake Bay striped bass at (a) s, = 0.4. (b) s, = 0.5, and 
(c)  s, = 0.6. r ,  linear correlation coefficient between the logarithm of  the survival proponion and the 
year; s,, assumed annual survival proponion of  post-egg females. 

a + bt, took the absolute values of the residuals, and fitted a 
regression line of the form c + dt to the absolute values of the 
residuals. If the variance were independent of time, d would 
not differ significantly from 0.  For all three values of s,, the 
estimates of d fall between -0. I I and -0.12, with standard 
errors between 0.047 and 0.051. The probabilities that d 
differs from 0 by chance alone, in a two-tailed test, all lie 
between 0.025 and 0.05. The variance of log s,,(t) may change 
with t ,  but the evidence is not strong. The apparently large 
variance for early t arises from just two data points rather 
than from many. 

The computation of log p, does not depend on whether the 
variance in survival of eggs is independent of time. but the 
approximation (29) to the variance of log p, does presume 
that Var(s,(t)) is independent of t. 

We conclude that, for the Potomac River, the evidence 
against the assumption that s,(t) is independently distributed 
over time with constant mean is statistically weak. Because of 
the limited number of years of observation, we do not exclude 
the possibility that the average sO(t) increases by up to 26% or 
decreases by up to 8% a year. We also do not exclude the 
possibility that a lack of independence over time in the true 

survival probabilities is masked statistically by large, inde- 
pendent sampling variation. 

HOW IS THE SURVIVAL PROPORTION OF EGGS DISTRIBUTED? 

Given that s,,(t) is approximately independently, and ap- 
proximately identically, distributed over time, what is its dis- 
tribution? This question arises because we want to test 
whether the sample mean i,, differs significantly from the 
survival proportion s required for replacement. and it would 
be convenient to use a test based on statistical theory that 
presupposes a normal distribution. 

We apply two tests of normality implemented in the pro- 
gram library SAS Version 79.5 at Stanford University's com- 
puting center: the test of Shapiro and Wilk (1965) (PROC 
UNIVARIATE) and the Kolmogorov-Smirnov test using 
Lilliefors' (1967) table of critical points for testing normality 
when mean and variance are estimated from the sample 
(PROC KSLTEST). According to Stephens (1974, p. 735), 
the Shapiro-Wilk statistic provides a more powerful test of 
normality when the mean and variance must be estimated 
from the data than the best known statistics based on the 
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empirical distribution function. This means that if data are 
non-normally distributed, the Shapiro-Wilk statistic will 
generally give a "more significant" result (a lower value of the 
probability P of the null hypothesis of normality) than will the 
Kolmogorov-Smirnov test. Our results from applying both 
tests to our data are consistent with Stephens' finding. 

For all three values of adult survival s;, both tests reject the 
null hypothesis that so([) is normally distributed at probability 
levels between 0.01 and 0.05. Normal probability plots (not 
shown here) appear curved. (They should be nearly straight 
for normally distributed data.) 

The model (19) suggests that log s,,(r) should be approxi- 
mately normally distributed. The Shapiro-Wilk test rejects 
the normality of log so([) for all three si at probability levels 
less than 0.05. However, the Kolmogorov-Smirnov test 
rejects normality of log so([) at the 0.01 level when si = 0.4 
and fails to reject normality of log so([) at greater than the 
0.10 level when s, = 0.5 and 0.6. Normal probability plots of 
log so([) (also not shown) appear more nearly straight. We 
infer that so(4 is more nearly lognor~nally distributed than 
normally distributed, but the fit to neither distribution is very 
good. 

IS THE MEAN SURVIVAL PROPORTION OF EGGS DIFFERENT 
FROM THE PROPORTION REQUIRED FOR REPLACEMENT? 

We can compute the proportion s of eggs that would have 
to survive to age I yr for the deterministic population with 
L(r) given by (2) and so([) = s to be stationary (constant 
population in the long run). The value of s that gives the 
Leslie matrix a dominant eigenvalue of 1 may be computed by 
a formula of Van Winkle et al. (1974) and Vaughan and Saila 
(1976). The power method may be used to confirm that this 
value of s gives the Leslie matrix a dominant eigenvalue of 1. 
With adult survival s, = 0.4,  we founds = 6.93 X lo-'; with 
si = 0.5, we found s = 2.1 1 x with s, = 0.6,  we found 
s = 6.82 x lo-'. 

