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Introduction 

In 1968 I proposed a way to set lower bounds on the dimensionality of trophic niche 
space by using data on food webs. In 19'78 I showed that, in community food webs in a single 
habitat, the data on trophic niche overlap were consistent with a onedimensional trophic 
niche space more often than might be expected from some simplified random models of food 
webs. 

This note has three parts. First, I will comment on some recent explanations and criti- 
cisms of my empirical finding of a high frequency of interval food webs (Sect. 2). Second, I 
will review some recent mathematical progress in the graph theory of food webs (Sect. 3). 
Third, I will s tate an  outstanding theoretical question concerning the combinatorial struc- 
ture of food webs (Sect. 4): to explain the observed distributions of the length of maximal 
food chains. I conclude with a list of open problems. 

Intervality of food webs: fact or artifact 

Let me review the general structure of the argument I used in 19'78. I collected observed 
food webs. I tested each observed food web to see if i t  had or did not have a certain prop- 
erty, which I call property P. (The property of interest was intervality, but that  is irrelevant 
for the moment.) I also constructed a model of food webs that  described successfully proper- 
ties PI, . . . , Pd other than property P of food webs. [For example, in model 5 of 
Cohen (1978, p. 60), the number of kinds of predators was taken as given (PI), the number 
of kinds of prey was taken as  given (P2), the number of predator-prey interactions, or  
directed arcs in the food web directed graph, was taken as given (P3), and the number of 
overlaps among the diets of predators, or  number of edges in the niche overlap graph, was 
shown (Cohen, 1978, p. 69) to be very well described by the model (P,).] Relative to this 
model, the observed frequency of property P (intervality) substantially exceeded the 
expected frequency. I inferred that  P remained in need of explanation. ["It is concluded that  
the high observed frequency of arrangements of niche overlap that  can be represented in a 
one-dimensional niche space [property P] does not result from the operation, within the 
framework of several plausible models [in particular, of model 5 that  describes 
P1, . . . , P J of chance alonew (Cohen, 1978, p. 92).] 

More than one commentary has gone like this. "Ah yes, but if you adjoin to your model 
additional properties Pd+l ,  Pd+2, . . . , P d + ~  then the model with properties 
PI, . . . , P d + ~  fully explains the observed frequency of property P. Therefore, prop- 
erty P is an  artifact of the omission of Pd+l, . . . , Pd+D from your model." 

For example, Yodzis (1981a) found that  a model, which he interpreted in terms of ener- 
getic constraints on the assembly of communities, could not explain the observed frequency 
of intervality. When Yodzis (1982) constrained the artificial food webs generated from the 
model to have a number of dominant cliques equal to the number observed, the frequency of 
intervality could be explained. [When Yodzis (1981~) chose different parameter values for his 
original model, he was also able to account for the observed frequency of intervality, but 
Lawton and Pimm (1982) pointed out that  these new parameter values appear to be biologi- 
cally senseless.] 

Similarly, Critchlow and Stearns (1982, p. 495) observed that  the number of block sub- 
matrices in observed food web matrices is generally higher, and the number of distinct diet 



overlaps in observed food web matrices is generally lower, than @cted by model 5. They 
asserted (p. 496), without any calculation to justify their claim: "Failure to account for 
block submatrices and distinct diet overlapa introduced a bias into the analysis that led 
directly to the conclusion that internal food webs are improbably frequent. No deeper expla- 
nation need be sought." To justify this claim, they would have to ahow that a model that 
correctly described the number of block submatrices and the number of distinct diet 
overlaps would also correctly predict the frequency of internality. They did not show this. 

In yet another approach, Sugihara (1982) showed that the frequency of interval food 
webs could be accounted for by requiring that the niche overlap graph be a rigid circuit 
graph, or by requiring that a certain simplicial complex, constructed to reflect the sharing 
of food resources by predators, have no holes. 

