1. INTRODUCTION

A biological population, human or nonhuman, may experience multiple states in two ways.

First, it may visit different states in the course of time, the whole population experiencing the same (possibly age-specific) vital rates at any one time. For example, a troop of baboons moves from one area to another of its range, with associated changes in food supply and risks of predation (Altmann and Altmann, 1970). A human population experiences fluctuating crop yields from one year to the next, with associated effects on childbearing and survival. These are serial changes of state of a homogeneous population.

Second, the population may be subdivided into inhomogeneous subpopulations that experience different states in parallel.
Individuals may migrate from one state to another in the course of time. The states may correspond to geographical regions, work status, marital status, health status, or other classifications (Rogers, 1980). Individuals within a given state at a given time are assumed to be homogeneous with respect to their vital rates.

The purposes of this chapter are to describe some population models in which serial and parallel inhomogeneity are combined, and to state some ergodic theorems for these models. In demography, ergodic theorems describe long-run behavior that is independent of initial conditions. Weak ergodic theorems assume that the rates that govern a population's evolution themselves follow some deterministic trajectory. Le Bras (1977) gave the first weak ergodic theorem for multiregional age-structured populations. We shall give four weak ergodic theorems that are more general than that of Le Bras. Stochastic ergodic theorems assume that the rates that govern a population's evolution are selected from a set of possible rates by some stochastic process. We shall state a stochastic ergodic theorem that assumes that the rates of birth, death, and migration or other transition are selected by a Markov chain.

2. THE FORMALISM OF MULTIREGIONAL POPULATION MODELS

Following Rogers (1966), we now describe a formalism commonly used for projecting multiregional age-structured populations. Though we speak of regions and of migration, appropriate terminology for other states could be substituted.
Let r be the number of regions and k be the number of age classes. A census by age and region $Y(t)$ is an (rk)-vector partitioned into r k-vectors $Y_j(t, \cdot)$, $j = 1, \ldots, r$, in which the i-th element $Y_j(t,i)$, $i = 1, \ldots, k$, is the number of individuals at time t in region j in age class i. X is a set of $(rk) \times (rk)$ nonnegative matrices. A typical matrix X in X is partitioned into r^2 $k \times k$ submatrices x_{gh}, $g, h = 1, \ldots, r$, one such submatrix for each ordered pair (g,h) of regions.

Censuses are assumed to evolve according to the recursion

$$Y(t+1) = X(t+1)Y(t), \quad t = 0, 1, 2, \ldots, \quad (2.1)$$

where $X(t+1)$ is a matrix chosen from X. If $X(t+1) = X$, then the element $x_{gh}(1,j)$ of the submatrix x_{gh} is the average number of individuals born from t to $t+1$, per individual in region h and age class j at time t, who are alive in region g at $t+1$; $g, h = 1, \ldots, r$; $j = 1, \ldots, k$. Also $x_{gh}(j+1,j)$ is the proportion of individuals in age class j and region h at time t who are alive in age class $j+1$ and region g at time $t+1$; $j = 1, \ldots, k-1$.

The remaining elements of x_{gh} are zero.

In the case of two regions, $r = 2$, and two age classes, $k = 2$, X and $Y(t)$ have the form

$$x = \begin{pmatrix}
 x_{11}(1,1) & x_{11}(1,2) & x_{12}(1,1) & x_{12}(1,2) \\
 x_{11}(2,1) & 0 & x_{12}(2,1) & 0 \\
 x_{21}(1,1) & x_{21}(1,2) & x_{22}(1,1) & x_{22}(1,2) \\
 x_{21}(2,1) & 0 & x_{22}(2,1) & 0
\end{pmatrix}$$

$$Y(t) = \begin{pmatrix}
 Y_1(t,1) \\
 Y_1(t,2) \\
 Y_2(t,1) \\
 Y_2(t,2)
\end{pmatrix}$$
There is a 2×2 submatrix of x for each region and the elements within each submatrix refer to age classes. An alternate arrangement of elements by age class is described, e.g., by Willekens and Rogers (1978), following Feeney (1970).

3. WEAK ERGODIC THEOREMS FOR MULTIREGIONAL POPULATION MODELS

We now introduce some concepts needed to state ergodic theorems for multiregional (or multistate) populations.

For any nonnegative vectors u and v of the same length, with elements u_i and v_i, respectively, define the Hilbert projective pseudometric $d(u,v)$ by

$$d(u,v) = \log[\max_{v_i > 0}(u_i/v_i)/\min_{v_j > 0}(u_j/v_j)],$$

if u and v have positive elements in corresponding positions; and by

$$d(u,v) = \infty \text{ if } (u_i = 0 \text{ and } v_i > 0) \text{ or } (u_i > 0 \text{ and } v_i = 0)$$

for some i. Here d measures how nearly the elements of u are proportional to the corresponding elements of v; $d(u,v) = 0$ if and only if $u = cv$ for some scalar $c > 0$. Thus if $Y_1(t)$ and $Y_2(t)$, $t = 0, 1, 2, \ldots$ are two sequences of positive age censuses, then as $t \to \infty$, $d(Y_1(t), Y_2(t)) \to 0$ if and only if the corresponding distributions of the population by age and region eventually differ by a vanishingly small amount.

We now define four kinds of sets of nonnegative matrices and discuss the relations among them: a contracting set, an
exponentially contracting set, a primitive set, and an ergodic set.