In the long run, the average population size E(Y(t)) will 
increase o i  decline if and only if log p > 0 or log p < 0 ,  
which in turn will hold if and only if E(so(r)) > s or 
E(sa(t)) < s,  in the model ( I ) .  We now test whether So, the 
sample mean survival proportion of eggs and the maximum 
likelihood estimator of E(so(r)), differs significantly from the 
survival proportion s required for replacement. 

For the cases s, = 0.4, 0.5, and 0.6. the respective sample 
mean survival proportions 4.48 x lo-" 1.24 x and 
3.75 X are all less than the respective survival propor- 
tions s required for replacement, namely. 6.93 x lo-'. 
2.1 1 X and 6.82 x but the difference is less 
than one standard deviation, respectively, 3.72 x lo-', 
1.02 x and 3.22 X Regardless of distributional 
assumptions, the evidence that E(so(r)) is less than s appears 
weak. 

Since log so([) is approximately normally distributed (at 
least for s; = 0.5  and 0.6). it would be tempting to apply the 
[-test to the sample mean of log s,,(r). However, this would be 
equivalent to testing whether the geometric, and not the 
arithmetic, mean of so([) differs from s,  which is the wrong 
question. 

In the appendix, an asymptotic likelihood ratio test is de- 
rived to test the null hypothesis that a sample of observations 

comes from a lognormal distribution with fixed mean versus 
the alternative hypothesis that the observations come from a 
lognormal distribution with some other mean. 

Here. the observations are s,,(r). t = 1970, . . . . 1982. and 
the fixed mean is the survival proportion s required for 
replacement, each calculated assuming the same value of the 
post-egg survival proportion si. For all three cases si = 0.4,  
0.5, and 0.6.  we find from (A6) that -2 log LR is smaller than 
0.8. The probability of agreater value of -2 log LR by chance 
alone. assuming E(s,,(r)) = s and a,([) is lognormally distrib- 
uted. exceeds 0.3. The data do not provide statistically sig- 
nificant evidence that the mean survival of eggs E(a,(t)) 
differs from s .  

The test used is strictly valid only in the limit as the sample 
size approaches infinity; however. since the value of P is not 
on the borderline of significance. it seems safe to accept the 
conclusion of no significant difference between .Fo and s in this 
case. The conclusion that the average survival of eggs does 
not differ significantly from the deterministic level required 
to sustain a stationary population is robust with respect to the 
assumed value of the post-egg annual survival proportion s;. 

How might the conclusion of no significant difference 
between So and s be affected if the young-of-year data in 
Table 2 add sampling variability to the biological variability? 
Substituting (3 I )  into (32) and (32) into (33) shows that so([) 
is a ratio of random quantities. The numerator is the observa- 
tion at t. The denominator is a linear combination of obser- 
vations prior to t. The variance of so([) due to sampling and 
biological variation will be larger than the variance due to 
biological variability alone. A small real difference between 
E(so(t)) and s may be masked if sampling variability inflates 
the estimated variance of so(!). The conclusion of no sta- 
tistically significant difference between So and s must be 
regarded with substantial caution. Nevertheless. our finding 
(C. P. Goodyear, J.  E. Cohen, and S.  W. Christensen, unpub- 
lished data) of a statistically significant decline in so(t) with 
increasing time t at other spawning sites in the Chesapeake 
Bay shows that real biological trends can dominate whatever 
sampling variability there is in the young-of-year data and 
gives grounds for modest confidence in the results here. 

GROWTH RATE OF MEAN POPULATION SIZE AND ITS 
APPROXIMATE VARIANCE 

If there is no significant evidence that the mean annual 
survival proportion of eggs differs from that required for the 
population to be stationary in the long run, then an interval 
estimate of the growth rate log F of the average population 
size should include 0. 

By way of illustration in the case s, = 0.5, we find. from 
the power method, that the dominant eigenvalue of L is F. = 
0.927 and log F. = -0.076. Following the procedure under 
Approximate Standard Deviation of the Estimate of a Growth 
Rate, and thereby supposing that Var(s,,(r)) is independent 
of r, we scale v so that its elements sum to 1 and obtain 
approximately ul = 10570, vo = 0.99997, Var(%) = 
~ a r ( s , , ( t ) ) / ( 1 3 ) ~ ' ~  = 2.89 x 10-", and finally from (29). 
Var(log b) = 3.76 x lo-'. The standard deviation of the 
estimate log F. is 0.061. The estimate log F. = -0.076 there- 
fore differs from 0 by little more than one (approximate) 
standard deviation and has an approximate 95% confidence 
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interval from -0.198 to +0.046. The abscncc of strong cvi- 
dencc here that log p. diffcrs from 0 is consistcnt with thc 
abscncc of strong evidence that E(s,,(r)) differs from s .  
Because of sampling variability. thc cvidcncc is consistent 
with a substantial ratc of dcclinc or rclativcly small ratc of 
incrcase in average population sizc. 