He incidentally showed that the existence of block submatrices may not suffice to explain 
the excess frequency of interval food webs. The Yood websw he used are in fact connected 
components from real community food webs. When he randomly assembled model food webs 
to allow small holes in the simplicial complex that describes resource use, he found substan- 
tially fewer interval food webs in the artificial sample than in the real food webs. This find- 
ing appears to contradict a t  least that part of the unsupported claim of Critchlow and 
Stearns pertaining to block submatrices. However, the random model of Sugihara differs 
from my model 5, on which Critchlow and Stearns based their other calculations, in requir- 
ing that each compartment ('food web* in his language) be connected. Whether the fre- 
quency of intervality would be correctly predicted by my model 5 if a block submatrix struc- 
ture were imposed on it  remains open, but doubtful in the light of Sugihara's results. 

Let me pretend that the logical error in the argument of Critchlow and Stearns did not 
exist, and respond as if all the above workers had proved their points. 

(a) Such explanations are exactly what I want; congratulations! Indeed, one purpose of 
modeling is to explain everything we think we know about food webs. I t  is a happy event 
when the task of explaining one empirical discovery drives the incorporation of further 
empirical discoveries into a model. 

Now, however, that we have five explanations (two offered by Yodzis, two by Sugihara, 
and one, asserted only, by Critchlow and Steams), plus qualitative ones offered by others, 
which, if any. is correct? Can they all be correct? If so, how are they to be reconciled? A 
large number of proofs of the existence of God raises doubts about the infallibility of any 
one of them, though not of course about the existence of God itaelf; the feeling is similar 
here. 

(b) Some of the explanations offered appear to push the problem of theoretical explana- 
tion one step back. Suppose, as Yodzis (1982) claimed, the frequency of intervality is 
explained by constraining the number of dominant cliques, or, as Critchlow and Stearns 
(1982) claimed, by constraining the number of block submatrices and distinct diet overlaps. 
Then what explains the low number of dominant cliques and distinct diet overlaps and the 
high number of block submatrices in real food webs? Suppose you were trying to explain the 
variation in men's heights, and you observed that almost all the variation could be explained 
if you knew the heights of their ears. This represents some progress, but i t  would be nice to 
be able to explain the heights of their ears. In this regard the proposals of Sugihara (1982) 
are of special interest, because he has tried to derive imputed community properties from an 
underlying theory of population dynamics. 

(c) The word 'artifact* is loaded. The fraction of food webs that are interval is deter- 
mined by the food web d a t a  If failure to resolve different kinds of organisms biases food 
web data in the direction of intervality, the solution is to refine the observations. If the 
fraction of food webs that are interval can be explained by a tested model that olso accounts 
for other features of food webs, it means that our understanding has been enlarged, not that 
intervality is an artifact. 



In the second half of this section, I would like to point out two further misunderstand- 
ings in the article of Critchlow and Stearns (1982). 

They asserted (p. 479) that %hen's techniques have no necessary connection to 
niches." If two different kinds of predators take a single kind of prey organism under simi- 
lar circumstances at one stage of the prey's life cycle, I cannot see how any d u l  definition 
of niche would fail to imply that the niches of the two predators must overlap. I t  M m s  to 
me that information about dietary overlap does provide some information about niches, even 
if this information is not necessary and sufficient to describe all aspects of niche overlap. 

They also asserted (p. 479) that 'the interval graph algorithm selected by Cohen is the 
wrong technique." They amplified this assertion later (pp. 493-494): T h e  sets which over- 
lap in a food web are the diets of the predators. These eets are directly accessible and should 
be tested for interval representation with the interval diets criterion. The interval diet over- 
laps criterion, i.e., Cohen's interval food web criterion, is an inherently more complicated 
and less precise method of testing a food web for interval diets . . ." 

The interval graph algorithm I used is indeed the wrong technique for answering the 
question Critchlow and Steams asked whether diets themselves have an interval representa- 
tion. But that is a different question from the slightly more abstract one I was asking. To 
pretend, as Critchlow and Steams have done, that they asked the same question I asked, 
only better, is to generate confusion rather than progress. 