A contracting set S (as defined in Cohen, 1979, p. 354) is a set of $n \times n$ matrices ($1 \leq n < \infty$) such that if u and v are any two positive n-vectors, then for any $\varepsilon > 0$ there is an integer N (possibly depending on u and v) such that for all $q \geq N$ and for any sequence x_1, \ldots, x_q, \ldots of matrices chosen from S, if $H(1,q) = x_q \ldots x_1$, then $d(H(1,q)u, H(1,q)v) < \varepsilon$.

A contracting set S is an exponentially contracting set (Cohen, 1979, p. 354) if, for any positive n-vectors u and v, there exist positive constants $K < 1$ and D (with D possibly depending on u and v) such that for any products $H(1,t)$ of arbitrary matrices from S, $d(H(1,t)u, H(1,t)v) \leq DK^t$.

A primitive set S with parameters (n,q), where n and q are positive integers, is a set of $n \times n$ nonnegative matrices such that any product of q factors that are matrices in S is positive (i.e., every element of the product is positive). An ergodic set S (Hajnal, 1976) with parameters (n,q,R) where $R > 0$ is a primitive set with parameters (n,q) such that for any matrix $m \in S$, $\min^+ m / \max m > R > 0$. Here $\min^+ m$ and $\max m$ are the smallest and largest of the positive elements of m.

Every matrix m in an ergodic set must be primitive, that is, have some power that is positive. But not every collection of primitive matrices is an ergodic set. For example, if

$$
\begin{array}{ccc}
\tilde{m}_1 &=& \begin{pmatrix} + & 0 & + \\ + & 0 & 0 \\ 0 & + & 0 \end{pmatrix}, & \tilde{m}_2 &=& \begin{pmatrix} 0 & + & + \\ + & 0 & 0 \\ 0 & + & 0 \end{pmatrix},
\end{array}
$$

then \tilde{m}_1 and \tilde{m}_2 are primitive, but $\tilde{m}_1 \tilde{m}_2$ is not.
where the $+$ sign indicates some positive number, both m_1 and m_2 are primitive matrices in Leslie form. But

$$m_1^2 m_2 = \begin{pmatrix} + & + & + \\ 0 & + & + \\ 0 & + & + \end{pmatrix}$$

is reducible, so that no matrix of the form $(m_1^2 m_2)^n$, $n \geq 0$, is positive or even irreducible. Hence $\{m_1, m_2\}$ is not an ergodic set.

An ergodic set is an exponentially contracting set (Hajnal, 1976). But ergodic sets have a uniform property not necessarily enjoyed by exponentially contracting sets in general. If S is an ergodic set with parameters (n,q,R), then there exist constants $D > 0$ and $K \in (0,1)$ such that for all initial n-vectors u, v, if $u \geq 0$, $v \geq 0$, $u \neq 0$, $v \neq 0$, then $d(H(1,t)u, H(1,t)v) \leq DK^t$, as soon as $t \geq q$. The point here is that D does not depend on the initial u and v. This fact is stated by Golubitsky et al. (1975, p. 89) for products of matrices x satisfying $A \leq x \leq B$, where A and B are fixed primitive matrices. Their argument carries over immediately to ergodic sets. In particular, even if $d(u,v) = \infty$, $H^* = H(1,q) > 0$ implies $d(H^* u, H^* v) \leq \sup_{H^*} \max_{g,h,i,j} H^*_g h_{ij} / (H^*_i h_{gj}) \leq (n/R)^2 q < \infty$, where the supremum is taken over every possible product H^* of q arbitrary matrices from S.

Exponentially contracting sets need not display such uniformity. For example, the set S containing only the matrix

$$x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
is an exponentially contracting, but not ergodic, set. Let $u^T = (0,1)$, $v^T = (1,1)$. Then $x^t u = (0, 2^{-t})^T$ while $x^t v > 0$ for all t, so $d(x^t u, x^t v) = \infty$ for all t. If $u(\varepsilon) = (\varepsilon, 1)^T$, then $x^t u(\varepsilon) = (\varepsilon, \delta + 2^{-t})$, where δ can be made arbitrarily small by taking ε small. Consequently, for any fixed t, $d(x^t u(\varepsilon), x^t v)$ can be made arbitrarily large by making ε small enough.

An obvious way to assure that D in the upper bound DK^t is independent of the initial vectors u, v is to take initial vectors only from the set $Y(\delta) = \{y > 0; \min_i y_i / \max_j y_j \geq \delta\}$. In this case, D depends on δ, not on u, $v \in Y(\delta)$.

Of the four kinds of sets just defined, only ergodic sets and exponentially contracting sets will appear in the following theorems. We still need two more concepts, that of an incidence matrix and that of a state connection matrix.

The incidence matrix $k(A)$ of any matrix $A = (a_{ij})$ is the matrix whose elements $k_{ij}(A)$ satisfy $k_{ij}(A) = 1$ if $a_{ij} \neq 0$ and $k_{ij}(A) = 0$ if $a_{ij} = 0$. Hajnal (1976) observed that if S is a set of square nonnegative matrices s, all of which have a common incidence matrix k which is primitive, and if $\min^+(s)/\max(s) > R > 0$ for all s in S, then S is an ergodic set.

The state connection matrix is a generalization of the incidence matrix.

