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INTRODUCTION 

The f i r s t  evidence t h a t  DNA r e p l i c a t i o n  proceeds i n  an 
organized, nonrandom manner a t  t h e  l e v e l  of the  chromosome was 
obtained by Taylor (1960) using autoradiographic techniques t o  
examine labeled metaphase chromosomes. H i s  work, and t h a t  of Hsu 
(19641, demonstrated t h a t  DNA r e p l i c a t i o n  i s  i n i t i a t e d  a t  mul t ip le  
s i t e s  along t h e  chromosome and t h a t  each chromosome shows a - 
reproducible,  c h a r a c t e r i s t i c  p a t t e r n  of r e p l i c a t i o n  i n  d i f f e r e n t  
s tages  of S phase. I t  has a l s o  been shown t h a t  hetero-chromatin 
tends t o  be l a t e  r e p l i c a t i n g  ( see  Lima-de-Faria and Jaworska, 1968) . 
Even b e t t e r  r e so lu t ion  i s  now poss ib le  with t h e  f luoresence l abe l ing  
technique developed by L a t t  (1973) . Both L a t t  (1975) and Stubble- 
f i e l d  (1975) have suggested t h a t  chromosome bands which have been 
v isual ized  as  s t r u c t u r a l  u n i t s  by c l a s s i c a l  s t a i n i n g  procedures a r e  
ac tua l ly  u n i t s  of r e p l i c a t i o n  a s  observed by f luoresence label ing .  

I t  has no t  y e t  been poss ib le  t o  c o r r e l a t e  t h i s  organized 
p a t t e r n  of r ep l i ca t ion  with r e p l i c a t i o n  a t  t h e  l e v e l  of the  double- 
s tranded DNA i t s e l f .  The technique of DNA f i b e r  autoradiography, 
o r ig ina ted  by Cairns (1963) and f u r t h e r  developed by Huberman and 
Riggs (1968), has been used t o  determine t h e  r a t e  of fork prog- 
ress ion ,  t he  d i s t ance  between i n i t i a t i o n  s i t e s ,  and t h e  d i r e c t i o n  
of repl ica t ion .  Hand and Tamm (1974) have suggested t h a t  t he re  i s  
synchrony i n  time of i n i t i a t i o n  of  c l u s t e r s  of r e p l i c a t i o n  u n i t s ,  
based on t h e  occurrence of predominantly prepulse o r  pos tpulse  
f igu res  i n  a microscopic f i e l d .  Hand (1975) has obtained add i t iona l  
evidence f o r  such synchrony from s t u d i e s  of ind iv idua l  f i b e r s .  The 
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autoradiographic technique has the advantages t h a t  observations can 
be made on individual  f i b e r s  and t h a t  many rep l i ca t ing  f i b e r s  can be 
readi ly  examined. The disadvantages a r e  t h a t  only a small f r ac t ion  
of the DNA i s  spread well enough t o  be analyzed (Edenberg and Huber- 
man, 1975),  t h a t  the re  i s  sub jec t iv i ty  i n  v i sua l  observations,  and 
t h a t  the re  can be wide va r i a t ion  i n  measurement of such parameters 
as i n t e r i n i t i a t i o n  s i t e  d is tance .  

To examine the  organization of r ep l i ca t ion  un i t s  within the  
genome and t o  determine whether i n i t i a t i o n  events occur a t  random 
along the  DNA f i b e r ,  it is  necessary t o  evaluate the  processes 
giving r i s e  t o  the  autoradiograms and the  rep l i ca t ing  s t rands  them- 
se lves  i n  a more a n a l y t i c a l  manner than has previously been used. 
I t  is the  aim of this work t o  provide some new ins igh t s  i n t o  the  
organization of  the i n i t i a t i o n  process. 

MATERIALS AND MBTHODS 

Cells  

Monolayer cu l tu res  of uncloned L929 c e l l s  ( a  continuous l i n e  
of mouse f ib rob las t s )  were grown i n  Eagle ' s  medium supplemented with 
5% f e t a l  ca l f  serum. Before each experiment, the L929 c e l l s  were 
'passaged once i n  75 cn? Falcon f l a s k s  under conditions of 
exponential growth, then passaged under s imi la r  conditions i n t o  28 
cni! p l a s t i c  dishes a t  approximately 1 x l o 5  c e l l s  per p l a t e  and 
allowed t o  double twice before use. Two dishes were used per  
experiment. 

