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If the matrix oi  pararrreters of a discrete multiplicative process 1s suhecl Cu 
certain sequentially dependent random perturbations, the long-run growth rate 
of the average process is not in general bounded above by the largest sup, Ai of the 
growth rates A, of the individual matrices which drive the process. The growti 
rate p of the average process may, in general, be greater or less than the long-rur 
growth rate A* of a deterministic process governed by the time-averaged matrix. 
The time-averaged matrix may suggest that the process wili be critical or 
subcritical (A*  < I), whereas the sequential dependence among perturbations 
may actually make the average process supercritical (p > 1). This suggeata that 
in collecting data on and analyzing the dynamics of randomly perturbed discrete 
multiplicative procesaea, it is necessary to consider possible sequential depen- 
dence among matrix parameters in addition to their relative frequencies and 
zverage values. Applications to nuclear reactors, age-structured populationa and 
other areas are indicated. 

Discrete multiplicative processes have been used in multigroup diffusion 
models for nuclear reactors [l, 21, in models of age-structured biological (includ- 
ing human) populations [3], and in other areas. The analysis of these processes 
has often assumed a time-independent environment. A heuristic justification for 
this assumption might be that if the true matrix coefficients which formally 
represent the environment in a multiplicative process vary according to a 
stationary stochastic process, it appears reasonable to replace the variable 
matrices by their time-average. 

The purpose of this paper is to point out some consequences of the possibility 
that the environment may be subject to sequentially dependent, specifically 
Markovian, random perturbations. In particular, suppose that a process expe- 
riences a finite number s > l of environments, each represented by a corres- 
ponding matrix. Let the long-run rate of growth per discrete time unit in 
number of individuals (such as neutrons or people) be hi if the process constantly 
experiences the ith environment only. The process is called subcritical in 
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environment i if A, < 1, critical if hi = 1, and supercritical if A, > 1. Suppose 
A, 3 A2 >, ... 2 A,, and suppose successive environments are chosen by an 
s-state irreducible aperiodic homogeneous first-order Markov chain, perhaps the 
simplest model of a sequentially dependent process. Suppose the transition 
probability matrix of the Markov chain is t = (t,,). 

We shall show first that a knowledge of t and A, , i = I, ..., s does not in 
general provide any upper bound on the long-run growth rate p of the expected 
process with Markovian environments, by constructing a Zstate process with 
given irreducible aperiodic t and given A, , A, such that p is unboundedly large. 
However, given t and hi , p is bounded below by sup,,, ,.,,,s tiiAi . 

We shall also show that the time-averaged matrix may imply a long-run 
growth rate A* that is arbitrarily close to A, at the same time that p is arbitrarily 
close to A , .  Thus the time-averaged environment may predict a critical or 
subcritical process while the sequential dependence among environments may 
render the average process supercritical. 

An array (vector or matrix) is nonnegative if each element is nonnegative; 
it is positive if each element is positive. A discrete multiplicative process with a 
finite number k of groups is a system of difference equations of the form 

where y(.) is a nonnegative k-element column vector and x(.) is a nonnegative 
k x k matrix. In applications (below), the elements of the vector y(n) specify 
the number of individuals of some kind in each of k groups at time n; and 
xi,(n + I )  denotes the expected number of individuals in group i at time n + 1 
resulting from a single individual in group j at time n. 

A random discrete multiplicative process, studied for example in [4], is a 
system of random nonnegative k-vectors Y(n, w) and random k x k nonnegative 
matrices X(n, w) which satisfy 

for each realization w of the process, that is, for each point w in some underlying 
probability space. We shall drop w henceforth. We assume Y(0) is positive 
almost surely. 

The matrices X(n) may be viewed as the expected value matrices of the 
closely related processes known as multi-type branching processes in random 
environments [5 ,  6, 71. 

Let X = {x(l), ~ ( ~ 1 ,  ..., x(')} be a set of k x k nonnegative matrices with no 
zero columns and no zero rows such that any product of a fixed number g >, 1 
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of factors which are members of X is positive; and for each x in X, 
min+(x)/max(x) > r > 0, where min+(x) is the smallest of the positive elements 
of x, max(x) is the largest element of x, and r > 0 is independent of x. X is 
called an "ergodic set" [8]. 

Let {X(n)} be an irreducible aperiodic homogeneous Markov chain with 
state space X and with column-stochastic transition probability matrix t = ( t , , ) :  

We call the system (2) and (3), specified by X and t, a discrete multiplicative 
process in Markovian environments. Henceforth we consider only this special 
case of (2). 