If x is a $kr \times kr$ multistate projection matrix, as described earlier, define the state connection matrix $c(x)$ to be the $r \times r$ matrix with $c_{gh}(x) = 0$ if every element of the $k \times k$ submatrix x_{gh} of x is zero, and $c_{gh}(x) = 1$ if there is at least one positive element in x_{gh}.

We can now state a weak ergodic theorem.
Theorem 3.1. Let \(X \) be a set of multiregional projection matrices for \(r \) states with \(k \) age classes. Suppose that

(i) for every \(x \in X \), \(\min^+(x)/\max(x) > R > 0 \);
(ii) all matrices \(x \) in \(X \) have the same incidence matrix \(\kappa \);
(iii) each diagonal \(k \times k \) submatrix \(\kappa_{gg} \) of \(\kappa \) is primitive, \(g = 1, \ldots, r \) and \(c(\kappa) \) is irreducible.

Then \(X \) is an ergodic set with parameters \((kr,q,R)\), where \(q = (r-1)(2k^2-4k+5) \).

Theorem 3.1 goes beyond the weak ergodic theorem of Le Bras (1977). Our assumption (i) is a bound only on the ratios of the positive elements within one matrix. Over the set \(X \) matrix elements may be arbitrarily large or small. Le Bras, like Golubitsky et al. (1975), assumes fixed upper and lower bounds on the elements of the multistate projection matrices.

Proof of Theorem 3.1. Correcting an assertion of Le Bras (1971), Feeney (1971) proved that if every diagonal submatrix \(x_{gg}, g = 1, \ldots, r \), of a multistate projection matrix is primitive and if \(c(x) \) is irreducible, then \(x \) is primitive. Therefore, by (iii), the common incidence matrix of every matrix in \(X \) is primitive, hence \(X \) is an ergodic and exponentially contracting set (Hajnal, 1976).

To derive \(q \), we note that if \(A \) is \(n \times n \) and primitive, then \(A^p \) is 0 for \(p \leq n^2 - 2n+2 \) (Berman and Plemmons, 1979, p. 48). Take \(p = k^2 - 2k + 2 \). If \(H(1,p) \) is a product of \(p \) arbitrary matrices chosen from \(X \), then the diagonal \(k \times k \) submatrices of \(H(1,p) \) are positive. Therefore the \(g,h \) submatrix of \(H(1,p+1) \) has a strictly positive column if \(c_{gh}(\kappa) = 1 \), so \(H(1,p+1+p) = H(1,2p+1) \) has a positive \(g,h \) submatrix if
$c_{gh}(\kappa) = 1$. Now since $c_{gg}(\kappa) = 1$, $g = 1, \ldots, r$, $[c(\kappa)]^{r-1} > 0$ (Berman and Plemmons, 1979, p. 27). Since the product of any two positive (sub)matrices of the same size is positive, and since positive elements of $c(\kappa)$ correspond to positive submatrices of $H(1,2p+1)$, we see that every element of $H(1,(r-1)(2p+1))$ is positive. Thus $g = (r-1)(2k^2 - 4k+5)$, as asserted. This proves Theorem 3.1.

Since κ is primitive, by the result of Feeney (1971), we could have immediately written $q = (kr)^2 - 2kr + 2$. However, it is easy to show that if $r > 1$ and $k > 1$, then $(kr)^2 - 2kr + 2 > (r-1)(2k^2 - 4k + 5)$, so the value of q stated in the theorem is preferable. For $r = 4$, $k = 10$, $(kr)^2 - 2kr + 2 = 1522$, whereas $(r-1)(2k^2 - 4k + 5) = 495$.

We now weaken conditions (ii) and (iii) of Theorem 3.1.

Theorem 3.2. Let X be a set of multistate projection matrices for r states with k age classes. Suppose, in addition to (i) of Theorem 3.1, that (ii) for each $g = 1, \ldots, r$, \{x_{gg}; $x \in X$\} is a primitive set with parameters (k,q_g); (iii) \{$c(x)$; $x \in X$\} is a primitive set with parameters (r,q_0). Then X is an ergodic set with parameters (kr,q,R) where $q = q_0(1 + 2\max_{g=1,\ldots,r} q_g)$.

Le Bras (1977) assumes that there is a primitive $r \times r$ state connection matrix, call it a, such that if x is any multistate projection matrix, $a \preceq c(x)$. In Theorem 3.2, we require only that the set of all state connection matrices be an ergodic set. To see that this requirement is weaker, suppose the state connection matrix of a three-regional population at any given time were either c_1 or c_2, where
\[c_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad c_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \]

and that the state connection matrix could change from time to time. The largest matrix that is elementwise less than \(c_1 \) and \(c_2 \) is \(I \), the 3 \(\times \) 3 identity matrix, which is not primitive. Thus the population just described is not covered by the results of Le Bras (1977). But it is readily checked that \(c_1^2 > 0 \), \(c_2^2 > 0 \), \(c_2c_1 > 0 \), and \(c_1c_2 > 0 \), so \(\{c_1, c_2\} \) is an ergodic set and the population described may be covered by Theorem 3.2.

