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THE PROBABILITY OF AN INTERVAL GRAPH, AND WHY IT MATTERS

Joel E. Cohen, J8nos Komlds, and Thomas Mueller’

ABSTRACT. An interval graph is the intersection graph of a family
of intervals of the real line. Interval graphs have been used for inference
in several sciences, including archeology, ecology, genetics, and psychology.
In these applications, the strength of inference depends on the probability
that a random graph is an interval graph. Using a definition of a random
graph due to ErdBs and Rényi [8], we obtain exact probabilities and
asymptotic and Monte Carlo estimates of the probabilities, for varying
numbers of vertices and edges. We also obtain the asymptotic probability
that a random graph is a circular arc graph, which is the intersection
graph of a family of arcs on the circle. Some mathematical questions

arising in scientific inference remain unanswered.

l. INTRODUCTION. Since interval graphs were introduced 21 years ago,
they have been widely used in science and mathematics. In Section 2, we
review the definition and characterizations of interval graphs. 1In Section
3, we describe applications of interval graphs. Some of these applications
lead naturally to the question, what is the probability that a random graph
is an interval graph? In Section 4, we define a random graph. Using exact
analysis, asymptotic theory, and Monte Carlo simulation, we estimate the
probability that a random graph is an interval graph. We also find the
asymptotic probability that a random graph is a circular arc graph.

Finally, in Section 5, we present some problems which remain unsolved.

2. DEFINITION AND CHARACTERIZATIONS. Let G be a graph with v labelled °

vertices a » 3, and E unlabelled, undirected edges €s s vt e_.

1° " E
Each edge may be written as an unordered pair of vertices (ai’,aj)
= (aj, ai), i #3j, and the edge is said to connect the vertices a; and aj.
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loops and multiple edges are excluded. G is an interval graph when there
is a collection Sl, e e ey Sv of open, closed, or mixed intervals of the
real line such that there is an edge between a; and aj, i+ j, if and only
if Si and Sj overlap, that is Si(WSj ¥ #. Thus G is an interval graph if
and only if G is the intersection graph of some family of intervals of the
line.

H is a subgraph of G if the vertices of H are a subset of the
vertices of G and the edges of H are a subset of the edges of G.

A subgraph H of G is an induced subgraph of G if there is an edge
between two vertices of H whenever there is an edge between those two
vertices in G.

Lekkerkerker and Boland L1lu4] characterize interval graphs when v is
finite in two ways.

First, G is an interval graph if and only if it contains no induced

subgraph of the farm pictured in Figure 1. (The graph I in Figure 1

i, (» points: nil)

®

P (ned points; na 2) ¥ (e points; n& 1)

Fig. 1. The 5 graphs (I, II) or classes of graphs (1rr_, IVn, Vn) forbidden
as induced subgraphs according to the characterization of Lekkerkerker and
Boland [1u4].

plays a special role in the asymptotic probability that a random graph is
an interval graph.)

A reader who is interested only in new results could now proceed
directly to Section 4.

The second characterization requires three additional definitions.
A path is an induced subgraph of G defined by a sequence of not necessarily

distinct vertices a such that (ai, ai+l) is an edge in

ILICIRIE
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Gy i=1, .. ., k-1l. An irreducible path is a path in which ai 7 aj
for i ¥ j and no vertex in the path is joined to any vertex in the path other
than those immediately preceding or following it, when such exist. A cycle
is any path of the form ags s+ oo s B 2.

Then a graph G is an interval graph if and only if (a) G contains
no irreducible cycle with more than three vertices; and (b) for any
three distinct vertices of G no two of which are joined by an edge, at
least one of the vertices is connected to every path between the other two
vertices.

Gilmare and Hoffman L10] characterize interval graphs whether v is
finite or infinite. Some further definitions are required. By a cycle,

Gilmore and Hoffman mean any finite sequence of vertices a . ., a

L k
<i < k-

of G such that all of the edges (ai, ai+l)’ 1<1i<k-1and (ak, al) are

in G and such that if one traces out the given sequence of vertices, one

does not travel along the same edge twice in the same direction. This

definition does not exclude visiting a vertex twice or traveling along an

edge once in each direction. If ajp -+ - @ is the given sequence of

vertices in a cycle, the cycle is odd if k is de. A triangular chord of
this cycle is any one of the edges (ai, ai+2), 1<ic<k-2, or (ak-l’ al) or
(ak, a2). If G is any graph, the complementary graph G° has the same
vertices as G but has an edge connecting two vertices if and only if that
edge does not occur in G.