When wc introduced our numerical cstimatcs of the prc- 
sumably fixcd parameters of thc striped bass projection matrix 
L. we raiscd the possibility that both the post-egg survival 
proportions and adult fecundity may vary in tirnc. What im- 
pact misht such variations have on our point and intcrval 
estimates of log p.'? 

Provided the variations in elements of L arc independent 
over time. and provided our numerical estimates arc thc 
means of the corresponding random variables, the point esti- 
mate of log p. will be completely unaffected by the variation 
because p. is the spectral radius of the mean matrix E(L( I ) ) .  

However. the approximate variance of log lj. in (29) is 
computed on the assumption that only so(/) varies. neglecting 
any other source of variation, and is proportional to the vari- 
ance of S,). To the extent that (29) omits additional terms that 
reflect variation in elements of L other than s,,(t). our approx- 
imate variance of log $ is too small. In addition. since the 
estimate of s,,(t) from (31)-(33) omits any possible variation 
in si and F,, our estimate of Var(5,) could also be too small. 
We conclude that our Var(1og 6) from (29) will understate the 
actual variance of log $ if post-egg survival and adult fecun- 
dity vary independently over time. A true interval estimate of 
log $ would, in this case. be wider than that just estimated. 

To estimate numcrically log A,  defined by (5). one pro- 
cedure is to find the long-run invariant distribution ofy(t)/Y(t) 
and use that to compute log A as the expectation of 
log [YO+ l)/Y(t)]. (Recall thaty(t) is the age census. a vector. 
and Y(t) is the total population size. the sum of the elements 
of y(t), at time I. Thus, y(t)/Y(!) is the normalized age cen- 
sus, i.e. the probability distribution of individuals according 
to age.) This procedure is described in Cohen ( 1977b. 1979b) 
and illustrated in Cohen ( 1977b. 1979c) for 2 X 2 matrices. 
It does not appear to be practical for matrices as large as 
15 X 15. 

A second procedure would use the mathematical fact that. 
for any given sample path or simulation. as t gets large. 
( I / t )  log Y(r) approachcs the right sidc of (5 )  with probabil- 
ity I. We start a simulation from some arbitrary initial agc 
ccnsus y(0); we use an initial agc census with onc individual 
in each age-class. To iterate (I), we specify L(r) by setting 
s, = 0.5. i = 1 .  . . . . 14. and by choosing each value of s,,(t) 
from the corresponding column of Table 2 independently over 
time with probability I /  13. Fo r t  equal to integer multiples of 
20. we print the values of (111) log Y(r). Unfortunately. with 
a single simulation, onc has no estimate of the variance of the 
estimator for, say. 1000 yr, namely ( 1 / 1000) log Y( 1000). 
and running many simulations would be expensive. 

In a third procedure, we take as y(0) a scalar multiple of 
y(400) obtained from a previous simulation. This choicc elim- 
inates any transient effects due to a possibly atypical initial 
age census. We iterate ( I )  exactly as above and at each step 

compute 

Thcn wc takc as our estimator thc samplc mcan 

I l M X I  

(35) log i = ( 1 / 1000) C r(r) 
I =  I 

and computc thc standard dcviation of log A in thc ordinary 
way as the standard dcviation of thc samplc mcan of  r(r). We 
find log A = -0.086. Thc standard deviation of log A (not the 
standard dcviation of r(t))  is 0.0039. Onc can prove that. as 
thc duration of thc simulation (in this case. 1000) gets arbi- 
trarily large. thc sample mean of r(t)  approaches log A with 
probability I and the standard devilltion of this samplc mean 
approaches 0 .  The inequality log A = -0.086 < log lj. = 
-0.076 is consist~nt with the inequality ( 12). 

Although log A is more than threc standard deviations 
below 0. this is no evidence that log A < 0. because the 
estimator (35) takes as givcn the particular 13 values of s,,(t) 
on which the simulation is based. Even assuming that our 
model is correct, if we had happened to observe another 13 yr, 
we would have found different values of s,,(r) and a different 
estimate of log A .  An estimate of the variability of log A that 
allows for the variation in s,,(r) could be computed using the 
jackknife or bootstrap (Efron 1982). 