Proof of Theorem 3.2. Let \(Q = \max_{g=1,...,r} q_g \). Then \(H(1,Q) \) has strictly positive diagonal \(k \times k \) submatrices. Then suppose some matrix \(x^{(a)} \in X \) has \(c_{gh}(x^{(a)}) = 1 \). Then in the \(g,h \) submatrix of \(H(1,Q)x^{(a)} \) there is at least one positive column. Hence \(H(1,Q)x^{(a)}H'(1,Q) \), where \(H'(1,Q) \) is any product of \(Q \) matrices from \(X \), chosen independently of the \(Q \) factors in \(H(1,Q) \), has a positive \(k \times k \) submatrix in the \(g,h \) position. Thus wherever \(c_{gh}(x^{(a)}) = 1 \), there is a positive submatrix in the \(g,h \) position of \(H(1,Q)x^{(a)}H'(1,Q) = H_a(1,2Q+1) \), where the subscript \(a \) shows that \(x^{(a)} \) is the \((Q+1)\)th factor in this product of \(2Q + 1 \) otherwise arbitrary matrices from \(X \). Now let \(x^{(a)},...,x^{(q_0)} \) be any \(q_0 \) elements of \(X \) and form

\[H_a(1,2Q+1),...,H_{q_0}(1,2Q+1) \]

where the factors other than the \((Q+1)\)th are arbitrary. By (iii), \(c(x^{(a)})...c(x^{(q_0)}) > 0 \).

Hence \(H_a(1,2Q+1)...H_{q_0}(1,2Q+1) > 0 \). Since \(x^{(a)},...,x^{(q_0)} \) are arbitrary, we have shown that an arbitrary product of \(q_0(2Q+1) \) matrices from \(X \) is positive. This proves Theorem 3.2.

Condition (ii) of Theorem 3.2 permits an element of a diagonal submatrix of the multistate projection matrices to be
0 at some times and positive at others. For application to
real matrices used for multiregional projection, it is desirable
to weaken (ii) further.

If the k age classes include post-reproductive ages, then
x_{gg} need not be primitive. Suppose that the last age class
with positive effective fertility is the same in every region;
call this age class \(\beta \). Assume positive survival proportions up
to age \(\beta \). Formally, suppose \(x_{gh}(1,\beta) > 0 \); \(x_{gh}(1,j) = 0 \), \(j > \beta \);
\(x_{gh}(j+1,j) > 0 \), \(0 < j < \beta \). Then Ledent (1972) proved that a
cogredient permutation of rows and columns can put \(x \) in the
form

\[
\begin{pmatrix}
M & 0 \\
A & B
\end{pmatrix},
\]

(3.1)

where \(M \) is \((r \beta) \times (r \beta)\) and \(B \) is \(r(k-\beta) \times r(k-\beta)\). The \(r^2 \beta \times \beta \)
submatrices \(M_{gh} \) of \(M \) are the northwest \(\beta \times \beta \) submatrices of
\(x_{gh} \). The \((k-\beta) \times \beta \) submatrices \(A_{gh} \) of \(A \) are the southwest
\((k-\beta) \times \beta \) submatrices of \(x_{gh} \) and are zero everywhere except
possibly for \(A_{gh}(1,\beta) > 0 \). The \((k-\beta) \times (k-\beta) \) submatrices \(B_{gh} \)
of \(B \) are the southeast \((k-\beta) \times (k-\beta) \) submatrices of \(x_{gh} \) and are
zero except possibly for \(B_{gh}(j+1,j) > 0 \), \(j = 1,\ldots,k-\beta-1 \). The
northeast \(r \beta \times r(k-\beta) \) submatrix of \(x' \) is zero. Ledent (1972)
observed that if \(x \) is a multiregional projection matrix for a
real human population, then \(M \) as described may be assumed to
have primitive diagonal submatrices \(M_{gg} \) and \(c_{ij}(M) = 1 \),
i,j = 1,2,\ldots,r, so that \(M \) is primitive by Feeney's (1971)
result.

Theorem 3.3 generalizes Ledent's (1972) observation to in-
homogeneous matrix products.
Theorem 3.3. Let X be a set of multistate projection matrices for r states with k age classes. Each $x \in X$ can be partitioned into $r^2 k \times k$ submatrices x_{gh}.

(i) Suppose there is an integer β, $1 \leq \beta < k$, such that, for $g, h = 1, \ldots, r$, each $k \times k$ submatrix x_{gh} can be partitioned in the form

$$x_{gh} = \begin{pmatrix} M_{gh} & 0 \\ A_{gh} & B_{gh} \end{pmatrix}$$ \hspace{1cm} (3.2)$$

where M_{gh} is $\beta \times \beta$, B_{gh} is $\gamma \times \gamma$ with $\beta + \gamma = k$, and the zero matrix 0 is $\beta \times \gamma$. Moreover, suppose there exists $R > 0$ such that, for all $x \in X$ and all $g, h = 1, \ldots, r$, $\min^+ (M_{gh}) / \max (M_{gh}) > R$.

(ii) Suppose that, for each g, $\{M_{g g} ; x \in X\}$ is a primitive set with parameters (β, q_g).

(iii) Let $c^{(M)}_{g, h}(x) = 1$ if M_{gh} has at least one positive element and $c^{(M)}_{g, h}(x) = 0$ if $M_{gh} = 0_{\beta \times \beta}$, $g, h = 1, \ldots, r$. Then suppose that $\{c^{(M)}_{g} (x) ; x \in X\}$ is a primitive set with parameters (r, q_0, l).