With these definitions, a graph G is an interval graph if and only
if every quadrilateral in G has a diagonal and every odd cycle in G° has
a triangular chord.

Fulkerson and Gross [9] give a matrix-theoretic characterization
of finite interval graphs, This characterization has been the basis of
most machine computation involving interval graphs, including the Monte
Carlo results described below.

Again, some definitions are needed. A clique of a graph G is a
subgraph of G which is complete, that is, in which every pair of vertices
is joined by an edge. If the family of subgraphs of G which are cliques
is partially ordered by set inclusion, the maximal elements of the partial
ordering are called dominant cliques. The dominant clique versus vertex
matrix of G is a matrix with one row for each dominant clique and one column
for each vertex of G. The element in the ith row and jth column is 1 if
the jth vertex is a vertex of the ith dominant clique, and is 0 otherwise.
Since two vertices of G are joined by an edge if and only if they are
both vertices in some dominant clique, the dominant clique versus vertex

matrix specifies G uniquely, and vice versa. A (0,1) matrix has the
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consecutive 1l's property if and only if there is some permutation of the
rows after which the 1's in each column occur consecutively. Thus a matrix
has the consecutive 1l's property if some (possibly null) reordering of the
rows results in no two 1's in a given column being separated by a 0.
Fulkerson and Gross give an explicit algorithm for testing whether a (0,1)
matrix has the consecutive 1l's property.

Then G is an interval graph if and only if the dominant clique versus

vertix matrix of G has the consecutive 1's property.

3. APPLICATIONS. According to Berge [2], Hajbs L11] originated
interval graphs with the following, apparently hypothetical, problem:
Suppose each student at a university visits the library for exactly one
interval during the day, and reports at the end of the day the other
students who were there while he was. If each vertex of the graph G
corresponds to one student, and two vertices are joined by an edge if and
only if the two corresponding students were in the library simultaneously,
then G is an interval graph. The problem is to characterize which graphs
could or could not arise from such a process.

Independently of Hajds, Benzer [1J) posed the formally identical
problem of deciding whether, at the level of genetic fine structure,
mutations in the rlI region of the virus, bacteriophage T4, are linked
together in a linear structure. Recombination experiments can indicate
whether any two mutant regions overlap. If each vertex of a graph G
corresponds to one mutant and two vertices are joined by an eage if and only
if the two corresponding mutant regions overlap, then the genetic fine
structure is compatible with a linear order if and only if G is an interval
graph. For complete overlap data on 19 mutants and incomplete data on a
total of 145 mutants of T4, a linear model is adequate. Electron
microscopic and autoradiographic pictures of the genetic material of T4
confirm its physical linearity.

Benzer L1] investigates the probability that randomly generated data
would be compatible with a linear one-dimensional structure and cobtains an
upper bound. He raises the important question of whether his data could
discriminate a linear one-dimensional structure from a plausible alternative,
e.g. branched, structure, This brilliant paper remains worth reading as
a source of mathematical problems and biological ideas.

Roberts (16] reviews applications of interval graphs to the
psychological theory of preference, archeology, developmental psychology, and
the timing of traffic lights.
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In a preference experiment, a person is asked whether he prefers one
wine, for example, to another or is indifferent between them. If each wine
corresponds to a vertex of a graph G, and two vertices are joined if and only
if the individual is indifferent between the corresponding wines, then G is
an interval graph if and only if there is some linear ordering along which
each wine can be assigned to an interval. See also the related work of
Hubert {13].

In archeology, the problem is to establish a seriation, ar
chronological arder, for graves or strata on the basis of the artifacts found
in them. Each artifact is classified into one of a finite number of styles.
It is supposed that each style of artifact was put in graves during one time
interval. It is also supposed that if artifacts of two different styles
are found together in a grave, then the time intervals during which they were
made overlapped. The graph G with vertices corresponding to styles, and
edges between every pair of styles found in a common grave, is an interval
graph if and only if some assignment of a time interval to each style is
possible.