According to Fig. 1 and Table 2. the survival proportion of 
eggs in 1970 is notably lower than the survival proportion so(!) 
for all r after 1970. (It might seem paradoxical that ~ ~ ( 1 9 7 0 )  
should be lower than all subsequent values of so(!) while the 
index of young-of-year caught in 1970 exceeds all subsequent 
indices of young-of-year. However, in (33). the numerator of 
so(1970), namely y,(1970), is the index of young-of-year 
caught in the preceding calendar year, 1969, which is only 
0.2, less than any subsequent value. The denominator of so(!) 
reflects the size of the spawning stock, which changes slowly 
over time compared with y,(t). It is therefore not surprising 
that so( 1970) is lower than all subsequent values of s0(t).) 

Here, we investigate whether the previous analyses would 
have reached different conclusions if this possibly exceptional 
point for 1970 had been omitted. In linear regressions of 
log s,,(t) against r with 1970 omitted. the slope coefficient does 
not differ from 0 at the 0.5 level. For adult survival s, of 0 .4 ,  
0.5,  and 0.6, the slope coefficient and its standard error is 
-0.036 2 0.056, -0.029 5 0.058, and -0.029 5 0.062. 
Thus, 95% confidence intervals do not exclude both positive 
and negative slopes. The autocorrelations of the residuals 
from these linear regressions at lags 1 .  2, and 3 are not 
significantly different from 0,  for adult survival s; = 0.4.0.5,  
and 0.6. ln~regressions of the absolute values of the residuals 
against time, the slope coefficients do not differ significantly 
from 0 (the values of r are all less than 2). The corresponding 
values of the slope and its standard error are -0.028 5 0.03 I .  
-0.044 k 0.029. and -0.056 k 0.029. Thus. when 1970 is 
omitted, any suggestion that the variance of thc residuals 
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declines with time is greatly weakened. We conclude that 
with 1970 omitted. s,,(r) is more nearly independently distrib- 
uted over time with constant mean and constant variance. 

With 1970 omitted. both tests of normality indicate that 
S ~ I )  is not normal ( P  < 0.05 for the Kolmogorov-Smimov 
test and P < 0.02 for the Shapiro-Wilk test. where P is the 
probability of the null hypothesis that st,([) is normally distrib- 
uted) but that the normality of log &,(I) cannot be rejected 
(P > 0.15 for the Kolmogorov-Smirnov test and P > 0.25 
for the Shapiro-Wilk test). Thus, the lognormal distribution 
describes acceptably the distribution of so([) when 1970 is 
omitted. for si = 0.4. 0.5.  and 0.6. 

To test whether the mean survival of thcse lognormal distri- 
butions differs from the mean survival proportion s required 
for replacement. we apply the likelihood ratio test from thc 
appendix as before. Fors, = 0.4.0.5.  and 0.6,  the values with 
1970 omitted of -2 log LR and P are, respectively, 2.46 
(0.1 < P <0.25) ,3 .19(0.05 < P <O. l ) , and3 .42(0 .05  < 
P < 0.1). We conclude, as before. that there is no strong 
evidence, even when 1970 is omitted. that the average sur- 
vival of eggs differs significantly from the deterministic level 
required to sustain a stationary population. 

We have shown that all our substantive conclusions are 
robust with respect to the unknown post-egg survival propor- 
tion s, and with respect to the presence of a possible outlier, 
the data in 1970. 

SUMMARY OF DATA ANALYSIS: PROCEDURE AND RESULTS 

We summarize the major steps involved in estimating 
log p, the long-run growth rate of average population size of 
an age-structured population with random survival of eggs to 
age I yr. We start with estimates of all elements of the Leslie 
matrix except the survival of eggs and a time series of the 
number of I-yr-olds in the population. The time series must 
be significantly longer than the maximum reproductive age. 
We construct a time series of age censuses for the post-egg 
population, compute the number of eggs produced at each 
time for which we have a census, and by comparison of the 
number of eggs produced with the number of I-yr-olds esti- 
mate the proportion of eggs that survive from one year to the 
next. The average of this survival proportion gives one ele- 
ment in the average Leslie matrix. The logarithm of the dom- 
inant eigenvalue of this average Leslie matrix gives log fi, 
when the successive egg survival proportions are indepen- 
dently distributed with constant mean. 