(iv) For all $g, h = 1, \ldots, r$, let $A_{gh} (1, \beta) > 0$; i.e., the northeast element of every A_{gh} is positive. The other elements of A_{gh} may be 0 or positive.

(v) For all $g, h = 1, \ldots, r$, let B_{gh} be strictly lower triangular with positive subdiagonal, i.e.,

$$B_{gh}(i, j) = 0, i = 1, \ldots, \gamma; j = i, \ldots, \gamma;$$

$$B_{gh}(i+1, i) > 0, i = 1, \ldots, \gamma-1.$$

Then X is an exponentially contracting set.

We cannot conclude X is an ergodic set because the northeast $\beta \times \gamma$ corner of every $k \times k$ submatrix will always be 0.
We have not assumed any quantitative restrictions on the elements of A_{gh} and B_{gh}. When each submatrix x_{gh} is interpreted as a Leslie matrix, (iv) assumes a positive proportion surviving from age class β to $\beta + 1$, and (v) assumes positive proportions surviving from age class $\beta + 1$ to age class k. These conditions are met by human populations.

Proof of Theorem 3.3. By a cogredient permutation of rows and columns, each $x \in X$ takes the form x' in (3.1) described by Ledent (1972). Then assumptions (ii) and (iii) impose on the set of all matrices that occupy the position of M in (3.1) exactly the same conditions that assumptions (ii) and (iii) of Theorem 3.2 impose on all $x \in X$. Consequently, by Theorem 3.2 \{M; x \in X\} is an ergodic set. If $H'(1, q)$ is the cogrediently permuted form of the product of q arbitrary $x \in X$, then the northwest $r_\beta \times r_\beta$ submatrix of $H'(1, q)$ is positive for $q \geq Q = \max\{y, q_0(1+2\max_{g=1,\ldots,r} q_g)\}$, again by Theorem 3.2. Also since the product of any γ strictly lower triangular $\gamma \times \gamma$ matrices is 0, columns $r_\beta + 1, r_\beta + 2, \ldots, r_k$ are 0 in $H'(1, q)$ for $q \geq Q$. It remains only to describe what happens to the southwest $r_\gamma \times r_\beta$ submatrix of $H'(1, q), q \geq Q$, in the position corresponding to A in (3.1). Assumptions (iv) and (v) imply that, as q increases from $Q + 1$ to $Q + \gamma$, the minimum number of positive elements in the βth column of each $\gamma \times \beta$ submatrix of the $r_\gamma \times r_\beta$ southwest corner of $H'(1, q)$ increases from 1 to γ. Thus as q increases from $Q + 1$ to $Q + \gamma$, each of columns $h_\beta, h = 1, \ldots, r$ has at least $r, 2r, \ldots, \gamma r$ positive elements. Thus for $q \geq Q + \gamma$, $H'(1, q)$ has at least r positive columns in positions $h_\beta, h = 1, \ldots, r$; has 0 everywhere in columns $r_\beta + 1, \ldots, r_k$; and is strictly positive in the intersection of rows and columns $1, \ldots, r_\beta$.
The proof of Theorem 6 of Cohen (1979, p. 362) therefore applies to \(H(1,q) \) and \(q > q^* \gamma \) and shows that \(X \) is an exponentially contracting set. This proves Theorem 3.3.

When the states of a multistate projection matrix correspond to geographical regions, to being employed or unemployed, or to being married or unmarried, it is reasonable to suppose that, in the course of time, there is a positive migration from each state to every other state, in age classes prior to the last age of reproduction, as in Theorem 3.3 (iii). But when the states are (without high school diploma; with high school diploma) or (never married; ever married), some states cannot be reentered, once they are left. Even so, there are conditions on multistate projection matrices sufficient to guarantee that a set of these will be exponentially contracting. For simplicity, we describe here only the special case of \(r = 2 \) states.

Theorem 3.4. Let \(X \) be a set of \(2k \times 2k \) two-state projection matrices with \(k \) age classes. Partition each \(x \in X \) into four \(k \times k \) submatrices:

\[
x = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix},
\]

(i) Let \(\{x_{11}; x \in X\} \) be an ergodic set with parameters \((k,q_1,R_1)\). (ii) Let \(x_{12} = 0_{k \times k} \) for all \(x \in X \); there are no transitions from state 2 to state 1.

(iii) Assume there is at least one positive element in each row of \(x_{21} \) for all \(x \in X \). (This means there are positive flows from state 1 to every age class of state 2.) (iv) Suppose there exist constants \(K_1, K_2, \) and \(K_3 \) such that \(0 \leq kK_1 \leq 1 \),
$0 < K_2 \leq K_3 < \infty$, and, for all $x \in X$, (a) $0 \leq \max_{i,j} x_{ij} \min_{i,j} (x_{ij})$,
(b) $K_2 \leq \min_{i,j} (x_{ij}) / \max_{i,j} (x_{ij})$; (c) $\max_{i,j} (x_{ij}) / \min_{i,j} (x_{ij}) \leq K_3$.

Then K is an exponentially contracting set.

Proof of Theorem 3.4. Theorem 3.4 is just a restatement, in the context of multistate projection matrices, of Theorem 5 of Cohen (1979, p. 359).