In the application of interval graphs to develcopmental psychology,
it is assumed that traits arise in all children in a single sequence
with temporal overlapping among traits. Children are assessed for the
simultaneous presence of various traits. If the vertices of a graph G
correspond to the traits and are joined by an edge if the corresponding
traits appear simultaneocusly in some child, then G is an interval graph
if and only if it is possible to assign some time interval to each trait.

In timing traffic lights, the problem is: given a graph G with
vertices corresponding to the streams of traffic at an intersection,
and edges between two vertices if the corresponding streams could safely
be permitted to flow at the same time, G is an interval graph if and only
if each traffic stream is permitted to flow during a single time interval in
one cycle of the traffic lights.

Though many of these substantive applications require special
extensions and refinements of theory, discussed by Roberts [16], the
concept of interval graphs captures the lion's share of the formal structure.

Booth and Lueker [4] and Booth L3] review applications of interval
graphs to the assignment of records to tracks on a computer's disk memory for
efficient infaormation retrieval, Gaussian elimination schemes for sparse
symmetric positive definite matrices (see also Tarjan [17]), and table-driven
parsing. Interval graphs have been used to determine the feasibility of
proposed schedules of tasks in the building of large ships (Alan J. Hoffman,

personal communication, 20 March 1978).
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An application of interval graphs to ecology leads naturally to
the problem of determining the probability that a random graph is an interval
graph (Cohen [5], [6], L71).

In ecology, a food web W is a directed graph that tells which kinds
of organisms nourish which other kinds of organisms in a community of
species. Each labelled vertex in W corresponds to a kind of organism.

Each arrow or directed edge (ai, aj) from vertex i to vertex j specifies
a flow of energy or biomass (fooed, in short) from the ith kind of organism
to the jth kind of organism.

Another description of communities of species represents each kind
of organism by a multidimensional hypervolume in a hypothetical ecological
niche space. In niche space, each dimension corresponds to some environmental
variable or some variable characterizing the food consumed by the organisms.
The multidimensional hypervolume associated with each kind of organism is
called its niche. The projection of ecological niche space onto the
dimensions characterizing the food consumed is called trophic niche space,
and the same projection of a niche is called the trophic niche.

An elementary question about niche space is: what is the minimum
dimensionality of a niche space necessary to represent, or to describe
completely, the overlaps among cbserved niches? This question remains
unanswered for niche space in general. The use of interval graphs gives
a partial answer for trophic niche space.

We define the predators in a food web graph W as the set of all
kinds of organisms which consume some kind of organism in W, or
more formally as the set of vertices a; such that (ai, a.) is an arrow
in W, for some a;. Cannibalism is not excluded. Prey are defined as the
set of all kinds of organisms that are consumed by some kind of
arganism, i.e., all a; such that (ai, a,) is an arrow in W, for some vertex
a - The trophic niche overlap graph G(W) is defined as an undirected
graph in which the vertices are the predators in a food web graph W. Two
predators are joined by an undirected edge when there is some kind of
prey that both predators eat. That is, (aj, ak) = (ak, aj) is an edge
in G(W) if and only if there exists same a; in W such that both (ai, aj)
and (ai, ak) are arrows in W.

If the trophic niche of a kind of organism is a connected region
in trophic niche space, then it is possible for trophic niche overlaps
to be described in a one-dimensional space if and only if the trophic
niche overlap graph G(W) is an interval graph.

An analysis of the niche overlap graphs of 30 real food webs suggests

that a niche space of dimension one suffices to describe the trophic
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niche overlaps implied by real food webs in single habitats.

To determine whether chance alone might explain why observed
trophic niche overlap graphs are interval graphs, it is necessary to give
precise meaning to "chance alone." Seven probabilistic models are described
and compared with data in Cohen [7]. Six of these are models of food web
graphs W; associated with each such model is an induced probability
distribution on G(W). One model assigns a probability distribution directly
to niche overlap graphs G(W). In the next section we shall study the
probability that a random graph G is an interval graph under this model.