Radioisotopes and Chemicals 

( 3 ~ )  thymidine (50-52 Ci/rnmole) was obtained from New England 
Nuclear, Boston, Mass., and thymidine from Sigma Chemical Company, 
S t .  Louis, Mo. 5-Fluoro-2'-deoxyuridine (FUdR) was a g i f t  from 
Hoffman-La Roche, Inc . ,  Nutley, N . J .  

Cel l  Labeling and DNA Spreading Procedures 

The medium i n  cu l tu re  d ishes  was replaced with f resh  warm 
medium containing 2 x M FUdR t o  deplete the thymidine pool and 

0 
the c e l l s  were incubated a t  37 C f o r  30-40 minutes. They were 

0 
labeled f o r  10 minutes a t  37 C with high spec i f i c  a c t i v i t y  ( 3 ~ ) -  
thymidine (250 u C i / m l ,  50-52 C i / m o l ,  5 x ~ o - ~ P I )  i n  f r esh  medium 
containing 2 x M FUdF. ( the  "hot" p u l s e ) .  Unlabeled thymidine 
was then added (as  a 2 0 0  pM solut ion)  so a s  t o  give a 10-fold 
reduction i n  s p e c i f i c  a c t i v i t y  and incubation continued f o r  3 hours 
a t  37O~ ( the  "warm" pu l se ) .  The c e l l s  were washed 2-4 times i n  ice-  
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cold phosphate buffered sa l ine  d e f i c i e n t  i n  ca2+ and M ~ ~ +  (PBS 
d e f . ) ,  removed from the  p l a t e s  with t ryps in ,  and washed and re- 
suspended i n  PBS def.  

One drop containing 1000-3000 c e l l s  was placed on a subbed 
s l i d e  adjacent t o  a drop of a solut ion of 1% SDS and 0.01 M EDTA 
i n  PBS def. The drops were mixed by touching both simultaneously 
with a g lass  rod, and were then spread down the  s l i d e .  By t h i s  
procedure the  c e l l s  were lysed and the  DNA spread ou t  a s  long 
strands.  In some experiments the  labeled c e l l s  were d i l u t e d  with 
unlabeled c e l l s  before spreading t o  reduce the  amount of labeled 
DNA per s l ide .  The s l i d e s  were allowed t o  dry,  followed by 
p rec ip i t a t ion  i n  5% TCA and dehydration i n  ethanol.  S l ides  were 
dipped i n  melted Kodak NTB2 emulsion using the  red sa fe ty  l i g h t ,  
dr ied  f o r  2 hours i n  t o t a l  darkness and s tored f o r  approximately 

0 
5 months a t  -20 C. They were developed i n  Kodak Dl9 developer a t  

0 
17 C f o r  4 minutes. 

Analysis of Autoradiograms 

Autoradiograms of ( 3 ~ )  thymidine-labeled DNA were examined by 
l i g p t  microscopy a t  magnifications of 260 x and 640 x. A l l  
measurements were made a t  640 x with an ocular micrometer. 
S t a t i s t i c a l  analysis  of the  gra in  density was performed on DNA 
strands labeled l i g h t l y  by ( 3 ~ )  thymidine of low s p e c i f i c  a c t i v i t y  
i n  order t o  d is t inguish  breaks i n  s t r ands  from apparent gaps 
representing s t r e t c h e s  with a low probabi l i ty  of gra in  formation, 
The grains over a t en  divis ion span of the  ocular  micrometer (17.1 
pm) on 100 randomly chosen pieces  of l i g h t l y  labeled DNA were 
counted. The mean number of gra ins  per  d ivis ion (which var ied  from 
0.822 t o  1.07 i n  d i f f e r e n t  experiments) was used t o  determine the  
probabi l i ty  of f inding a given number of s t r a i n s  i n  a given i n t e r v a l  
according t o  the  Poisson d i s t r i b u t i o n  fornula:  pn = mne'"/n:, where 
m equals the  mean number of gra ins  i n  t h e  i n t e r v a l ,  and n equals the  
number of gra ins  ac tua l ly  found. I f  t h e  p robab i l i ty  of f inding no 
gra ins  on a s t r e t c h  of l i g h t l y  labeled DNA was l e s s  than 0.01, then 
the  i n t e r v a l  was considered a break. Typically, unlabeled s t r e tches  
g rea te r  than 7 t o  11 pm (with t h e  range indicat ing va r i a t ion  between 
experiments) were considered s i g n i f i c a n t  breaks i n  t h e  warn pulse- 
labeled DNA. 

The end of a warm-pulse labeled s t r and  i s  considered t o  be 
"f ree"  i f  it does not  terminate i n  a mass of nuclear material .  Thus 
s t rands  with two f r e e  ends have a na tu ra l ly  defined t o t a l  length 
which r e s u l t s  from breaks o r  termination of l abe l  a t  each end. 