In applying Theorem 3.4 to real sets of multistate projection matrices, condition (i) can usually be assured by truncating after the largest age class with positive fertility. Condition (iii) assumes positive transitions from state 1 to every age class of state 2. For states defined in terms of education, employment, or marriage, very young children usually do not change states. If, for example, a 5-yr age class and time unit are used, some newborn individuals will change educational, employment, or marriage status after 20 yr, so all products of four matrices from X will have at least one positive element in each row of x_{21} corresponding to young ages. Thus X can be replaced by all products of four matrices from X. If adults past a certain age do not change states, these age classes can be truncated, as is commonly done for post-reproductive age classes. Condition (iv,a) requires that the largest survival and effective fertility coefficients in state 2 all be small compared to the smallest coefficients in state 1. Thus the dynamics of state 1 dominate the projection under the conditions assumed in Theorem 3.4.

Le Bras (1977, p. 274) mentions qualitatively the case we consider in Theorem 3.4, but he offers no analysis of it.

None of Theorems 3.1 - 3.4 requires the set X of multistate projection matrices to be finite, or even countably infinite.
4. STOCHASTIC ERGODIC THEOREMS

So far, we have assumed that the sequence $\mathbf{x}(t)$ of multistate projection matrices was chosen by some deterministic mechanism. Now we assume that the sequence $\mathbf{x}(t)$ represents the sample path of a Markov chain. We have chosen a Markov chain as the process governing $\mathbf{x}(t)$ because a Markov chain can represent sequential dependence of $\mathbf{x}(t+1)$ on $\mathbf{x}(t)$, yet is simple enough to be analyzed in detail. Whether the dependence of $\mathbf{x}(t)$ on the past is really Markovian remains to be determined.

We shall proceed naively, without specifying which sets and functions are assumed to be measurable. Readers who recognize the need for such qualifications can supply them from the results already obtained for a single-regional, age-structured population (Cohen, 1977a,b).

We recall some definitions from the theory of finite Markov chains. Following Kemeny and Snell (1960), a Markov chain is ergodic if it is possible to go, directly or indirectly, from any state to any other state. A cyclic or periodic chain is an ergodic chain in which each state can only be entered at certain periodic intervals. A regular chain is an ergodic chain that is not cyclic.

Theorem 4.1. Let X be an exponentially contracting set containing s (s finite) multistate projection matrices $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(s)}$, each of which is $(kr) \times (kr)$. Let

$$P[\mathbf{x}(t+1) = \mathbf{x}^{(j)} | \mathbf{x}(t) = \mathbf{x}^{(i)}] = p_{ij}, \ i, j = 1, \ldots, s,$$

where $P = (p_{ij})$ is the (primitive) transition probability matrix of a regular Markov chain. Let $Y = \{y; y$ is a kr-vector, $y \geq 0$ and $\|y\| = 1\}$, where $\|y\| = \sum_{i} y_i$. For any kr-vector $Y(0) > 0$,
define $Y(t)$ by (2.1) and define $y(t) = Y(t)/\|Y(t)\| \in Y$.

Then:

(i) The bivariate process $(\underline{x}(t), y(t))$ is a Markov chain (with uncountably many states) on the state space $X \times Y$. If T is the transition probability function of the bivariate chain $(\underline{x}(t), y(t))$, that is, $T(\underline{x}^{(i)}, y, \underline{x}^{(j)}, B)$ is the probability of a transition from $(\underline{x}^{(i)}, y)$ into $(\underline{x}^{(j)}, B)$, then T may be expressed explicitly in terms of P and of matrix multiplication as $T(\underline{x}^{(i)}, y, \underline{x}^{(j)}, B) = p_{ij} I_B(\underline{x}^{(j)} y/\|\underline{x}^{(j)} y\|)$, and for $B \subset Y$, $I_B(y) = 1$ if $y \in B$, $I_B(y) = 0$ if $y \notin B$.

(ii) There is a limiting probability distribution $F(A, B)$ defined on subsets A of X and subsets B of Y such that

$$
\lim_{t \to \infty} P[\underline{x}(t) \in A, y(t) \in B] = F(A, B),
$$

independent of initial conditions. F may be calculated numerically by solving the renewal equation

$$
F(\underline{x}^{(j)}, B) = \sum_{i=1}^{\infty} \int_{y \in Y} F(\underline{x}^{(i)}, dy) T(\underline{x}^{(i)}, y, \underline{x}^{(j)}, B).
$$

(iii) Let $Y_\delta = \{y; y \text{ is a } k \times r \text{-vector, } y \geq 0, \text{ and } \min_i y_i / \max_j y_j \geq \delta\}$. If X is an ergodic set, let $\delta = 0$. If X is not an ergodic set (but still is exponentially contracting, as assumed at the outset), fix $0 < \delta < 1$. Then there exist positive constants a (depending on δ and X) and b (depending only on X) such that, for any initial census $Y(0)$ in Y_δ, any initial projection matrix $\underline{x}^{(i)}$ in X, and any subset B of Y,

$$
P[\underline{x}(t) = \underline{x}^{(j)}, y(t) \in B | \underline{x}(1) = \underline{x}^{(i)}, y(0) = Y(0)/\|Y(0)\|] - F(\underline{x}^{(j)}, B) < ae^{-bt}.
$$
(iv) For a scalar or vector-valued function g with domain $X \times Y$,
\[
\lim_{t \to \infty} t^{-1} \sum_{\theta=1}^{t} g(x(\theta), y(\theta)) = \sum_{i=1}^{S} \int_{Y} g(x(i), y) F(x(i), dy)
\]
whenever the right side of the equation exists. This means that long-run averages (left side) equal ensemble averages (right side).