In brief, Critchlow and Stearns applied the consecutive one's tests to the food web matrix 
directly. I applied the consecutive one's test to the dominant clique matrix derived from the 
food web matrix. Critchlow and Stearns have repeated some well known examples in which 
the two approaches give different answers. Unfortunately these examples are too simple to 
be of help in deciding which approach is more useful. So consider the following example. 

Suppose a food web C contains 7 kinds of predators pl, pz, . . . , p,. (The argument 
would hold for any number of predators.) Suppose C contains u) = 21 kinds of prey. For 
each pair p,, p, of distinct predators, suppose there is a prey species that constitutes the 
shared diet of p, and of pj, and that the prey species is different for each distinct pair of 
predators. (This assumption is much stronger and less realistic than what is required to 
make the following point, but is a simple way of describing a food web matrix without the 
consecutive one's property that has an overlap graph that is a complete graph on 7 points.) 
Then the diet of every predator in C overlaps with the diet of every other predator in C. The 
consecutive diets test of Critchlow and Steams would infer that the trophic niche space in 
this case could not be onedimensional because the food web matrix fails the consecutive 
diets test. I believe it is more plausible to infer from the exhaustive pairwise overlapping o& 
diets that there is some common region in trophic niche space that all 7 predators share, 
and therefore that the dimensionality of the trophic niche space need not exceed 1. 

I hope this example makes it unmistakably clear that the two techniques really are dif- 
feren t. 

Graph theory of food webs 

In this section I will describe some mathematical facts developed in the last decade con- 
cerning food webs, interval graphs and their generalizations. Many of these results are due 
to Fred S. Roberts and his students. The best single review known to me is by his doctoral 
student Cozzens, from whose thesis (1981) I learned of many of the results stated here. 

A digraph (= directed graph) is a finite set of vertices (corresponding here to kinds of 
organisms) and arcs or directed edges. If (x, y) is an edge, then organism x preys on organ- 
ism y. Digraphs are of ecological interest as an approximation to thexmmbinatorial struc- 
ture of food webs. It will be assumed here that all digraphs are acyclic and loopless. The 
niche overlap graph G of a digraph D is a graph with the same vertices as D and an 
undirected edge between vertices x and y if and only if, in D, there is a vertex z such that 



(x, z) and (y, z) are arcs of D. In other words, the trophic niches of x and y overlap if and 
only if they take some prey in common. 

The results I shall describe fall into two classes. The first class deals with the question: 
When is a given graph the niche overlap graph of some digraph? That is, which niche over- 
lap graphs could arise from some food web? The second class deals with the question: Given 
a niche overlap graph, whe~, is it the intersection graph of some given family of sets? E.g., 
when is it  an  interval graph? 

Roberta (1978) showed that  the niche overlap graph of an  (acyclic loopless) digraph 
always has a t  least one isolated vertex, which is a vertex with no neighbors. Moreover, if G 
is any graph, there is a finite number k such that  the union of G with k isolated vertices is 
the niche overlap graph of a digraph. The competition number k(G) of a graph G is the 
smallest integer k that  works, i.e., the least number of isolated vertices that  must be 
adjoined to G to make the union into the niche overlap graph of some (acyclic) digraph. 
Recently Opsut (1982) showed that  the computation of a graph's competition number, and 
hence the characterization of niche overlap graphs of (acyclic loopless) digraphs, is an NP- 
complete problem. This means that  the problem is hard. 

Lundgren and Maybee (1982) have characterized niche overlap graphs. They define a col- 
lection S of sets of vertices of G to be a line cover of G if each set in S is either a clique in 
G or the empty set, and every vertex of G is in at least one of the cliques in S. Then they 
prove: a graph G with n vertices is a niche overlap graph if and only if the vertices of G 
can be labeled v,, va . . . , v, so that  G has a line cover S = {C,, . . . , C,/ 
such that if the vertex v, is in the set C, then i > j. I t  follows that if G is a rigid circuit 
graph with an isolated vertex, then G is a niche overlap graph of some (acyclic loopless) 
digraph. In particular, every interval graph with an  isolated vertex is a niche overlap graph. 

