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1. Introduction and summary. This paper offers yet another example of what 
probability theory can do for analysis. Using a Feynman-Kac formula derived in the 
theory of random evolutions (51, we find an expression (1) for the spectral radius r(A) 
of a finite square non-negative matrix A. This expression makes it very easy to study 
how r(A) behaves as a function of the diagonal elements of A. 

Kac (7) derived an expression of the same form as (1)  for the principal eigenvalue of 
a second-order ordinary differential equation, using a Feynman-Kac formula for 
Brownian motion rather than for a finite-state Markov chain. His result has been 
extensively generalized (Donsker and Varadhan (3)). 

A direct derivation of (1) for non-negative matrices and the two main consequences 
of (1) derived in section 2 (inequalities (7) and (9)) may be new. Inequality (7) is a lower 
bound for r(A) when A is irreducible. Inequality (9) asserts that, whether A is irre- 
ducible or not, r(A) is a convex function of the main diagonal of A. 

Section 3 reviews alternative, partially successful approaches to the same results. 
This paper substantially generalizes the major results of (2) and provides much 

easier proofs. It is mathematically independent of (2) but does not contain some of the 
special results developed there for demographic applications of non-negative matrices. 

For general background and definitions not provided below, see (4.9.11.14). 

2. Feynma&~ac meet Perron-Frobenius. Let A be a matrix of order 

n x n  ( l < n < o o )  

with finite possib'ly complex elements aij. The spectral radius r(A) of A is the largest of 
the . magnitudes .- I Ail of the eigenvalues A,, i = 1, . . ., n of A. If ( 1  .I) is any matrix norm, 
then r(A) = lim,,, IIAtJlllt. We shall abbreviate lim,,, to lim,. We adopt the row sum 
norm ( 1  A 1) : = maxi xj la,,) (where ' : = ' means equality by definition). 

Henceforth let A be non-negative, i.e. every a,, 2 0; we write A 2 0, By the Perron- 
Frobenius theorem at least one of the eigenvalues of A, say A,, is real and equal to 
r(A) 2 0. There exists an n-vector u = (u,), ui 2 0, such that Au = A,u. If A 2 0, 
then eA 2 0 and r(eA) = er(A). If A is irreducible, then r(A) = A, > 0, A, is simple (no 
other eigenvalue of A equals A,), and all ui > 0. We do not assume A is irreducible 
unless we say so explicitly. 

Let si := C,ai, and S := (sij), where sii := si,sij := 0 if i += j; S is n x  n. Then 
Q : = A - S has zero row sums and non-negative off-diagonal elements. Thus Q defines 
the intensity matrix or infinitesimal generator of a continuous-time homogeneous 
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Markov chain W(t), t 2 0, with state space X = (1, . . . , n). If A is irreducible, then Q is 
irreducible also and 0 is a simple eigenvalue of Q. Let Ei denote the (conditional) 
expectation over all sample paths of the Markov chain W(t) which are initially in state i, 
i.e. such that W(0) = i. Let gj(t) be the occupation time in the j th state up to time t. I n  
general, given W(0) = i, i t  is possible that g,(t) = t for all t(e.g. if i = j and aik : = qik = 0 
for k + i) or that  gj(t) = 0 for all t (e.g. if state j is isolated from state i) or that  
0 < g,(t) < t. If A is irreducible, then there exists a positive n-vector m : = (n,) such 
that for almost every sample path of the chain, lim,gj(t)/t = ?r, > 0. Chung((11, p. 93) 
proves this limit theorem for a discrete-parameter chain and leaves the continuous- 
parameter analogue 'as a long exercise for the interested reader' (p. 228). 

Let maxi : = maxiex, mini : = min,,,. 

r(A) = lim, (l/t) log maxi E,[exp (xj8,g,(t))]. ( I )  
Proof. r(A) = log r(e-4) = log lim, 11 eAtlll/t = limt log ( 1  eAtlJ l I t  = lim, (l/t) log max, (ith 

row sum of eat). Let u(t) : = (u,(t)) be an n-vector function of time t such that  

duldt = Au, ui(0) = 1. 
The unique solution of (2) is 

u(t) = eAtu(0), 
i.e. u,(t) = i th  row sum of eAt. 

We now define a 'random evolution' (5) whose 'expectation semigroup ' is also a 
solution of (2). This example of a random evolution is more elementmy than any of 
those considered in (5). 

Since almost every sample path W(t) is a step function, let tk be the time of the 
kth (k 2 1) jump or change of state of W(t): 0 < t, < t, . . . , and let N(t) be the number 
of jumps up to time t. W(tk) is the state entered after the kth jump. If W(0) = i, let 

At any given time except a jump point t,, M(t) is an exponentially growing quantity, 
initially (t = 0) equal to 1, in which the growth rate s,(,) is chosen by the state of the 
Markov chain W(t). Since the scalars sj, j E X, all commute, E[M(t) 1 W(0) = i] = 
Ei[exp (Xjs,gj(t))]. Griego and Hersh ((s), p. 41 1) proved a generalized Feynman-Kac 
formula ; namely 

ui(t) = Ei[exp (Xjsjgj(t))I (5) 
solves (2). Since any solution such as (5) is also the i th row sum of eAt, substitution in 
the expression developed for r(A) gives Theorem 1. 