When performing this estimation procedure, it is crucial to 
test its assumptions against the data. Specifically, the assump- 
tion that the survival proportions are independently distrib- 
uted over time with constant mean should be tested by all 
available means. If the survival proportions are used to make 
statistical inferences about whether the mean population size 
is changing the distributional assumptions underlying what- 
ever statistical test is used should be checked and confirmed. 
Use of the estimation procedure without checking the assump- 
tions that justify it may well mislead. 

We also summarize the substantive conclusions we have 
reached about the striped bass population spawning in the 
Potomac River. On the basis of estimates of the age-specific 
fecundity of female fish and an assumed annual survival pro- 

portion of post-egg fish equal to 0.5, the Fraction of newly 
spawned eggs that must survive one year to maintain a station- 
ary population is estimated at 2.1 I X 10 . (As the post-egg 
annual survival proportion ranges From 0 .4  to 0.6.  the annual 
survival proportion of eggs that is necessary to maintain a 
stationary population ranges from 6.93 X 10 ' to 6.82 x 
lo-'.) When the adult female stock is reconstructed from the 
survival of successive young-of-year cohorts. the input of 
eggs and hence the annual survival to yearlings can be esti- 
mated for each year. For annual post-egg survival proportions 
between 0.4 and 0.6. the annual proportion of eggs that sur- 
vive to yearlings, dcnoted by s,,(r), has a samplc mean s,, that 
is less than but docs not differ significantly from the value 
required to maintain a stationary population. Provided that the 
variance of s,,(r) is not substantially inflated by sampling vari- 
ability, and provided that the conditions that are assumed in 
our model were to continue to hold indefinitely, it would be 
statistically conservative to conclude that the asymptotic 
annual rate of change log P in the average size of populations 
statistically identical to that of the striped bass spawning in the 
Potomac River lies somewhere in the approximate 95% con- 
fidence interval from -0.198 to +0.046. The average size 
may be decreasing by as much as 20% or increasing by up to 
5% annually. 

Recall from (12) that the almost sure growth rate (log A) of 
any single population is always less than or equal to the 
growth rate of mean population size (log p). It would be 
ecologically and statistically conservative practice to continue 
sampling the young-of-year annually and to attempt to refine 
the estimates of post-egg survival and of adult fecundity in 
order to determine whether the suggestion of decline in the 
average population is happenstance or a genuine problem. 

The assumption in our method to which our results are most 
vulnerable is that adult annual survival proportions and age- 
specific fecundities have been constant since 1954. System- 
atic changes in these parameters with time would cause bias 
in our estimates of so([) that would increase with time. 

For example, a trend of decreasing survival or decreasing 
age-specific fecundities of successive cohorts of adults with 
time would cause a systematic temporal bias in the ratio of the 
model-generated egg production to the real egg production. In 
this situation, the model egg production would overstate the 
true egg production and thereby underestimate egg survival by 
a greater fraction each year, which could result in a negative 
correlation of egg survival with time. Given the apparent 
increase in angler participation in the region over the period, 
a decline in the bass population. if found, could have been due 
entirely to increasing fishing mortality. 

Systematic increases in survival or age-specific fecundities 
of successive cohorts would have the opposite effect. The true 
slopes of the regressions of egg survival against time would 
be decreased relative to those calculated if constant vital 
rates are assumed. The values of s,,(r) would be increasingly 
overestimated with time by our method. However, the true 
mean value of egg survival required for replacement would 
decrease, and its departure from the value s calculated as- 
suming constant adult survival and fecundity would occur 
at a faster rate than the bias in the estimates of s,(t) would 
increase with time. A decline in fishing mortality in response 
to declining stock would introduce this type of error in our 
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calculations. If some decline in fishing mortality and some 
increase in age-specific fecundity havc occurred. actual csg  
survival has increascd more slowly or has dcclined more than 
our analysis indicates. but the mean actual egg survival would 
still not be significantly below replacement. 

Use of These Methods in Environmental Impact 
Assessment 

Mathematical models of population dynamics are central in 
attempts to evaluate the environmental impact of existing and 
proposed power plants (Christensen et al. 1976). Models 
serve to project the state of a population under baseline condi- 
tions, prior to plant operation, and under operating condi- 
tions. The difference between the baseline and operational 
projections describes the environmental impact of plants. 

'The mathematical models described here originated in a 
protracted regulatory struggle concerning the Hudson River 
(Christensen et al. 198 I ) .  Over a 17-yr period ending in 1980. 
Consolidated Edison, an electric utility supplying power to 
the New York City region. and other utilities, engaged in legal 
battle with the U.S. Environmental Protection Agency 
(Region 11). the U.S. Nuclear Regulatory Commission, the 
Federal Energy Regulatory Commission, and a number of 
state agencies and citizens' groups over the effects of existing 
and proposed power plants on the Hudson River's fish popu- 
lations. including the striped bass population. 