We brought the problem of enumerating interval graphs to the attention
of Frank Harary (Harary and Palmer [12]), but to our knowledge there have been
no results other than those we present here.

The probabilities we calculate are relevant not cnly to ecology,
but to any scientific application where interval graphs are used for

inference about the dimensionality of some hypothetical underlying structure.

4, PROBABILITY THAT A RANDOM GRAPH IS AN INTERVAL GRAPH. The model
of a random graph which we shall study is that defined by ErdBs and
Rényi [8]. Their systematic investigation of the properties and structures
of random graphs is a basic source of results and methods in this area.
They define a random graph with v labelled vertices and E edges as one in
which the E edges are chosen randomly (without replacement) among the

(;) possible edges so that all Cv E possible graphs are equiprobable, where
L]

v
)

v,E E

We also use an equivalent construction of a random graph with E
edges on v labelled vertices. If k edges are already chosen, choose one
of the remaining (;) - k edges, each with equal probability l/[(;)—k],
k=101, ..., E-1.

If A is a property which a graph either possesses or dces not

possess, and Av is the number of graphs on v labelled vertices and E

edges which poségss the property, then the probability PV,E(A) that a
randon graph has property A is defined as Av,E/Cv,E'

Let T be the event that a graph is an interval graph and -T be
the event that a graph is not an interval graph. We first obtain the
exact probability Pv,E(T) that a random graph with v labelled vertices
and E edges is an interval graph for a limited range of values of v and E.
Then we develop some asymptotic results. Finally, we attempt to connect

the two kinds of results with Mcnte Carlo simulations.
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THEOREM 1. All graphs with E <4 or E = (;) -k, k= 0or 1, are

interval. For v > 3,

(1) B, ,(T) = 1 - 48/[(v?-vet)(v42)(v+1)]

(ii) P §(T) = 1- 2uo(v-u)(v+(23/5))/[(v —v-1) (v42) (v+1) (v2-v-8)]

(iii) P (T) =1- (v- 4)(720v +11u2uv —l22064v+261600)/[(v+l)(v+2)
‘(v2 -v-#)(v —v-8)(v? -v -10)]

(iv) Pv,(;)-a(T) = (32v—88)/[(v+l)(v -v-4)]

(v) Pv,(;)—2(T) = 4/(v+l)

PROOF. (i) A graph with 4 edges can fail to be interval if and only if
the 4 edges form a quadrilateral. We can think of placing a quadrilateral
on v vertices as first placing a complete subgraph (with 6 edges) on 4
vertices (in (Z) possible ways) and then deleting from each such complete
subgraph 2 edges so that the remaining 4 form a quadrilateral (in 3
possible ways). The total number of possible ways of placing the 4 edges
is ¢, ,. Thus P (-T) = 3(()/c

vyl v,h4 477 "y 4
(ii) Figure 2 gives the 3 ways in which 5 edges may be placed on

from which the given Pv q(T) follows.
’

5 or 6 vertices to form a graph which is not an interval graph. For any

(a) ) ' (c)

Fig. 2. The 3 ways 5 edges may be placed on 5 or 6 vertices to form a graph

which is not an interval graph.

set of 5 labelled vertices, pattern (a) can be chosen in 5 X 4 X 3 = 60

ways. For any set of 6 labelled vertices, pattern (b) can be chosen in

15 X 3 = 45 ways. For any set of 5 labelled vertices, pattern (c) can

be chosen in 12 possible ways. Thus Pv,s(—T) = [60(;) + 12(;) + HS(Z)J/CV'S-
(iii) rigure 3 gives 11 of the 12 ways 6 edges may be placed on 5 or

more vertices to form a graph which is not an interval graph. For each

pattern with n labelled vertices, n = 5, 6, 7, 8, there are (:) choices of

the vertices. Elementary counting shows that the number of ways of

assigning 6 edges to form each pattern is: (a) 60 = § x 4 x 33 (b) 10 = (g);

(c) 60 = 61/(2x6); (d) 360 = 12 X 5 x 6; (e) 360 = (g) X 2 x 3 x by

(f) 180 = 6!/(2%x2); (g, which is identical to graph I in Figure 1) 840 (see
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(a) (b) (c) (d) (e) (£)

