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1. Introduction. Let A = (ai,) be a non-negative n x n matrix, that is, aij 2 0, 
i, j = 1, . . . , n; n > 1. We write A 2 0. Let r = r(A) be the spectral radius of A; assume 
r > 0 throughout to  avoid trivial cases. Let dmr/dac be the mth derivative of r with 
respect to the element a,,, all other elements of A being held constant. 

We give an explicit formula for drlda,, in terms of principal minors of r I  - A. We 
show that 0 < drlda,, < 1, and lim,,,, drlda,, = 1. We also obtain an explicit formula 
for d2r/dafi in terms of minors of r I  - A and show that d2r/dafi 2 0; that is, the spectral 
radius of a non-negative 'matrix is a convex function of each element of the main 
diagonal. When A is non-negative and irreducible, all the preceding weak inequalities 
2 concerning the derivatives are replaced by strict inequalities > . 

When A is a non-negative matrix in Probenius normal form 

with positive first row (and also under much weaker assumptions about the first row), 
then d2r/da4, < 0. Since a non-negative matrix in Probenius normal form is similar 
to a so-called Leslie matrix used in demography, these results have immediate inter- 
pretations. 

Kingman(4) shows that if, for all i, j and some fixed interval of the real variable 
8, aU(8) are positive and log a,,(B) are convex, then log r viewed as a function of 8 is 
also convex. Seneta ( ( t i ) ,  pp. 82-83) extends this result to non-negative matrices A(8) 
in which certain elements are fixed a t  0. Kingman ((4), p. 284) remarks that it is not 
necessarily true that, if the a,, are convex functions of 8, then so is r. Thus r is not always 
a convex function of each a,,, but we now see that it is a convex function when i = j. 

Lax ((5), p. 182) shows that in a linear space {X) of real n x n matrices X each 
having only real eigenvalues, the spectral radius r = r(X) is a convex function of 
every element of X. 

In  spite of the apparent similarity among the results, the methods of proof used 
here and by Lax (5) and Kingman (4) appear distinct. 

2. Notation. Let Q,, be the collection of all strictly increasing sequences of k 
positive integers less than or equal to n, where 1 < k < n. For example if P E &3,B, 



P might be (2, 3, 4) with elements p, = 2, p, = 3, and p, = 4. Qk,, is void if k < 1 
or k > n. 

The matrix formed from any real matrix M,,, (where the subscript denotes the 
order) by deleting both the rows and columns indexed by the elements of P E QkSn 
and retaining the remaining rows and columns in their natural order is denoted M(P). 
The matrix formed from M by including only those elements which fall in both the 
rows and columns indexed by P is denoted M[P]. Thus if M is 2 x 2, M(2) = m,, and 
M[2] = m,,. A matrix formed by deleting, or retaining only the intersection of, the 
rows indexed by P, and the columns indexed by P, where P, + P,, P,, P 2 ~ & k , n ,  is 
written M(P,( P,), or M[P,I P,]. Thus if M is 2 x 2, M(2(1) = m,, and M[211] = m,,. 

The determinant of M is IM(, where M is n x n. The determinant of a scalar is the 
scalar itself. Define I M(1, . . . , n) 1 = 1 and I M(P) I = 0 if P E Qg,,, where n < K < N, 
in order to avoid discussing the cases n = 2 and n = 3 separately. 

If P *  is any permutation of P containing k distinct positive integers < n not in 
strictly increasing order, then M[P*] is formed by applying the same permutation 
to the rows and columnsof M[P]. While M[P*] + M[P] ingeneral, I M[P*]I = IM[P](. 
Similarly, if P: is a permutation of P,, i = 1,2, P: + P,*, then M[P:IP,*] + M[P,I P,] 
in general, and there may be a difference in sign between I M[P: I P,*:I 1 and. I M[P, I P,] 1 .  

Throughout A,,, 2 0, Dm,, = rl,,, - A, and f (x, M) = 1x1 -MI. Thus 

f (r, A) = (Dl = 0. 

Without loss of generality, we shall prove results about dfflr/daz for i = 1 only. 

3. First derivative 

LEMMA 1 ((7), p. 72). Let M be a $xed real n x n matrix, x a real scalar, 

For k = 1,2, . . . , akf(x, M)/axk = k! Z,, Q,, n l  (XI - LIZ) (P) I .  I n  particular 

af /ax = Cdl  I (XI - M) (i)( and a2f/ax2 = 2Ci,, 1 (XI - M) (i, j) 1 
LEMMA 2 ((3), pp. 69-70). If A 2 0, r = r(A) > 0, PEQ~, ,  for some k, 1 < k < n, 

then I D(P) ( = IrI - A(P)( 2 0. Here I is of order (n - k) x (n - k). If A is also irreducible, 
then ID(P)J > 0. 

THEOREM 1. If A,,, 2 0 is irreducible, r = r(A) > 0, D = r I  - A, then 

0 < drlda,, = (D(l)(/CT=, ID(i)( < 1. (1) 

Proof. Since f (r, A) = 0, drlda,, = - (af/aa,,)/(af/ax)I,=, by implicit differentiation. 
Expanding ID\ by the first row and differentiating with respect to a,, gives 

-aflaall= ID(1)l. 

Lemma 1 gives af /ax. Since A is irreducible, (D(i)( > 0, i = 1, . . ., n, by Lemma 2. 
The strict inequalities in equation (1) follow. 