The protocol used gave r i s e  t o  two types of f igures :  (1) Pre- 
pulse f igures ,  i n  which i n i t i a t i o n  occurred before t h e  hot  pulse.  
These f igures  showed a cen t ra l  unlabeled s t r e t c h  bordered by high 



178 B. R.  JASNY ET AL. 

grain density regions (shown a s  rectangles in  t h e  following 
diagram), followed by l i g h t l y  labeled regions (shown as  l i n e s ) .  

4 o--- 
Prepulse i n i t i a t i o n  i s  assumed t o  have occurred a t  the  midpoint 
of t h e  cen t ra l  unlabeled s t r e tch ,  followed by b id i rec t iona l  
r ep l i ca t ion .  Equi l ibra t ion of the  thymidine pool required time, so  
t h a t  up t o  2.6 pm of l i g h t l y  labeled DNA on e i t h e r  border of the  gap 
region was allowed; (2) Postpulse f igures ,  i n  which i n i t i a t i o n  
occurred a f t e r  the  s t a r t  of the  pulse.  These showed a cen t ra l  
heavily labeled region, bounded on both s i d e s  by l i g h t l y  labeled 
DNA. Postpulse i n i t i a t i o n  i s  assumed t o  have occurred a t  the  mid- 
point  of t h e  cen t ra l  heavily labeled region. 

Determinations of the  occurrence of hot  pulse-labeled regions 
were based on c l e a r  v i s i b i l i t y  of high gra in  density a t  both the  
lower and higher magnifications. In te rva l s  of 4 0.87 pm (4 0.5 
divis ion a t  t h e  high magnification) appearing e i t h e r  t o t a l l y  c l e a r  
o r  l i g h t l y  labeled within a hot  region were not considered 
s i g n i f i c a n t .  

Huberman and Riggs (1968) used the  term rep l i ca t ion  sect ion t o  
r e f e r  t o  the  s t r e t c h  of DNA r ep l i ca ted  by a s ing le  growing point .  
They proposed t h e  term rep l i ca t ion  u n i t  t o  mean the  bas ic  u n i t  of 
control  of the  i n i t i a t i o n  of r ep l i ca t ion  - presumably an adjacent  
p a i r  of diverging rep l i ca t ion  sect ions .  

Measurements of  the  d is tances  between adjacent i n i t i a t i o n  s i t e s  
provide est imates of the  s i z e  of r ep l i ca t ion  un i t s .  I t  should be 
noted, however, t h a t  the  s t r e t c h  of DNA between two i n i t i a t i o n  s i t e s  
i s  not  equivalent  t o  the  rep l i ca t ion  u n i t  as defined by Huberman 
and Riggs (1968), but  r a t h e r  comprises the  neighboring halves of two 
adjacent r ep l i ca t ion  un i t s .  The i n t e r i n i t i a t i o n  dis tance  was 1 

measured a s  a center  t o  center  d is tance  f o r  a l l  in te rna l  f igures .  
A prepulse i n i t i a t i o n  f igure  (see  diagram) was considered i n t e r n a l  
regardless  of t h e  presence o r  absence of a warm pulse-labeled 
s t r e t c h  of DNA a t  the  strand.terminus.  A postpulse i n i t i a t i o n  
f igure  (see  diagram) was considered i n t e r n a l  i f  there  was a s t r e t c h  
of ) 3.42 pm of warm pulse-labeled DNA d i s t a l  t o  t h e  hot  pulse- 
labeled region. 

RESULTS 

Rate of Fork Progression and Temporal Synchrony 

The r a t e  of fork progression was ca lcula ted  by measuring t h e  
lengths of the  i n t e r n a l  hot  pulse-labeled halves of prepulse f igures  
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(i. e . ,  not a t  the  ends of s t rands)  and dividing such lengths by the 
duration of the  hot  pulse,  i . e . ,  10 minutes. The frequency 
d i s t r i b u t i o n  of r a t e  measurements i s  shown in  Fig. 1. The mean r a t e  
of fork progression i n  L c e l l s  is 0.55 pm/minute, which i s  within 
the  range of previous es t imates  from 0.4 t o  1.2 pm/minute (Hand and 
Tamm, 1972). 