P—l
._.h_n.\/.—_o

(g) (h) (1) () (x)

Fig. 3. Eleven of the 12 ways 6 edges may be placed on 5 or more vertices

to form a graph which is not an interval graph.

proof of Theorem 3 below); (h) 252 = l2X(Z); (i) 1260 = GOX(Z); (3) 315
= (Z)X3X3; (k) 830 = (E)XSXS. The twelfth pattern, identical to graph IV,
in Figure 1, may be chosen in 120 = (g)xsg ways. Multiplying each
of these numbers by the appropriate (Z), summing, and dividing by Cv,6 gives

,6(-T)’ and collecting powers of v yields (iii). The final result shows
correctly that PH,G(T) = 1.

(iv) A graph with (;) - 3 edges may be viewed as a complete graph

from which 3 edges have been selected for omission. If these 3 edges
connect a total of 3 vertices, there is exactly one way the 3 edges can be
chosen for each set of 3 vertices; each graph obtained from a complete
graph by omitting such a triangle is an interval graph. If the 3 omitted
edges involve exactly 4 points, the 3 omitted edges must constitute a
pattern of the form (al, a_ ), (al, a, )y (al, a, ) (which can be chosen in
16 = ( ) -~ 4 ways) in order for the result to be an interval graph. Thus
(T) = [16(4) + (S)J/Cv,(2)—3
(v) To cbtain an interval graph by omitting 2 edges from a complete

P
v,(2)-3
graph, the 2 edges must form a pattern like (al, a2), (al, a3). For each
set of 3 labelled vertices there are 3 ways of choosing such a pattern.

Thus P (t) = 3(¥we. v = 4/(v+l). This proves Thecrem 1,
37 v, ()2

v,(;)—2
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Theorem 1 covers all possible numbers E of edges only for graphs with
up to v = 5 vertices.
To carry out the asymptotic analysis, we recall some more concepts
and results from Erd8s and Rényi L8].
f(v) is called a threshold function for the property A if for any
€ > 0 there are positive numbers §, 4, and vy such that for v > e
E < 6f(v) we have Pv,E(A) < g, and for E 2 Af(v) we have Pv,E(A) >1-¢.
If a graph G has v vertices and E edges, the degree d of the
graph is 2E/v, which is the average degree of the vertices of G. G
is said to be balanced if no subgraph H of G has a larger degree than G

itself.

THEOREM A (Erd#s and Rényi [8, p. 23]). Let v 22 and E be positive

integers. Let Bv denote an arbitrary non-empty class of connected balanced

E
»
graphs with v vertices and E edges. The threshold function for the property
that a random graph on n labelled vertices contains at least one subgraph

2-v/E _ 2-2/d
=n

iscmorphic with some element of Bv is n , where d is the degree

of each grarh in BV,E' s

Here we give without proof a slight generalization of Theorem A
which can be obtained by using the inclusion-exclusion formula and
calculations along the lines of [8].

We say that a graph G is strongly balanced if any subgraph of G has
a smaller degree than G.

Let B be an arbitrary finite class of strongly balanced graphs
Gl’ e e ey Gm all having the same degree d. Let the number of (labelled)
vertices of Gi be A and the number of edges be Ei' Let Bi denote the number

of graphs with \ labelled vertices which are isomorphic to Gi.

THEOREM 2. Let Ak denote the event that a random graph contains
exactly k subgraphs each isomorphic to some element of B. Assume that, as the
number v of labelled vertices of a random graph is increased, the number

= 2/4 . .. Here d is

E(v) of edges is also increased so that limv»w E(v)/v2
the degree of each graph in B, while E(v) and v refer to the edges and

vertices of the random graph. Then P (Ak)’ k=0,1, 2, + + «y is,

v,E(v)
asymptotically, a Poisson distribution

k -A
PV,E(V)(Ak) ~ A7e " /k!

where we define p = E(v)/(;) and
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D g o 2 )E;
A= =1 (vi)Bip (1-p) . (1)
In particular,
=A
Pv,E(v)(AO) ~ € :

A is the asymptotic expected number of subgraphs isomorphic to some graph
G, in B. In the alternative model (called P:?B in [8, p. 20]) of a random
graph in which each edge is chosen independently according to a Bernoulli
trial with probability p of success, A is the precise expected number of

subgraphs isomorphic to some graph Gi in B, As v increases, A + A% where
- Ei
& = t
A =1 Bi(2c) /vi » (2)
and we have the precise statement

. k =A%
= *
lim Pv,E( )(Ak) (A%*)"e /k!