(v) There is a constant $\lambda > 0$ such that, for any initial census $Y(0)$ and for almost all sample paths of the $x(t)$ chain,
\[
\log \lambda = \lim_{t \to \infty} t^{-1} \log \| Y(t) \| = \lim_{t \to \infty} t^{-1} E[\log \| Y(t) \|].
\]
This $\log \lambda$ is the asymptotic almost-sure growth rate of Furstenberg and Kesten (1960). A formula for calculating $\log \lambda$ is
\[
\log \lambda = \sum_{i=1}^{S} \sum_{j=1}^{S} \int_{Y} \log(\| x(j) \|) p_{ij} F(x(i), dy).
\]
If $c(i)$ is the smallest of the column sums of $x(i)$ and $c^{(1)}$ is the largest of the column sums of $x^{(1)}$, then
\[
-\infty < \sum_{i=1}^{S} \pi_i \log c(i) \leq \log \lambda \leq \sum_{i=1}^{S} \pi_i \log c^{(1)} < \infty,
\]
where
\[
\pi_i = \lim_{t \to \infty} P[x(t) = x^{(i)}].
\]

(vi) There is a constant $\mu \geq \lambda > 0$ such that
\[
\log \mu = \lim_{t \to \infty} t^{-1} \log E[\| Y(t) \|],
\]
where

\[E \|Y(t)\| \]

is just the average (over all sample paths) total population size of the census at time \(t \). Thus \(\mu \) is the asymptotic growth rate of the average population size, while \(\lambda \) is the average of the growth rates along each sample path. \(\mu \) is the dominant eigenvalue of the \((skr) \times (skr) \) matrix \(P^T \otimes X = M \), defined as consisting of \(s^2 \) submatrices \(M_{ij} = p_{ji} x^{(i)} \), each of order \(kr \times kr \).

When \(X \) contains only a single matrix \(x \), \(\lambda \) and \(\mu \) are both the dominant eigenvalue of \(x \).

(vii) If \(X \) is an ergodic set, then all regions grow asymptotically at the same rate, i.e., for \(i, j = 1, 2, \ldots, kr \),

\[
\log \mu = \lim_{t \to \infty} t^{-1} \log E(x_{ij}(t)), \quad \log \lambda = \lim_{t \to \infty} t^{-1} E(\log x_{ij}(t)).
\]

(viii) The asymptotic variance in the logarithm of the increase per unit time in population size is

\[
s^2 = \lim_{t \to \infty} \left(E[\log(\|Y(t+1)\|/\|Y(t)\|)]^2 - (E[\log(\|Y(t+1)\|/\|Y(t)\|)])^2 \right),
\]

where

\[
\lim_{t \to \infty} E[\log(\|Y(t+1)\|/\|Y(t)\|)]^2
\]

\[
= \sum_{i=1}^s \sum_{j=1}^s \int_Y [\log(\|x^{(j)}y\|)]^2 p_{ij} F(x^{(i)}, dy)
\]

and
\[\lim_{t \to \infty} E[\log(\|Y(t+1)\|/\|Y(t)\|)] = \log \lambda. \]

(Note that \(\sigma^2 \) is not the variance of \(\lim_{t \to \infty} t^{-1}\log\|Y(t)\| \). For all sample paths, except those belonging to a set of probability 0, \(\lim_{t \to \infty} t^{-1}\log\|Y(t)\| \) is the constant \(\log \lambda \) and the variance of \(\lim_{t \to \infty} t^{-1}\log\|Y(t)\| \) is 0.)

(ix) Let \(v \) be a real kr-vector. (If every element of \(v \) is 1, \(v^TY(t) \) is the total population size at time \(t \). If \(v^T \) contains the labor-force participation rates, assumed constant, by age and state, \(v^TY(t) \) is the labor force at time \(t \).) Lange and Hargrove (1980) give explicit recursive formulas for computing the right side of

\[\text{var}(v^TY(t)) = (v^T \otimes v^T)[E(Y(t) \otimes Y(t)) - E(Y(t)) \otimes E(Y(t))], \]

where \(\otimes \) is the ordinary tensor or Kronecker product. Thus the mean and variance of any homogeneous linear function of the census \(Y(t) \) can be calculated at any time \(t \).

The proof of this theorem is so close to the proofs in Cohen (1977a,b) and Lange and Hargrove (1980) that we do not repeat the details. The only significant change is that we have replaced the requirement that \(X \) be an ergodic set by the conditions that \(X \) be an exponentially contracting set and, in part (iii), \(Y(0) \in Y_0 \).
5. RELATIVE RATES OF CONVERGENCE

Suppose the multiregional projection matrix X (defined in Section 2) is constant in time and an initial census $Y(0)$ by age and region is not a multiple of the dominant right eigenvector of X. In a numerical example based on Canadian data from 1966 to 1971, using eight regions and 14 age classes, Liaw (1980) found that the age structures within each region moved rapidly toward their stable limits, but that the proportions of the total population found within each region approached their stable limits much more slowly. Liaw interpreted these differences in rates of convergence in terms of the eigenvalues of the multiregional projection matrix.