To evaluate the  temporal synchrony with which i n i t i a t i o n  events 
observed with our techniques a r e  taking place,  s t rands  containing 
prepulse f igures  were examined, s ince  prepulse f igures  p o t e n t i a l l y  
span a longer period of , repl ica t ion than postpulse f igures .  Very 
large  prepulse f igures  may not be recognized as p a r t  of one s t rand 
because the  unlabeled s t r e t c h  may have been in te rp re ted  a s  a break 
ra the r  than a prepulse gap. Only s t r ands  with lengths g rea te r  than 
o r  equal t o  40 pm were used i n  t h i s  ana lys i s  of synchrony. For each 
prepulse f igure  on t h e  s t r and ,  the  mean dis tance  from the  assumed 
i n i t i a t i o n  point  a t  the  center  of t h e  f igure  t o  t h e  ends of the  
hot-labeled segments was ca lcula ted  ( i . e . ,  t h e  average of the  l e f t  
and r i g h t  halves of each prepulse f i g u r e ) .  Then, f o r  each poss ible  
p a i r  of prepulse f igures  on a s ing le  s t rand,  t h e  smaller  mean 
distance was subtracted from the  g rea te r  mean dis tance  t o  give a 
dif ference i n  mean dis tance .  Fig. 2 shows t h e  d i s t r i b u t i o n  of the 
d{ .'." ~ j e r e n c e s  between these mean lengths of DNA r ep l i ca ted  from t h e  
time of i n i t i a t i o n  t o  the  end of the  10-minute hot  pulse f o r  a l l  of 
the  strands.  Based on t h e  mean rep l i ca t ion  r a t e  of 0.55 pm/minute, 
it i s  concluded t h a t  most of the observed i n i t i a t i o n s  occurred 
within 10 minutes of each other .  

The preceding r e s u l t s  def ine  the  "window" i n  time through which 
observations are made. They ind ica te  t h a t  there  i s  considerable 

Rate of fork progression, pm/min 
Figure. I .  Frequency d i s t r ibu t ion  oj' ra tes  of  j'ork progression. Mean 
dis tr ibut ion,  based on the nean of  three e x p e r i w n t s  (357 strands 
t o t a l ) ,  i s  shown. Strand; emmined d id  nat qecessarily have two 
free ends. 
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Figure 2.  Frequency dis tr ibut ion of dijTj"erences i n  time oj' i n i t i a -  
t i on  on individual strands. The mean distance from the assumed 
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S p a t i a l  Organization 

I n  o rde r  t o  determine whether i n i t i a t i o n  events  occur a t  
l oca t ions  d i s t r i b u t e d  a t  random o r  according t o  some demonstrable 
organiza t ion ,  we developed q u a n t i t a t i v e l y  p r e c i s e  p red ic t ions ,  based 
on a number o f  i d e a l i z e d  assumptions, concerning what would be 
expected assuming randomness. F i r s t ,  t he  DNA f i b e r  was t r e a t e d  
a s  i f  t h e  l eng th  of  an unbroken DNA f i b e r  g r e a t l y  exceeded t h e  
average length of  a  s t r a n d  wi th  2 f r e e  ends, which appears t o  be 
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t rue .  Second, within every rep l i ca t ion  u n i t ,  i n i t i a t i o n  was 
assumed t o  occur a t  a  s ing le  point  each located by a  s ing le  
prepulse o r  postpulse f igure .  Here, t h e  length of ho t  pulse- 
labeled regions of prepulse o r  postpulse f igures  is i r r e levan t .  
The model which we have compared with our da ta  i s  t h a t  there  a r e  
two independent and s t r i c t l y  random (Poisson) processes occurring 
simultaneously on a  DNA f i b e r .  One process d i s t r i b u t e s  nicks a t  
random, with a  negative exponential d i s t r i b u t i o n  of d is tances  
between two adjacent nicks and with an average nurxber A of nicks 
per un i t  length of DNA f i b e r .  The nicks considered here a re  only 
those nicks which w i l l  generate s t rands  with 2 f r e e  ends. Thus, 
we a re  t e s t i n g  t h e  assumption t h a t  s t r ands  with prepulse and post- 
pulse f igures  a r e  broken from the  DNA f i b e r  i n  a  random manner. 
A second hypothetical  process d i s t r i b u t e s  i n i t i a t i o n  events,  seen 
a s  prepulse o r  postpulse f igures ,  a t  random, again with a  negative 
exponential d i s t r ibu t ion  of d is tances  between adjacent events and 
an average number v of events per un i t  length of DNA f i b e r .  

For every s t r and  with 2 f r e e  ends on two s l i d e s  per 
experiment, we recorded the t o t a l  length of t h e  s t r and ,  the  number 
of repl ica t ion f igures  per s t r a n d ,  and the  lengths of the  external  
segments. An external  segment i s  defined as the  region of warm- 
labeled DNA between the  end of the  s t r and  and t h e  neares t  hot- 
labeled region. Only s t r ands  containing one o r  more hot  pulse- 
labeled regions were se lec ted  f o r  observations,  and a l l  such s t rands  
on a  s l i d e  were recorded. 