. 5/6 .
T . =
. HEOREM 3 Assuge that lim E(v)/v C. -Ihen lim Pv,E(v)(T)
= e, where A* = 32¢ /3. TFurthermore, Pv E(T) ~ © for large v and E
6 ?
as long as E /v5 is not too large, where A = (;)(7!/6)p6(l-p)ls ~ 32E6/(3v5),

_ v
p=E/().

A circular arc graph is the intersection graph of a family of arcs on
a circle. Thus the definition of a circular arc graph is the same as that of
an interval graph except that "intervals of the real line" is replaced by
"arcs of a circle." Tucker [18] has given a matrix characterization of

circular arc graphs.

COROLLARY. Let S be the event that a random graph is a circular arc

graph. Then Theorem 3 is true when T is replaced by S.

To prove Theorem 3 from Theorem 2, we require a lemma which is a
corollary of the first characterization of interval graphs by Lekkerkerker

and Boland L14] given in Section 2, but which is also easy to check directly.

LEMMA. If a graph G contains as an induced subgraph the graph I
pictured in Figure 1, then G is not an interval graph. If G is a forest
(disjoint union of trees) and does not contain I as a subgraph, then G is an

interval graph,
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PROOF. The first part is obvious since I is not an interval graph.
For the second part, consider a tree not containing I. Then it must be of

the form of a caterpillar exemplified by Figure 4. To see this, simply lay

Fig. 4. An example of a caterpillar, which is a tree not containing a

forbidden subgraph of form I.

down the tree along its longest path. Now it is easy to construct a set of
intervals with intersection graph corresponding to any caterpillar. The
construction for the example in Figure & is given in Figure 5. This proves

the lemma.

Fig. 5. A set of intervals of the real line for which the intersection

graph is the caterpillar in Fig. 4.

PROOF OF THEOREM 3., Let Tl be the event that a graph does not contain
a subgraph of the form of I in Figure 1. Let T2 be the event that a graph
is a forest which does not contain a subgraph of the form I. As before let

T denote the event that a graph is an interval graph. By the lemma, T2

implies T which in turn implies T We shall calculate the asymptotic

1
probability of Tl and show that asymptotically the probability of T2 is the
same. It follows that the asymptotic prebability of T equals the asymptotic

probability of Tl'
Apply Theorem 2 to the one-element family of graphs B = {Gl} where

Gl is the graph I with 7 vertices, 6 edges and d = 12/7 pictured in

Figure 1. Tl is identical to the event that the graph contains no element

of the family B. Then Bl’
on 7 labelled vertices, is just 7'(2)'3! = 7!/6. Thus Pv

the number of possible ways of placing Gl =1
-A

T.) ~
Ew) T~ e

where all the required constants in Eq. (1) are now known.
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To show that llm v,E(v )(T ) - v,E(v)

the event Tl - T2 is contalned in the event c that the graph is not a

(T ) = 0, we cbserve that

forest, i.e., in the event that the graph contains a cycle. The threshold

function for the event that a randam graph contains a cycle with k 2 3
edges is v [8, p. 23]. Since we let lim lfl/vs/6
5/6 Ve

lim v ' /v = 0, it is immediate that lim PV,E(V)

= ¢ and since
(C) = 0. This proves

Theorem 3.

PROOF OF COROLLARY. The lemma used in proving Theorem 3 applies to

circular arc graphs as well as to interval graphs.

In Theorem 3, while A is the exact expected number of subgraphs Gl in
random graph under the model F**E in which edges are drawn independently,

e is only an approximation to P, (T) even when edges are drawn
’

independently.

There is an apparent discrepancy between the results of Theorems 1 and

3. According to Theorem 3, Pv E(T) decreases monotonically as E increases,
»
for any fixed v. But Figure 6 illustrates how Pv E(T) varies over the whole
?