There are two natural measures of the long-run rate of growth per unit time 
of the system (2) and (3). One is the average of the growth rates of the individual 
sample paths. The other is the growth rate of the average of the sample paths. 
Denote the first by A, the second by p. We shall describe procedures for calcu- 
lating h and p, and then present new properties of p. 

I t  follows from results in [4] that h is positive and finite and 

log h = lim n-lE[log Yi(n)] 
n+w 

= lim n-I log Y,(n) almost surely, i = I ,..., k. (4) 
n-m 

The right equality in (4) justifies the claim that a discrete multiplicative process 
in Markovian environments has a long-run almost sure growth rate h per unit 
time. This h is the geometric mean of the rates of increase per unit time of a 
sample path. I t  is natural to say that the process is almost surely subcritical if 
h < 1, critical if h = 1, and supercritical if h > 1. 

T o  calculate A, one first calculates the limiting joint distribution F of matrices 
X(n) and normalized vectors Y(n)/(( Y(n)JI , where I( y 1 )  = 2, 1 y i  ) for any real 
vector y. Recall that X i s  defined as the set of possible values of X(n). Define Y 
as the set of all nonnegative k-vectors y such that J l  y J J  = 1. Let Z = X x Y. 
Then for (x, y )  in Z, F(dx, dy) is the long-run probability density, roughly 
speaking, of X(n) = x and Y(n)/JI Y(n)ll = y. F is the solution of the linear 
integral equation in [9, p. 22, Theorem 3(ii)]. A numerical example of the 
calculation of F is given in [lo], where the integral equation is approximated by 
a large system of linear equations which are solved iteratively. 

Given F, one obtains h from 

Of course, the denominator 11 y 1 )  in (5) is redundant since 1 1  y 11 = I if y E Y. 
Harry Kesten (personal communication) pointed out the need for the log under 
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the integrals on the right of (5). (If log is omitted from both sides of (5), as in 
[9, p. 361, the resulting quantity is the arithmetic mean of the rates of increase 
per unit time of a sample path. We reserve A henceforth here for the quantity in 

(4) and (51.1 
Since ( 1  xy 1 )  = c:-, yj - (jth column sum of x), it follows from (5) that log h 

is bounded above and below by 

where c, is the smallest column sum of the matrix x"). As usual n j  is the equi- 
librium probability of x(') (tn = n) and 11  x") (1 = sup{(l x")y 11  I 11  y I( = 1) = the 
largest column sum of x"). By definition of an ergodic set, each has no zero 
columns, so ci > 0. These bounds are the best possible in the sense that there 
exist ergodic sets X such that, for any primitive column-stochastic transition 
probability matrix t, the upper and lower bounds on log A are equal. Specifically, 
let vi , i = 1, ..., s be any s positive k-vectors, and let x") have each column 
equal to v, . Then for every k-vector y such that 11 y I( = 1, ci = 11 xM1y 11  = 

II x"' II = 11 vi I ( .  With any such ergodic set X, log A = c:-, n, log A, . 
Let p(.)  be the spectral radius, or maximum of the moduli of the eigenvalues, 

of a square matrix argument. Then the growth rate p of the average sample path 
satisfies 

log p = lim n-I log E[Y,(n)] 
-4 

(6) 

and is given [10]1 by p = p(t @ X) where t @ X is a nonnegative matrix of 
order (ks) x (ks) containing st blocks of elements, each block of order k x k. 
The (i, j)th block is the matrix t,,x"'. Unfortunately A was also used to denote 
p(t @ X)  in [lo], where A and p were mistakenly taken as  identical. Since log is 
concave upward, p 2 A (where A is given by (4) and (5)) with strict inequality 
in general. This inequality is well known for scalar processes (k = 1) [l 11. 

The results of this paper concern properties of p. Let Ai = p(x")), i = 1, ..., s. 
Given t and Ai , i = 1 ,..., s, p can be arbitrarily large. 

I thank Harry Kenten for pointing out that the laat four lines of page 466 require cor- 
d o n .  They should read: 

(iv) For all i and j ,  with probability 1, h. n-a log[L.(i,j7] < log A, with 
strict inequality in general. 

The almost sure limit in (iv) is proved to exist and denoted ae E by Fwtenberg and 
Kesten ((1960). corollary on p. 462). Our Corollary 1 given an easy explicit mePns of 
calculating an upper bound on that limit. 
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THEOREM 1. L.et t be t k  arreducibb aperiodu trm'tion matrix of a 2-state 
Mmkovch4in,andbtAl>0,X,>Obc~.FmmryB,0<B<co,tbe 
exists a ergodic set X = (~(11, x'e)) such that Ai = p(x(i)), i = 1, 2, and p = 
p(t O X )  > B. 