Nonrandom Breakage of Strands 

From the random model, it may be calcula ted  t h a t  the  
probabi l i ty  density function of the  length y  of an external  
segment; i s :  

A = average number of nicks per un i t  
length 

v = average number of i n i t i a t i o n  events 
per un i t  length 

This i s  a  negative exponential d i s t r ibu t ion .  I f  the  external  
segments y  a r e  ranked i n  order of increas ing s i z e  and p l o t t e d  a s  
the  cumulative frequency aga ins t  external  segment s i z e ,  the  
dot ted  l i n e  i n  Fig. 3 i s  generated. A t h e o r e t i c a l  curve ( s o l i d  
l i n e )  can be constructed by taking the  i n t e g r a l  of the  probabi l i ty  
density function in  the  limits from zero t o  y. The da ta  deviate 
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Cumulative external segment frequency 

Figure 3. Frequency dis tr ibut ion o j external segment lengths. ------ 
experimental data, theoretical curve derived as described 
i n  the t ex t .  A l l  strands had 2 j'ree ends. The data represent 3476 
external segments pooled from three experiments. 

great ly  from the  model. Far too many s h o r t  external  segments a r e  
observed, and the re  appear t o  be longer segments than would have 
been predicted by a random model of s t rand breakage. 

R simple explanation f o r  the  increased probabi l i ty  of breakage 
of a s t rand adjacent t o  a hot  pulse-labeled region would be t h a t  the 
high spec i f i c  a c t i v i t y  l abe l  causes excess breaks. Although t h i s  
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may be a contr1,buting f a c t o r ,  we do not  b e l i e v e  t h a t  it adequately 
expla ins  t he  nonrandom breakage. I f  breaks occurred only adjacent  
t o  h o t  regions,  then the  ex te rna l  segment lengths  should have a 
d i s t r i b u t i o n  s i m i l a r  t o  t h a t  o f  the  i n t e r - i n i t i a t i o n  d i s t ances  ( t h e  
d i s t ances  between ad jacen t  i n i t i a t i o n  s i t e s ) .  I f  nonrandom breakage 
were occurr ing  between adjacent  h o t  pu l se  f i g u r e s  a t  s i n g l e  s t randed 
regions generated during r e p l i c a t i o n ,  then t h e  e x t e r n a l  segment 
d i s t r i b u t i o n  should show a h igher  frequency o f  s h o r t e r  lengths  than 
the  i n t e r - i n i t i a t i o n  d i s t ance  d i s t r i b u t i o n .  Our evidence does n o t  
support  e i t h e r  o f  t he  above p o s s i b i l i t i e s .  I n  F ig .  4 a r e  p l o t t e d  
only ex te rna l  segments o f  lengths  g r e a t e r  than o r  equal  t o  3.42 
pm which i s  t h e  l i m i t  of r e s o l u t i o n  f o r  t he  i n t e r - i n i t i a t i o n  
d is tances .  A l l  such e x t e r n a l  segments were taken from every s t r a n d  
w i t h  2  f r e e  ends observed on t h e  s l i d e s .  The mean ex te rna l  segment 
length was 44.98 pm, which was 35% higher than t h e  mean i n t e r -  
i n i t i a t i o n  d is tance  o f  33.26 pm. I n  t h i s  comparison, each exper i -  
ment was weighted according t o  the  sample s i z e .  The d i f f e rence  was 
s i g n i f i c a n t  a t  t h e  0.005 p r o b a b i l i t y  l e v e l  by t t e s t .  

To inves t iga t e  breakage of t he  DNA f i b e r  i n t o  s t r ands  f u r t h e r ,  
we t e s t e d  whether o r  no t  breakage a t  one end of  t he  s t r a n d  is 
independent of  breakage a t  t he  o the r  end. This  was done by exam- 
i n i n g  the  number o f  s t r a n d s  having 0 ,  1, o i  both ex te rna l  segments 
longer than some given length  y. I f  F i s  t h e  f r a c t i o n  o f  a l l  
ex t e rna l  segments which a r e  longer t han  Y ,  then ,  assuming t h a t  t h e  
two ex te rna l  segments a r e  independent, t he  propor t ion  o f  a l l  
s t r ands  with both ex te rna l  segments longer than y should be F~ , t he  
proport ion with exac t ly  one e x t e r n a l  segment longer than y should 
be  2F(1 - F), and t h e  propor t ion  wi th  zero ex te rna l  segments longer 
than y should be  (1 - F)'. This model i s  formally i d e n t i c a l  t o  
t he  Hardy-Weinberg equi l ibr ium of populat ion gene t i c s .  There was no 
s i g n i f i c a n t  devia t ion  from t h e  model f o r  any va lue  of y i n  any of 
t he  thr 'ee experiments a s  determined by x2 a n a l y s i s  (da t a  no t  shown). 
Thus, it can be concluded t h a t  t h e r e  i s  no i n t e r a c t i o n  between the  
length of t he  ex te rna l  segment a t  one end of t he  s t r and ,  and t h e  
length of ex t e rna l  segment a t  t he  o the r  end. Poss ib le  impl ica t ions  
of this r e s u l t  a r e  d iscussed  below. 