Dutton and Brigham (1982) characterized the niche overlap graphs of digraphs that  may 
have both cycles and loops. Roberts and Steif (1982) characterized the niche overlap graphs 
of digraphs that are loopless but may have cycles. 

Roberts (1982) reviewed a variety of other applications of the mathematical ideas behind 
niche overlap graphs. I t  is illuminating to see the ecological applications in this broader con- 
text. 

I now turn to the characterization of an undirected graph G (in the present context, G 
is a niche overlap graph) as the intersection graph of some family of sets. Recall that  G is 
an intersection graph of a family of sets S if there exists a function f that  assigns to each 
vertex v of G a set f(v) in S such that  for all vertices x and y of G, (x, y) is an undirected 
edge of G if and only if f(x) and f(y) intersect, i.e., have a nonempty intersection. 

An intersection graph of the family of intervals of the real line is an interval graph. The 
boxicity of a graph G, denoted b(G), is the smallest integer k such that  G is an intersection 
graph of boxes (rectangular regions, open or closed) in the space of k-dimensional real 
vectors (Roberts, 1969). Obviously if G is an interval graph, b(G) = 1. Roberts (1978) 
showed that the boxicity of a niche overlap graph can be arbitrarily high. So an observation 
that many real niche overlap graphs have boxicity equal to 1 is not an artifact caused by 
considering niche overlap graphs. Although a linear-time algorithm is known for deciding 
whether a graph is an interval graph (Booth and Lueker, 1976), Cozzens (1981) proved that  
the computation of the boxicity of a graph is an NP-complete problem. 

Given a graph G with n vertices, its adjacency matrix is an n X n matrix A with 1 
everywhere on the main diagonal and, for i # j, with q, = 1 when (v,, v,) is an edge 
of G, q, = 0 otherwise. Mirkin (1972) showed that  G is an interval graph if and only if 
the rows of its A can be permuted so that  the consecutive one's property holds for the 
entries within a column a t  and below the main diagonal. 

Another well-known characterization is that  G is an interval graph if and only if none of 
its induced subgraphs is in a specified list of forbidden induced subgraphs. Steif (1982) 
showed that if D is the acyclic digraph of a niche overlap graph G that is interval, there 



can be no forbidden induced subdigraph list that  characterizes D. However, there does exist 
a list of forbidden sink induced subdigraphe for digraphs with interval niche overlap graphs. 
Here a sink induced subdigraph ia an induced subdigraph such that for every vertex x in the 
subdigraph, if (x, y) is an arc in the main digraph, then y ia also a vertex in the eubdi- 
graph. F i s  corresponds to my (1978) notion of a sink subweb.] Thus i t  is possible to deter- 
mine whether a food web is interval by checking all its sink induced subdigraphs (sink 
subwebs) against a finite list. 

Lundgren and Maybee (1982) suggested the nice idea of studying a food web's common 
enemy graph, which is the obvious dual to its niche overlap graph: if D is the original food 
web digraph and D' is the graph obtained by reversing the direction of all the am of D, 
then the common enemy graph of D ie the niche overlap graph of D', i-e., two kinds of 
organisms have a common enemy if and only if there is a predator that  preys on both of 
them. 

I showed in 1978 that a community food web has a niche overlap graph that  is interval if 
and only if every sink food web in i t  has a niche overlap graph that  is interval. Dually, 
Lundgren and Maybee (1982) showed that  a community food web has a common enemy 
graph that is interval if and only if every source food web contained in it does. 

Another idea of potential ecological relevance is that  of an overlap graph. A graph G is 
an overlap graph if there is a function from the vertices of G to intervals on the real line 
such that two vertices are adjacent in G if and only if the corresponding intervals intersect 
and neither interval properly contains the other. Obviously every overlap graph is an inter- 
val graph but not conversely. If one thinks of the intervals corresponding to vertices as one- 
dimensional regions in the trophic niche space, overlap graphs have the nice pmperty of not 
allowing the trophic niche of one kind of organism to be contained in the trophic niche of 
another. Gavril (1973) proved that  every overlap graph is a circle graph and conversely. A 
circle graph is defined as the intersection graph of a finite collection of chords on a circle. 