Roof .  Since p(Ae) = (p(A))% if A 2 0 is primitive, and since t @ X is 
primitive [lo], it suffices to construct X auch that p([t @ 4 % )  > P. Let 

x(l) is well-defined since the irreducibility of t implies that t1,tel > 0. It is 
readily checked that p(xU1) = Ai , i = 1,2. The matrix t @ X is of order 4 x 4. 
The upper left 2 x 2 submatrix of (t @ X)% is tfl(x"))e + tl,t,lx")x(e). The 

element of the second term tlklx(l)x(e) is AIX,tletsl(f + BP/(AIQlsfel)) > Be. 
Hence the ,, element of (t @ is greater than P. Since the spe-ctral radius of a 
nonnegative primitive matrix exceeds every diagmal element, pe > Be. Because 
p > 0, p > B, as desired. 

THEOREM 2. For any discrete multipliccltive process in M m h n  etwkonments 
with irreducible aperiodic t and ergodu set X, p ),  SUP^,^,...,, tifAi . 

Roof .  t @ X is primitive, so its right eigenvector a corresponding to p 
is positive. Let a[i] refer to the ith block of k (positive) elements in a, i.e., for 
i = 1, ..., s, a[i] is a k-vector with elements a[iIr = (a((i - 1) k + l), a((i - 
1) k + 2) ,..., ar(ik)). Then pu = (t @ X) a means, for i = 1 ,..., s, pu[i] = 

~ f - 1  ~ ( ~ ) t ~ , a [ ) ]  = x(i)ti,a[i] + x(i) t,,a[)J. Thus ~ [ i ]  >, xci)tip[i]. Therefore 
p is an upper bound for p(x")tii) = tiiAi . Since this is true for all i = 1, ..., s, 
the theorem is proved. 

Let the stationary probability vector of the Markov chain on X be n, a 
positive column s-vector satisfying tn = n. Then, since lim,,,,P[X(n) = x")] = 
ni , i = 1, ..., s, the long-run average environment corresponds to the average 
matrix 

- 
# 

X* = 1 qx(i).  
1-1 

(7) 

Let A* = p(x*). In general, if not all Ai are equal, then for some t not of rank 1, 
p = p(t @ X) > A* and for other such t, p < A*. 

When there is no sequential dependence among the s environments, t is a 
matrix of rank 1 with each column equal to n. In this case of sequentially inde- 
pendent perturbations, p(t @ X)  = A* [lo] and the replacement of (2) by (1) 
with x(n) = x* gives the long-run growth rate of the average process. According 
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to Harry Kesten (personal communication), in this case Paulson and Uppuluri in 
an unpublished manuscript also calculated moments of Y(n) using the usual 
Kronecker product. 

THEOREM 3. Assume theelements xti) of X are labelled so that A, ... 3 A, . 
Given any positive probability s-vector x and any c > 0, there exists an irreducible 
aperiodic homogeneous Markov chain with state space X and a transition probability 
matrix t satisfying tx = x such that I p - A, I < c. 

Proof. For+ satisfying 0 < + < min(x, ,..., x,), define t(+) by tii = 1 - +/xi,  
i = 1 ,..., S; = +/xi , i = 1 ,..., s - 1 ; tl, = +/xu; and tij = 0 otherwise. 
Then t(+) is the column-stochastic transition probability matrix of an s-state 
irreducible aperiodic homogeneous Markov chain and t(+) x = x. Since 
l iq lo t (+)  = I, where I is an s x s identity matrix, l iqlop(t(+) @ X )  = 
p(I @ X )  by continuity [12]. But I @ X is a block-diagonal matrix with x") 
along the principal diagonal, so p(I @ X) = hl [13]. Thus for any c > 0 , +  can 
be chosen small enough that with p = p(t(+) @ X), I p - A, ) < c. 

THEOREM 4. For any E > 0, there exists an irreducible aperiodic homogeneous 
Markow chain with state space X such that 1 A* - A, / < c and I p - A1 I < t. 