A consequence of Theorem 1, originally due to Frobenius, is well known ((a), pp. 63, 
68). 

COROLLARY 1. Label the rows and columnsof A g 0 so that s, = maxisi ands, = mirq.9,. 
Then 

8, < r(A) < 8,. 

Proof. Since X,g,(t) = t, we have from (1) that  
r(A) < lim,(l/t) log maxi Ei[eal t] = 8,; 

similarly r(A) 2 lim, (l/t) log max, E,[e&t] = 8,. 
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COROLLARY 2. If A 2 0 is irreducible, 

except when s1 = s,, in which m e  r(A) = 8,. 

Proof. Since eZ is convex in x, we have, for every t, 

Passing to  the limit, since lim,E,[g,(t)/t] = n, > 0 for all i and j ,  we have, from 
Theorem 1, r(A) >, Xjn,a,. Since all n, > O,Z,n,s, > s, except when s1 = s,. 

It would be desirable, but seems difficult, similarly to derive from (1) an upper bound 
on r(A) which improves on that in (6) when A 2 0 is irreducible. 

We illustrate the numerical power of Corollary 2 with an example which Marcus and 
Minc ((II), p. 158) used to compare localization theorems for the spectral radius of a 
positive square matrix. Let 

Then 

and nTQ = 0 is satisfied by nT = (g, 6, s). From Corollary 2, 6.5 6 r(A). Since 
r(AT) = r(A), we may also apply Corollary 2 to  AT, noting that  the Q matrix of AT is 
not the transpose of the Q matrix of A. For Q derived from AT, nTQ = 0 is satisfied by 
nT = (H, &+', #). From Corollary 2,6.707 6 r(AT). Combining the results for r(A) and 
r(AT) gives 6.707 6 r(A). According to (11 ), r(A) = 7.531. The best lower bound in (11) 
is 5.162 6 r(A). This bound, due to a theorem of Ostrowski, requires knowledge of the 
least element of A in addition to the row sums and a positive eigenvector corresponding 
to  r(A). 

Lemma 1 of (3) gives an upper bound on r(A), 

where Q = (qi,) and u = (u,) is any n-vector with all u, > 0. Richard Griego has 
observed that, in this numerical example, with ui = i ,  one obtains r(A) 6 9. This bound 
is better than the best upper bound, 9.359, given by Marcus and Minc ((111, p. 158). 

TE~EOREM 2. Let V : = (vy) be an n x n non-negative diagonal rnatrix (v,, = 0 for i 4 j) 
m h  thud for at least one i ,  0 6 vii < v : = max,v,, < GO. If A 2 0, then 

r(A) 6 r(A + V )  6 r(A) + v. 

If A i.a irreducible, both inequalities in  (8) are 8trict. 
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Proof. From (I), r(A + V) = lim, (1lt)log maxi Ei[exp (Cjsjgj(t)) exp (C,v,,gj(t))]. For 

every sample path and every t, 1 < exp (Xjvjjgj(t)) < evt. Equation (8) follows. 
If A is irreducible, so are A + V and A + vI, where I is the n x n identity matrix. 

From (1) it is apparent that r(A) + v = r (A + vI). Since at  least one element of A + V 
exceeds the corresponding element of A, and at  least one element of A + v I  exceeds the 
corresponding element of A +  V, it follows from a well-known lemma of Wielandt 
((a), p. 57) that r(A) < r(A + V) < r(A +vI), proving Theorem 2. 

THEOREM 3. Let V be any n x n non-negative diagonal matrix. For A 2 0 and 0 < h < 1, 

~ ( ( 1 -  h) A + h(A + V)) < (1 - h) r(A) + hr(A + V). (9) 
Proof. Using Theorem 1, 

(1 - h) r(A) + hr(A + V) 

= (1 - h) lirn, ( l l t )  log maxi Ei[exp (Cjsjg,(t))] 

+ h lim, (l/t) log maxi Ei[exp (Zj(sj + vjj) g,(t))] 

= lim,(l/t) log (max, Ei[exp (C, s,gj(t))])l-h 

+ limt ('It) log (max,Ek[exp (Cj(sj + vj,) gj(t))I)h 
= lim,(l/t) log maxi(Ei[exp (Xjsjgj(t))])l-h 

+limt ('It) 1% maxk (Ek[ex~ (C,(sj + vjj) gj(t))I)h 

= lim, (l / t)  log [maxi(Ei[exp (C ,~~g~( t ) ) ] ) l -~  ~ ~ x ~ ( E ~ [ B x P  (Xj(sj + vjj) gj(t))])h] 

2 limt ('It) 1% maxi [ (Ei[ex~ (Cj~jgj(t))I)l-~ (Ei[exp (Xj(sj + vjl) gj(t))I)hI (10) 

2 limt ('/t)logmaxiEi[exp ((1-h) (Cjsjgj(t))+hCj(sj+vjj)j)sj(t))I (11) 
= lim,(l/t) log maxi Ei[exp X,((l- h) sj + h(s, + v,,)) gj(t)] 

= r((1- h) A + h(A + V)). 