Food chain lengths 

The problem of explaining or predicting the length of food chains has long intrigued ecol- 
ogists. The recent collection of substantial numbers of food webs in machine-readable form 
presents a new opportunity and challenge for quantitative tests of food chain models. So far 
as I know, not a single model has been published that predicts quantitatively the frequency 
distribution of lengths of maximal food chains in a single food web or collection of food 
webs. 

Before anyone rushes out to do battle, let me sound a note of caution regarding the data. 
I published the frequency distrik~tion of lengths of maximal food chains in four food webs 
in 1978 (p. 59). When I learned from a manuscript of Peter Yodzis that  he had computed 
these frequency distributions for all 40 food webs in the collection of F. Briand, I asked for 
and he kindly sent all 40 frequency distributions. Three of my four analyzed food webs are 
among those in Briand's collection, so I compared the frequency distributions computed by 
Yodzis and me for those three. The statistics for my case 28.12 (Briand's 38), 'Rocky shore, 
Lake Nyasa," were identical. The statistics for the other two cases, shown in Table 1, were 
not. 

The differences are probably due to Briand's correction of the data I used. In the food 
web matrix of the Aspen forest, Canada, Briand (1983, Appendix) reported modifying entries 
that would explain why Yodzis showed two fewer prey than I did. This change affects 
substantially the frequency of maximal food chains of length two. Similarly, in the food web 
matrix of the sandy shore, Lake Nyasa, Briand reported deleting two columns and one row 
(these were duplications I did not detect). This change has little effect on the frequency dis- 
tribution of chain lengths. 



Table 1. Comparison of frequency diatributione of lengths of 
maximal food chains in two food webs, as computed 

by Cohen (1978) and Y o h i s  

Food web 

Author 

Identification 
number 

Predators 
Prey 

Interval 

Length of chain 

Aspen forest, Canada Sandy shore, Lake Nyasa 

Cohen Yodzis Cohen Yodzis 

Yes ? No ? 

Frequency 

In light of the possible sensitivity of the frequency distribution of maximal food chain 
length to the details of the food web data, i t  is important to make those data as reliable as 
possible before too much effort is invested in explaining the quantitative details of these 
frequency distributions. 

In spite of this caveat, I believe that  quantitative tests such as I propose are essential for 
sharpening our models and for getting rid of the host of speculations that are biologically 
plausible, qualitatively correct and actually wrong. 

Conclusion: open problem 

Aside from general exhortations, the preceding remarks identify some specific open prob- 
lems. 

1. Suppose random food webs are generated by my model 5, and all of them in which the 
number of block submatrices differs from the observed number are  discarded. Among those 
remaining, will the frequency of intervality approximate the observed frequency of interval- 
ity? In other words, will conditioning on the observed number of block submatrices really 
explain the frequency of intervality, as Critchlow and Stearns (1982) claimed? 

2. Similarly, will conditioning on the observed number of distinct diets explain the 
observed frequency of intervality? 

3. Will conditioning on the number of block submatrices and the number of distinct diets 
explain intervality? 

4. Are the common enemy graphs of real food webs interval about as frequently as 
woald be expected from random models? 

5. Are the niche overlap graphs of real food webs overlap graphs (i.e., representable 
without proper inclusion of intervals) about as frequently as would be expected from ran- 
dom models? 



6. Can dynamic models, of the kind recommended by Lawton and Pimm, quantitatively 
explain the frequency distribution of maximal food chain lengths? Can they quantitatively 
account for the frequency of internality? 

This work was partially supported by National Science Foundation grant DEB 80-11026 
A01 to Rockefeller University and by a Prize Fellowship of the John D. and Catherine T. 
MacArthur Foundation. I am grateful to many participants in the Food Web Workshop for 
helpful discussions based on a previous draft, and to Fred S. Roberts for guidance to m x n t  
work in graph theory. 
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