I n t e r - I n i t i a t i o n  Distance Di s t r ibu t ion  

The d i s t ances  between i n i t i a t i o n  s i t e s  r evea l  one a spec t  of 
t he  organizat ion of  r e p l i c a t i o n  u n i t s .  Although t h e  s i t u a t i o n  is 
complicated by the  non-random breakage of  s t r ands  and by our f ind ing  
t h a t  t he  i n t e r - i n i t i a t i o n  d i s t ances  vary with s t r a n d  lengths  (da t a  
n o t  shown), it is  poss ib l e  t o  t e s t  our  d a t a  f o r  randomness i n  t he  
d i s t r i b u t i o n  of  i n t e r - i n i t i a t i o n  d i s t ances .  I f  t he  a c t i v a t e d  
i n i t i a t i o n  s i t e s  a r e  d i s t r i b u t e d  randomly ( i . e . ,  with negative 
exponential  d i s t ances  between them) on t h e  unbroken DNA f i b e r ,  then 
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A 

Distance, p m  

Figure 4 .  Frequency dis tr ibut ion of external segments and inter-- 
i n i t i a t i on  distances >, 3.42 pm ( 2  ocular divis ions)  i n  length. 
Panels1 A-C s h m  re su l t s  j"rom 3 separate experiments. ----- inter-  
i n i t i a t i on  s i t e  distance, - external segment length. The data 
represent a l l  strands with 2 free ends on 2 s l ides  per experiment, 
plus a popuhtion of strands longer than 20-30 divisions picked 
from additional s l ides .  The longer strands also had 2 j'ree ends. 
For the in ter - in i t ia t ion  distance distributions,  i n  experiment A, 
n = 147; i n  B, n = 150; i n  C, n = 83. For the external segment 
dis tr ibut ions i n  experiment A, n = 288; i n  B, n = 486; i n  C, n = 403. 

it i s  possible to  derive a function B such tha t :  

B = 2n(X)/s, 
n = number of observations, 

ji = mean in te r - in i t ia t ion  distance, 

s = standard deviation of sample mean. 
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As n becomes l a rge r ,  B has approximately t h e  d i s t r i b u t i o n  of X2 with 
2n degrees of freedom. Then (Wilson-Hilferty , 1931) i f  ( [B/ (2n) ] 
+ 1/ (9n) - 1) (9n) = z ,  z has normal d i s t r i b u t i o n  with zero mean 
and u n i t  variance. I f  I zl i s  l e s s  than 2.56, then by t h i s  t e s t  the 
distances do not devia te  s i g n i f i c a n t l y  from exponential a t  the  1% 
leve l .  Table 1 A  shows i n t e r - i n i t i a t i o n  dis tances  from three  
experiments i n  which a l l  s t r ands  with 2  f r e e  ends were recorded. 
I Z I  was l e s s  than 2.56 i n  a l l  cases.  When the  mean i n t e r - i n i t i a t i o n  
distance was ca lcula ted  from t h e  3  experiments (203 d i s t a n c e s ) ,  z  = 

-2.48, which is suggestive of a  random d i s t r ibu t ion .  Since s t rands  
a r e  not equally represented by the  above calcula t ion ( i . e . ,  s t rands  
with more than two rep l i ca t ion  u n i t s  can generate many i n t e r -  
i n i t i a t i o n  d i s t ances ) ,  a  d is tance  d i s t r i b u t i o n  was ca lcula ted  f o r  
ho t  pulse-labeled autoradiograms i n  s t rands  containing only 2  
ac t ivated i n i t i a t i o n  s i t e s .  For a l l  such s t rands  the  t o t a l  ex te rna l  
segment length was subtracted from t h e  length of  the  e n t i r e  s t rand,  
generating a  d is tance  analogous t o  the  i n t e r - i n i t i a t i o n  dis tance  
(315 strands;  Table 1 B ) .  A z  equall ing -2.13 was determined, which 
i s  a l so  within the  l i m i t s  o f  k2.56 s e t  f o r  a  random d i s t r i b u t i o n .  