Keyfitz (1980, p. 620) offered a more intuitive account of the differences in rates of convergence:

"If a matrix can be rearranged in blocks [corresponding to regions in this example] within which the connectivity is strong but between which the connections are relatively weak, then when it is taken to successively high[er] powers the numbers within blocks will settle down quickly to constant ratios, and only some time after they have done so will the ratios of numbers in different blocks stabilize. The matrix is like a building with a good mixing of air within each room but little circulation between rooms; we can expect that after any disturbance the within-room variation will settle down to the stable form more quickly than the between-room variation."

In inhomogeneous products of multiregional projection matrices, there is no stable limit of age structure within regions or of proportions of total population between regions,
although there is a stationary probability distribution of these quantities in some stochastic models.

The inhomogeneous analog of the phenomenon described by Liaw (1980) would be this: Let $H(l,p)$ be a product of p matrices chosen from a set X of permissible multiregional projection matrices. Then for two different initial censuses $Y(0)$ and $Y'(0)$ by age and region such that $Y(0)$ is not proportional to $Y'(0)$, the Hilbert distance between a region's age census in $H(l,p)Y(0)$ and the same region's age census in $H(l,p)Y'(0)$ decreases more quickly as p increases than the Hilbert distance decreases between the vector of proportions of total population by region at time p, starting from $Y(0)$, and the vector of proportions of total population by region at time p, starting from $Y'(0)$.

I am not aware of numerical examples of inhomogeneous products of multiregional projection matrices that could test this expectation. Even if it is true, it does not follow from any obvious analysis of eigenvalues, for one reason. If A is a square nonnegative matrix with positive dominant eigenvalue, let $R(A)$ be the ratio of the magnitude of the eigenvalue of A with second largest magnitude to the dominant eigenvalue; thus $R(A) \leq 1$. If one were to use eigenvalues to study the convergence of inhomogeneous products of positive matrices, one would like to have, for any two positive square matrices A and B of the same size, that $R(AB) \leq R(A)R(B)$. Unfortunately, this inequality is not always true. Such a submultiplicative inequality is true, however, for other real-valued functions of matrices that measure how near a matrix is to being of rank 1 (Hajnal, 1976). It seems likely that these "coefficients of
ergodicity" could be used to develop a theory of relative rates of convergence of regional age structures and proportions among regions. Until such a theory is developed, the informal account of Keyfitz (1980), quoted above, seems a reasonable guide to what to expect, provided that "higher powers" is replaced by "longer inhomogeneous products."

6. EXTENSIONS AND APPLICATIONS

In this section I review briefly some possible extensions of this multiregional stochastic theorem that have already been worked out in the single-regional case, and then indicate what it would take to put the stochastic model to work with real data.

The Markov chain that governs the succession of multiregional projection matrices could be extended from a finite-state chain to a countably infinite (Cohen, 1976) or uncountably infinite (Cohen, 1977a) chain. The restriction to a time-homogeneous chain could be dropped (Cohen, 1977a,b) at the price of losing an invariant long-run distribution of vital rates and census structure. If the chain is homogeneous, ergodic, and periodic, the distributions of vital rates and census structure converge in Cesaro sums (Lange, 1979). The assumption of a single sex could be replaced by various linear two-sex models (Pollard, 1973, pp. 82-95). Immigration into the multiregional population could be considered (Lange and Hargrove, 1980). The interaction of demographic with exogenous environmental variables could be considered (Land, 1980) to
integrate this demographic model into a larger social and economic framework. Although the explicit formulas for calculating long-run growth rates depend on a Markovian assumption, the existence of the long-run growth rates can be proved if a stationary stochastic process, not necessarily Markovian, is assumed to choose successive projection matrices (Lange and Holmes, 1981).

I have already described (Cohen, 1976, pp. 335-336; 1977a, pp. 24-25) how this stochastic model suggests a scheme for the analysis of historical data and for the construction of probabilistically interpretable projections. To estimate the Markov chain, one requires a sequence of observed projection matrices; ten would be a minimum. To reduce the dimensionality of the fertility, mortality, and migration schedules, one would fit curves, based on closed-form or relational models, that are specified by a small number of parameters. One would then fit some Markov process to the time series of estimated parameters. It would be important to test first that a Markovian model is an appropriate description of the time series of parameters, and second that the predictions of fertility, mortality, and migration rates resulting from such a model are better, or at least not worse, than those obtained by current simpler methods. Such a comparison of new and old models should use various criteria of performance, because different models might be superior for different purposes. To prepare projections, one requires as a starting point a current census by age and region.

Although only a first-order Markovian model has been studied here as the stochastic process underlying successive
projection matrices, it might turn out empirically that a more complex model is required by the data, e.g., a second-order Markov process, or that a simpler model without sequential dependence suffices. Whatever model is used in practice for projections of a given population, it would make sense continually to update both the estimates of the model's parameters and the form of the model according to the sequence of vital rates that actually occurs. The stochastic model used in projection should adapt to successive observations of demographic events.

ACKNOWLEDGMENTS

Jacques Ledent generously guided me to most of the works on multiregional demography cited here. W. Brian Arthur arranged an opportunity to work in and enjoy the hospitality of the Systems and Decision Sciences Area of the International Institute for Applied Systems Analysis, Laxenburg, Austria, where most of this chapter was written. Emmett B. Keeler detected and showed how to fill a gap in one argument in an earlier draft. The work was also partly supported by the U.S. National Science Foundation grant DEB 80-11026.
REFERENCES