Proof. For m = s, s + 1 ,..., let x(m) be the probability s-vector in which 
the first s - 1 elements equal l/m and the sth element equals 1 - (s - l)/m. 
Then as m increases without limit, x(m) approaches the s-vector with n h  element 
equal to 1 and 0 elsewhere. Thus lim,,, x:-, ( ~ ( m ) ) ~  x"' = xtsl, so again by 
continuity [12], lim,,,,, p(xf-, ( ~ ( m ) ) ~  xti)) = A, . Let x be any vector d m )  such 
that I P(x:E1 ( ~ ( m ) ) ~  xti)) - A, I < t. For this value of x and the given E ,  construct 
the required Markov chain using Theorem 3. 

Theorem 4 obviously also holds when A, is replaced by Ai for any fixed i = 

1, ..., S. 

In iterative computational solutions of multigroup diffusion models for 
nuclear reactors 12, 141, the elements of the vector y(n) specify the number of 
neutrons in each of k groups, commonly the so-called space and lethargy (or 
energy) groups, at time n; and xi,(n + 1) denotes the expected number of 
prompt neutrons in group i at time n + 1 produced by a single neutron in 
group j at time n. Most steady-state calculations for a reactor operating at power 
treat x(n) as independent of time n. Under this assumption, criticality of the 
reactor is determined by p(x(n)). 

However, reactors are physically subject to sequentially dependent random 
perturbations. These perturbations include fluctuations in the distribution of 
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volatile isotopes of bromine and iodine [14, p. 4651, vibrations of control rods 
[14, p. 4741, fluctuations in density associated with bubble formation in a 
boiling water reactor [14, p. 5131, bowing of fuel rods towards the center of a 
reactor and mechanical motions of the plate supporting the fuel rods [14, p. 5151, 
and localized variations in the production of xenon-135 from iodine-135 [14, 
p. 5551. Depending on the scale of variations in space and time, these perturba- 
tions have been modeled by piecewise static processes, sinusoidal oscillations, 
and other approximations. The results presented here suggest the merit of 
addressing directly the patterns of sequentially dependent random fluctuations 
and provide some general techniques for doing so. 

I n  models of age-structured biological populations, the elements of the vector 
y(n) specify the number of individuals in each of k age groups; and qj (n  + 1) 
denotes the expected number of offspring or of survivors in group i at time n + 1 
due to a single individual in group j at time n. I n  applications of this model to 
human populations, Sykes [15] treated x(n) as a random matrix with no sequen- 
tial dependence of x(n + 1) on x(n). This model, with an allowance for random 
immigration also having no sequential dependence, has now been extensively 
studied [16]. Others [17, 18, 191 have described the demographic and biological 
interpretation of a Markovian dependence of x(n + 1) on x(n). A nonlinear 
age-structured model in Markovian environments has been applied in detail to 
mallard populations [ I  81. The empirical usefulness for human populations of the 
model (2) and (3) is under study. 

The functioning of an automaton in a stationary random medium is described 
by a Markov chain in which the vector y(n) specifies the probability distribution 
of the states of the automaton at time n, and the time-homogeneous column- 
stochastic matrix x(n + 1) specifies the state transition probabilities, which 
depend on the action of the automaton at time n and the stochastic response 
of the medium at n + 1 [20, pp. 12-16]. The  probabilities governing the response 
of the medium are stationary in time. I n  an automaton in a composite random 
medium, the probabilities governing the response of the medium are chosen by a 
Markov chain from a finite set of arrays of response probabilities [20, pp. 25-31]. 
This model of an automaton in a composite random medium leads to equations 
which are a special case of (2) and (3) in which each matrix in the set X is 
column-stochastic. I t  is possible to recognize in Eq. 20 of [20, p. 261 a special 
case of the generalized tensor product denoted by @ here and in [lo]. 

A model for ecological or biochemical material cycling systems which is 
identical to an automaton in a composite random medium has been proposed 
[21], but the analysis of the model is seriously wrong. 

The  results proved apply to these processes and to any others for which a 
discrete multiplicative process in Markovian environments can serve as an 
appropriate model. If the process is supercritical in even one environment which 
occurs with positive probability, no matter how small, then sequential depend- 
ence among environments can render the average of sample paths supercritical 
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without altering the time-average of the environments. T h i s  finding suggests 
that  in  collecting data on and analyzing the  dynamics of randomly perturbed 
multiplicative processes, it  is  crucial t o  consider possible sequential dependence 
among environments in addition to their relative frequencies and average values. 

I thank Kenneth M. Case and Gamt t  Birkhoff for helpful commenta. I am particularly 
grateful to Harry Kesten for pointing out errors in earlier vereions and for helpful dis- 
cusions. This work wae supported in part by U.S. National Science Foundation grant 
BMS74- 1 3276. 
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