The step from (10) to (11) follows from ((13), p. 68, 5 81.2). This proves Theorem 3. 
We conjecture that if, as in Theorem 2, V is not a scalar multiple of an identity 

matrix, and if A is irreducible, then the inequality in (9) is strict. This conjecture is 
known to be true if only a single element of V is positive (2). In  general, consider the 
step from (10) to (1 1) for anyfixed t, that is, before passing to lim,. Then theinequality 
between (10) and (1 1) is an equality if and only if ( ( 6 ) ,  p. 22, theorem 11) exp (Cjsjgj(t)) 
is proportional to exp (Cj(sj + vjj) gj(t)) almost everywhere (a.e.) with respect to the 
probability measure on sample paths such that W(0) = i. Thus equality holds if and 
only if there exists c > 0 such that c exp (Cjs,g,(t)) = exp (xjsjgj(t)) exp (Cjvj,gj(t)) a.e., 
that is, such that c = exp(Cjvjjg,(t)) a.e. This condition could be satisfied, e.g. if 
vj, = v for all j or if for some j, g,(t) = t a.e. But when A is irreducible and V 4 vI, i t  is 
not true that c = exp (Xjvjjg,(t)) a.e. so that the inequality is strict. It must be shown 
that strict inequality persists in the limit. 

Unlike the methods of proof in (2), the representation of the spectral radius and the 
methods used here appear to generalize immediately to countably infinite non-negative 
matrices A for which the associated matrix Q is the infinitesimal generator of a 
reasonably well behaved Markov chain. However, we shall not make this claim precise 
here. 
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3. Perturbation theory and determinantal identities. A natural approach to the con- 
clusions of Theorems 2 and 3 would use perturbation theory for linear operators (8). 

If A 0 is primitive, i.e. if, for some k, every element of Akis positive, then the Perron- 
Frobenius theorem assures the existence of positive right and left eigenvectors corre- 
sponding to the unique (real) eigenvalue of modulus r(A). Equation (8), with both 
inequalities strict, then follows by combining several results from ((s), p. 75, 11 (2.3) 
and I1 (2.6); p. 78, I1 (2.21); p. 80, I1 (2.34)). 

To prove the convexity of r(A) as a function of, say, all only, all other elements of 
A held constant (which is a special case of the conclusion of our Theorem 3), one must 
show sll c 0 where now S : = (sij) is the value at  r(A) of the reduced resolvent of A with 
respect to r(A) ((s), p. 76, I1 (2.10); p. 40, I (5.27)). S is expressed in terms of the eigen- 
projections and nilpotents of A (which is T in (8)) in ((s), p. 40, I (5.32)). No direct 
demonstration that s,, < 0 has been found. 

Still another way to show that r(A) is a convex function of the main diagonal of 
A 0 is to prove that the Hessian H : = (hi5), where hi5 = a2r/aai, aaj5, and every 
principal submatrix of H are positive semi-definite (i.e. non-negative definite). If A is 
2 x 2, this conclusion is immediate from ((21, p. 185, theorem 2). If A is 3 x 3, the 
conclusion has been proved directly by a long but elementary calculation of the 
determinants of the principal submatrices of H I  obtaining hi5 by implicit differentiation 
of the characteristic polynomial of A. In  fact the principal 1 x 1 and 2 x 2 submatrices 
of A are positive deh i t e  when A,,, is irreducible. 

For an irreducible n x n matrix A 2 0, since C?=,ar/aa,, = 1 ((2), p. 184), each row 
sum of H is 0. If it were true that hi5 < 0 whenever i + j ,  it would follow readily that H 
is positive semi-definite. However, there exist positive 3 x 3 matrices for which h,, > 0. 
It does follow that det (H) = 0, where det : = determinant. Moreover, since H is also 
symmetric, det (H(1)) = . . . = det (H(n)), where H( j )  is the matrix formed by deleting 
the jth row and column of H ((12), p. 372, 5 389), so the sign and magnitude of all 
primary minors of H are determined by the sign and magnitude of any one of them. 

bince the characteristic equation of A implicitly defines r(A) as a function of 
(a,,, . . . , a,,), a classical formula ((12), p. 660, ex. 11) for the determinant of the Hessian 
of an implicitly defined function could, in principle, be used to check the sign of the 
principal minors of H. 
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Added in proof: S. Friedland (manuscript, February 1979) has proved the conjecture 
that follows Theorem 3. 
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