100 . 100 q
(a) e ()
SO 90
z 80 2.30
[-] =Y
8 70 870
© [C)
$ 60 $ 60
& 3
x 50 E 50
© 40 a0
£ 30 £ 30
= -]
Z 20 Z 20
10 10
°) " »
o3 4 5 %0 5 0 15 20E/y
0 025 05 075 L0 0 02505 07510 E/(¥)

Fig. 6. The number of pseudo-random graphs which are interval graphs, in
Monte Carlo samples of 100 for each value of E and v, as a function of E/v
(upper abscissa) or as a function of E/(;) (lower abscissa), where E is the
number of edges and v is the number of vertices; (a) v = 10, (b) v = 40,
These simulations used a different pseudo-random number generator from those
in Table 1 and the numerical results differ slightly. (From Cohen [7].)
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range of E, for v = 10 (on the left) and v = 40 (on the right), and the exact
results in Theorem 1 show that as E approaches (;), Pv E(T) must rise to

»
approach 1. The discrepancy arises because the asymptotic analysis is valid

5/6

only for values not much larger than v ', which vanishes relative to (;) for

large v. The methods developed here could usefully be applied to finding an
5/6 v

v ,E <<ECX< (2) - g(v)

where g(v) + ® as v + @, It is clear that Pv E(T) vanishes very rapidly in
L]

asymptotic estimate of P, _.(T) for edges in the range v
this range.

To determine how large v must be for the asymptotic analysis to provide a
good approximation to P, (T), we estimate P (T) by Theorem 3 and by Monte
Carlo simulation, for v ; 10, 40, 100, and 200 and for each v, for values of
E= [kv5/6], where [ ] is the integer part and k = 1/3, 1/2, 2/3, 5/6, 1, and
4/3 (Table 1).

Where E < 5, it makes little sense to use the asymptotic estimate of

E(T) since this estimate is based on the event Tl that a graph does not
contain the graph Gl with 6 edges. Tortunately, exact results are available
from Theorem 1 for E < 6. When E < 6, Table 1 includes both the exact
PV,E(T) and asymptotic estimates for comparison with the Monte Carlo results.

To obtain the Monte Carlo estimates, the algorithm of Fulkerson and
Gross [9] was programmed in APL. (In future calculations where it is
necessary to determine whether each of many graphs is an interval graph,
this algorithm should be replaced by the much faster algorithm described
by Booth and Lueker [4], In their algorithm the number of steps is linear
in v + E.) For each combination of v and E, 100 pseudo-random graphs were
generated. Unfortunately, the algorithm used to generate pseudo-random
numbers in the version of APL which we used is unknown. We corrected the
shortcomings of the pseudo-random number generator described in Cohen ([7],
Chapter 5) by changing the software. The Monte Carlo estimates of Pv,E(T)
given in Table 1 are the proportions of these generated graphs which were
interval graphs for each v and E.

If p is any one of these estimated proportions, then an estimate of
the standard deviation of p is 0.1[p(1-p)]l/2, which never exceeds 0.05. It
is reassuring that the exact probabilities PV,E(T)’ where known, are never
more than 2.5 standard deviations from the corresponding Monte Carlo
estimates (M). With v = 40 vertices and E = 18 edges the standard deviation
of the estimate p = 0.25 of PuO,lB(T) is approximately 0.0433. The
asymptotic estimate of 0,189 differs from the Monte Carlo estimate by l.4
standard deviations, which suggests that the asymptotic theory is useful for
a graph with as few as 40 vertices and up to 18 edges; for 21 edges, the

asymptotic theory appears to underestimate Pv E(T) relative to the Monte
’



Table 1. Estimates of the probability P, E(T) that a random graph with v labelled vertices and E edges is an

interval graph, according to asymptotic theory (A) and 100 Monte- Carlo simulations (M)

v = 10 40 100 200

v3/8 6.813 21.630 46,1416 82.704

Edges E P, E(T) A M E A M E A M E A M
?