Scientific consultants for the utilities proposed to evaluate 
the effects of plant operations by fitting a classical deter- 
ministic fish population model to time series of data on catch 
per unit effort. In the course of analyzing this aspect of the 
utilities' case, scientific consultants for the U.S. Environ- 
mental Protection Agency (Christensen et al. 1982) needed to 
use stochastic age-structured models. The methods described 
here offer analytically derived techniques, based on testable 
assumptions, for computing the long-run growth rate of the 
average population size when the age-specific vital rates are 
subject to random variations that are independently distrib- 
uted over time with constant mean. This growth rate of aver- 
age population size provides an upper bound on the average 
long-run growth rate of any single population subject to such 
random variations in age-specific vital rates. 

We have applied these techniques to a time series of young- 
of-year catches per unit effort from the striped bass population 
spawning in the Potomac River. in conjunction with very 
approximate estimates of post-egg annual survival propor- 
tions and age-specific egg-laying rates. Although there is no 
statistically significant evidence that average population 
would, in the long run, be nonstationary, the data are so 
limited and variable that the average population may in fact be 
increasing or decreasing. The possibility of decline warrants 
continued surveillance of that fish population along with 
efforts to provide a firmer basis for the vital rates whose 
values now are largely surmised. 

The methods described here. and the more general results 
referred to in the introduction, provide a framework for mod- 
eling stochastic variation of vital rates in real age-structured 
populations. 
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Likelihood ratio test for the mean of a lognormal random 
variable (derived by  Lynn Gale ,  Center for Advanced Study 
in the Behavioral Sciences, 202 Junipero Serra Blvd. ,  
Stanford, C A  94305. USA).  

W e  shall derive a test of the null hypothesis that n observed 
numbers .r,, XI, . . . , x,, are a random sample from the log- 
normally distributed random variable X with given mean 
E(X) = M, versus the alternative hypothesis that the observed 
numbers are a random sample from a lognormally distributed 
random variable X with some unknown mean other than M. 
Under both the null and the alternative hypotheses, the vari- 
ance of X is assumed to be unknown. 
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alternative hypothesis. if Z is normally distributed with mean 
IJ. and variance u', the maximum likelihood estimators (i and 
6' are. respectively, 

( A I )  F. = z =  C z, /n 
i =  1 

6' = 2 (2,-?)'In. 
i= 1 

It is important to observe the denominator 17 (not  n - I)  in B'. 
Under the null hypothesis. 

(A2) M = e x p  (p,+u2/2) o r  IJ. = log M - u 2 / 2  
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and we seek the maximum likelihood estimator (u*) '  of u' 
subject to this constraint (A2). The likelihood function for the 
observations is 

( ~ 3 )  L = n ([2=]Ii' .Y,u)-I exp (-[z,-+]~/[~u'])  
,=I 

The maximum likelihood estimator (u*) '  is obtained by 
setting 0 = d log L/du.  After some simplification wc find 

The likelihood ratio statistic LR is the quoticnt of thc like- 
lihood function of the sample given the constraint (A2)  and 
using the estimator (A4) to the likelihood function of the 
sample under the alternative hypothesis using the estimators 
(Al):  

(AS) LR = [ii ( [2=]1 /~  r , u * )  exp (-[log (,Y,/M) 
1 -  1 

- [ ,=I  fi [[2vl1/' r.6)- exp (-[;,- l i12/[~t ' l i]  

= (I?/U*)" n exp (-[log (.v,/M) 
,= 1 

+ (u*)'/2]'/[2(u*)'] + [;, - (i]'/[2I?']). 

Then. the log likelihood ratio statistic, defined to be 
-2 log LR. will be large if it is much less probable that the 
sample is lognormally distributed with mean M than if the 
sample is lognormally distributed with some other mean. 
After some simplification. we find 

(A6) -2 log LR = -2n(log 5 - log I?* 

- [log M]'/[~(u*)']+ I log M/(U*)' 

+ [log M-?+ 1 ] / 2 - ( ~ * ) ~ / 8  

-[6'+ i']/[2(0*)~]). 

Asymptotically (for large sample sizes), -2 log LR has the 
distribution of X' with one degree of freedom, so P values 
may be obtained from a table of the chi-squared distribution. 