In each of the th ree  experiments i n  Table 1, the  mean dis tance  
between hot pulse-labeled regions on s t r ands  with two f i g u r e s  
(Table 1 B )  exceeds the  corresponding mean i n t e r - i n i t i a t i o n  dis tances  
(by 6  pm i n  experiment 6; 11 pm i n  experiment 14; and 17 pm i n  
experiment 5 ) .  The excess corresponds roughly t o  the mean length 
of a  s ingle  hot pulse-labeled region. The di f ference  a r i s e s  
because the two f igure  d is tances  include the  t o t a l  lengths of the  
hot labeled regions in* each of the  two rep l i ca t ion  f igures ,  whereas 
the  i n t e r - i n i t i a t i o n  dis tances  extend from midpoint t o  midpoint, 
approximately, of adjacent r ep l i ca t ion  f igures .  

DISCUSSION 

The finding of nonrandom breakage has important implications 
f o r  DNA repl ica t ion.  The excess breakage which may be caused by 
the  presence of high s p e c i f i c  a c t i v i t y  l abe l  i s  not  s u f f i c i e n t  t o  
explain the  apparently nonrandom breakage a t  d is tances  f a r  removed 
from the  hot pulse-labeled regions.  I f  breakage were due t o  the  
presence of the single-stranded region a t  the  rep l i ca t ion  fork,  
o r  was occurring a t  o r  near the  hot  pulse region , then we would 
not expect t o  observe, a s  we did ,  t h a t  the  mean external  segment 
was s ign i f i can t ly  larger  than the  mean i n t e r - i n i t i a t i o n  dis tance .  

We f ind t h a t  the re  i s  no i n t e r a c t i o n  between the  length of 
the  external  segment a t  one end of a  s t r and  and the  length of the  
external  segment a t  the  o the r  end. This f inding appears t o  exclude 
the  p o s s i b i l i t y  t h a t  i n  some large  s t r e tches  of the  DNA f i b e r ,  
containing many of the hypothesized c l u s t e r s  of r ep l i ca t ion  u n i t s ,  
there  is a  higher probabi l i ty  of breakage a t  any given dis tance  
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Table I 

A. I n t e r i n i t i a t i o n  Distances 

Number n 
~ x p t  5 Expt 6 Expt 14  Pooled da ta*  
97 3 9 67 203 

Mean ii (um) 30.44 34.7 44.5 35.76 

Standard sd (urn) 31.42 48.0 56.0 42.95 
dev ia t ion  

Z t -0.66 -1.82 -1.87 -2.48 

B. Two Figure  Distances 

Number n 
Expt 5 Expt 6 Expt 14 Pooled d a t a  

121 103 91 315 

- 
Mean x (um) 47.23 40.62 55.1 47.33 

Standard sd (urn) 56.06 42.60 63.40 53.77 
dev ia t ion  

Z 
t -1.80 -0.44 -1.27 -2.13 

* In  pooling the  d a t a ,  each d i s t ance  w a s  weighted equally,  s o  t h a t  
each experiment w a s  weighted by n. 

t ~ a l c u l a t e d  from eqs. (2) and (3) . I f  1 z 1 > 2.56, we i n t e r p r e t  t h e  
d i s t r i b u t i o n  of d i s t ances  t o  be nonrandom. 

from a hot  pulse-labeled region than t h e r e  i s  i n  o t h e r  l a rge  
s t r e t c h e s .  I f  t h e  DNA f i b e r  were inhomogeneous i n  t h i s  way, we 
would have expected t o  observe an excess of s t r a n d s  with two 
s h o r t  ex te rna l  segments and an  excess with two long ex te rna l  
segments, i n  comparison with t h e  numbers expected using t h e  
p r o b a b i l i t i e s  based on s t r ands  pooled from a l l  p a r t s  of t h e  f i b e r .  
Thus, t he re  do not appear t o  be regions,  de t ec t ab le  by our 
procedures, which conta in  "weak spots" t h a t  cause t h e  nonrandom 
breakage. I t  is unl ike ly  t h a t  weak spo t s  account f o r  the presence 
of  ex te rna l  segments which a r e  longer than t h e  d i s t ances  between 
i n i t i a t i o n  s i t e s .  