1l 5/6

[sv ] 2 1 .9996# 1.00 7 .993 .99 15 .990 .98 27 .988 .94
[%VS/S] 3 1 . 997# 1.00 10 . oLy .88 23 .881 .83 41 .867 .71
[§v5/6] U .996 .988# .99 14 671 .73 30 .5u44 .52 55 .440 .31
[gVS/BJ 5 .977 .968# .91 18 .189 .25 38 .086 .17 68 . 055 .08
[vs/B] 6 .927 .936 .86 21 .019 .10 46 .001 .02 82 .000 0
[%VS/BJ 9 * .797 .11 28 . 000 0 61 .000 0 110 . 000 *
v = number of vertices
E = number of edges
P, E(T) = exact probability of an interval graph

?
A = asymptotic probability of an interval graph
15

= exp(~(71/6)(5)p°(1-p)™”), where p = E/(})
M = Monte Carlo probability of an interval graph based on 100 trials for each case
% = not computed

6

[kvs/ ] = integer part of ka/G

# = in these cases, P(Tl) = 1 when edges are sampled without replacement

411
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Carlo estimates, For v = 100 vertices, all the asymptotic estimates are
within 2.5 standard deviations of the corresponding Monte Carlo estimates;
for v = 200, there are some larger deviations. Overall, we conclude that the
asymptotic theory is useful for graphs with 100 or more vertices, as long as

5/6

the number of edges does not greatly exceed v Calculations not shown
here of the asymptotic probability using exp(-(32/3)(E6/v5)) approximate the
Monte Carlo estimates within 3.2 standard deviations in all cases when
v = 200, though not so well with smaller values of v. Thus A¥ is useful for
v 2 200,

The asymptotic estimates in Theorem 3 could probably be improved by
taking into account cycles as forbidden induced subgraphs. However, the
results would be more complicated and would no longer apply to circular arc
graphs, which may have cycles as induced subgraphs.

Benzer [1] observed E = 61 (which is one half the number of
off-diagonal 0's in his Figure 5) with v = 19, Using A in Theorem 3, the

CFZZqu*Zésymptotic estimate of P (T) is J£,$£' From the rate of decrease of the
(T) in Table 1 as E increases beyond 105/6,

lg) = 171, it appears likely that the

19,61
Monte Carlo estimates of PlO,E

and because E = 61 is much less than (

chance that Benzer aobserved an interval graph by chance alone is nearly 0.

5. UNSOLVED PROBLEMS. There remain unsolved mathematical problems
related to random interval graphs. Solutions would be useful in scientific
inference.

First, the problem of calculating PV,E(T) is really a special case
of calculating the prcobability distribution of the minimum dimension of
Euclidean space necessary to represent a random graph as the intersection
graph of a family of sets of some given form. For example, the minimum
number of dimensions necessary to represent a graph G by the intersections
of boxes, or rectangular parallelipipeds with edges parallel to the axes,
is called the boxicity of G, and never exceeds [v/2] (Roberts [15]). If
[B = k] is the event that the boxicity of a given graph is k, [B = 0] is
the event that the graph is a complete graph, since all vertices can be
represented by coincident points, and T = [B = 0 ar B = 1]. It would be
useful to know the probability PV,E[B = k] that a random graph is of
boxicity k, k = 0, 1, . . . , [v/2]. Tor other families of sets, such
as convex sets, the problem may be easier; every graph is the intersection
graph of convex sets in 3 or fewer dimensions (Wegner [19]).

Second, there is still no theory for the probability of an interval
graph when the probability distribution is defined initially on the directed
graphs corresponding to food webs in ecology, rather than on the undirected

niche overlap graphs as in the theory of Erd¥s and Rényi [8]. For example,
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in ecology it appears (Cohen [7]) that a useful model of a directed graph

W is as follows: given a set of v labelled vertices (corresponding to v
predators) which may have positive in-degree, and a not necessarily
disjoint set of u labelled vertices (corresponding to u prey) which may
have positive out-degree, an arrow from a prey vertex to a predator vertex
in W actually occurs with probability p, and fails to occur with probability
1-p, independently and with identical probability for each pair of prey and
predator vertices. From each such random directed graph W, the random
undirected graph G(W) on the v (predator) vertices joins two vertices

with an undirected edge if and only if there is a prey vertex in W from
which arrows go to both predator vertices. The problem is to find the
probability that G(W) is an interval graph, or better, the probability
distribution of the boxicity of G.
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