Although we a r e  not  y e t  prepared t o  o f f e r  a  d e f i n i t i v e  
explanation of these  f indings ,  one reasonable p o s s i b i l i t y  i s  t h a t ,  
a t  s p e c i f i c  times during S phase, physical  c l u s t e r s  of r e p l i c a t i o n  
u n i t s  a r e  ac t iva ted .  These c l u s t e r s  a r e  separa ted  by d i s t ances  
longer than t h e  measured, mean i n t e r - i n i t i a t i o n  d i s t ance .  The high 
degree of temporal synchrony observed (Fig.  2 )  i nd ica te s  t h a t  t he  
f i r i n g  of i n i t i a t i o n  s i t e s  wi th in  a c l u s t e r  occurs within a f a i r l y  
s h o r t  per iod  of  time. However, t h e  phys ica l  s i t e  a t  which 
i n i t i a t i o n  occurs wi th in  such a c l u s t e r  may be randomly determined, 
a s  suggested by t h e  exponential  d i s t r i b u t i o n  of  i n t e r - i n i t i a t i o n  
d i s t ances  and i n t e r u n i t  d i s t ances  on s t r ands  containing only 2 
r e p l i c a t i o n  un i t s .  
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Support f o r  the  theory of phys ica l  c l u s t e r i n g  of r e p l i c a t i o n  
u n i t s  can be found from s t u d i e s  using very d i f f e r e n t  methodologies. 
S tubb le f i e ld  (1975) and L a t t  (1975) have observed reproducible 
banding p a t t e r n s  when the  chromosomes of  c e l l s  which have been 
t r e a t e d  with BUdR during t h e  e n t i r e  S phase, except f o r  a  s h o r t  
period of thymidine incorpora t ion ,  a r e  analyzed by f luorescence 
labeli l ig with the  Hoechst s t a i n  33258. These bands appear t o  
correspond with banding p a t t e r n s  obta ined when chromosomes a r e  
s t a ined  with quinacrine o r  by G banding procedures. They have 
theorized t h a t  e n t i r e  regions of t h e  genome, comprising lengths  
equivalent  t o  hundreds of  r e p l i c a t i o n  u n i t s ,  a r e  made a v a i l a b l e  
f o r  i n i t i a t i o n  a t  s p e c i f i e d  times wi th in  t h e  S phase. Indiv idual  
u n i t s  i n  the  c l u s t e r  could i n i t i a t e  r e p l i c a t i o n  randomly. The 
f inding of c l u s t e r s  of u n i t s  i n  r e p l i c a t i n g  drosophi la  DNA by means 
of e l ec t ron  microscopic techniques (Zakian, 1976) is a l s o  i n  accord 
with t h i s  hypothesis ,  

The da ta  described i n  t h i s  paper do not  r u l e  ou t  t h e  
p o s s i b i l i t y  t h a t  potential i n i t i a t i o n  s i t e s  a r e  loca ted  a t  non- 
random i n t e r v a l s .  Such s t r u c t u r e s  may be loca ted  a t  s h o r t  i n t e r v a l s  
along t h e  s t r a n d  with only  a small  percentage of such s i t e s  being 
ac t iva ted  during any one S phase. The observed d i f f e rences  i n  i n t e r -  
i n i t i a t i o n  s i t e  d i s t ances  among spec ie s  (Hand and Tamm, 1974) would 
agree with this p o s s i b i l i t y  and could have evolutionary s ign i f i cance .  
There i s  a l s o  evidence t h a t  t h e r e  a r e  d i f f e r e n t  subf rac t ions  of 
r e p l i c a t i n g  DNA, which show d i f f e r e n t  p a t t e r n s  of r e p l i c a t i o n  (Zakian, 
1976; Hori and Lark, 1976). A s u f f i c i e n t l y  small  percentage of  t h e  
r e p l i c a t i n g  DNA could have a nonrandom d i s t r i b u t i o n  of i n t e r -  i n i t i -  
a t i o n  d is tances  without being detec ted  i n  our ana lys i s .  I n  Table I, 
i n  each experiment, t h e  mean d i s t ance  is  l e s s  than  t h e  s tandard  
devia t ion ,  and z i s  negative.  This  p a t t e r n  suggests  t h e  p o s s i b i l -  
i t y  of a  q u a n t i t a t i v e l y  small  devia t ion  from randomness. 

Further  research i n  t h i s  a rea  w i l l  e n t a i l  development of more 
d e t a i l e d  s t r u c t u r a l  models. We a r e  a l s o  at tempting t o  c o r r e l a t e  
the  r e p l i c a t i o n  p a t t e r n s  observed a t  t h e  f i b e r  l e v e l  w i t h  banding 
p a t t e r n s  observed on i s o l a t e d  chromosomes. 
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