From Theorem 1, it follows immediately that CY=,dr/daii = 1 when A 2 0 is 
irreducible. 
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COROLLARY 1. If Anxn 2 0, r = r ( A )  > 0, then 0 < dr/da,, < 1. 

Proof. I n  the canonical form for reducible non-negative matrices ((31, p. 75), a,, 
falls in an irreducible square submatrix A ,  of A lying along the main diagonal of A .  
If r(A,) < r ( A )  then dr(A)/dall = 0. Otherwise r(A,) = r ( A ) .  If A ,  is 1 x I containing 
only the element a,, = r(A,) = r ( A ) ,  then drlda,, = 1. 

COROLLARY 2. If A 2 0, then lim,ll,,dr/dall = 1. 

Proof. First suppose A is irreducible. Then a,, = r ( A [ l ] )  < r = r ( A )  < maximal 
row sum of A ((3), p. 63). When a,, is large enough, the maximal row sum of A is 
xT-lau. Hence as a,, increases without limit, so does r = r ( A ) ,  but r - a,, does not ex- 
ceed a constant xy=2 alj. Thus for i = 2, .. . , n ,  and for large a,,, ) D(i)I is dominated by 
nj , i ( r -a j j )  which increases as a?<', whereas for large a,,, J D ( 1 ) )  increases as @ i l .  
Thus limdr/da,, = lim 1 / (1+  zr=, ( ) D ( i ) ) / )  D(1)I))  = 1. 

Now suppose A is reducible. Then a,, ,< r ,< maximal row sum = sum of the first 
row when a,, is large enough. Also for all large enough, the expression for drlda,, in 
equation ( 1 )  has a non-zero denominator. Then the argument in the preceding 
paragraph applies to the irreducible square submatrix A ,  which contains a,, in the 
canonical form of A ,  proving the corollary. 

It follows incidentally from a,, < r ,< maximal row sum of A that lim,ll,mr/all = 1 

for any A > 0. From Corollaries 1 and 2 it follows that d(r/a,,)/da,, < 0, for any 
A > 0, with strict inequality when A is irreducible, and lim,l,,mdmr/da;", = 0 for m > I. 

4. Xecond derivative 

THEOREM 2. If A,,, 2 0, then 

& 2 r / d ~ $ ~  0 and for i + j ,  d2r/da$, = d2r/da;j, d2r/da$ < 0. 

I f  A,, , > 0, the inequalities are strict. 

Proof. Apply the standard formula for the second derivative obtained by implicit 
differentiation to the characteristic equation. (The formula for d2r/dail appears in 
equation (2) below.) 

The proof of Theorem 2 is both trivial and uninformative about the general case. 
The lowest order in which the problems of full generality arise is 5 x 5. Moreover, the 
concavity of r as a function of all off-diagonal elements does not generalize to matrices 
A of higher order than 2 x 2, even when A > 0. 

A crucial tool in the general case is the Law of Extensible Minors, due to Muir in 
1881, as restated by Stouffer ((lo), p. 165): 

LEMMA 3. If any identical relationship be established among a number of minors of a 
general determinant (the determinant itself may be included as a minor), the minors being 
denoted by means of their principal diagonals, then a new relationship involving the 
minors of a determinant with k additional rows and columns i s  always obtainable by 
annexing the k new elements in the principal diagonal to the end of the diagonal of every 
minor occurring in the identity, and then multiplying each term by such a power of the 
principal minor of order k, consisting of new elements only, as will m,ake the relationship 
homogeneous in the elements. 



LEMMA 4. If A A 0, i + j ,  and P is any strictly increasing sequence of length k 
(0 < k < n - 2) of positive integers < n and different from both i and j, then 

I f A  > 0,or i fA A Oisirreducibleandk= n-2,then (D[i ,Plj ,P](  < 0. 

Proof. If k =  0, (D[i,Plj,P]l = JD[iJj]J = d,j = -aij < 0. If k =  1, P = (p), 
then (D[i,plj,p]) = dijd,,-dpjdip = -aij(r-a,,)-apjaip < 0, since r-a,, >, 0 by 
Lemma 2, and A >, 0. If k > 1, let p be the first element of P and P' be tho remaining 
k - 1 elements, so that P = (p, P'). By a general relation of Muir and Metzler ((7), 
p. 372, section 387), rediscovered by Gtouffer ((lo), p. 166) we have 

For example, if i = 2, j = 3, k = 2, n = 5, P = (4,5), then p = 4, P' = (5) and this 
identity becomes 1 D[245(345](. )D[5]( = (D[25(35]( . (D[45]( - (D[451351(1.) D[25)45]1, 
which may readily be verified directly. By Lemma 2, (DIPfI( 2 0 and (D[P:l( 0. By 
the hypothesis of induction (D[ i ,P ' ( j ,P fJ (  < 0, (D[P( j , P f ] (  < 0, and (D[i, P1 (P ] J  < 0. 
Hence (D[i, P ( j , P ] (  < 0. If A > 0, all the inequalities in the proof become strict. If 
k = n - 2, then, again from (7), p. 372, 

Applying, if necessary, the same permutation to both rows and columns of D[i, j ,  PI, 
ID[i,j, PI( = ID( = 0. Therefore, assuming A 2 0 irreducible and using Lemma 2, 
JD[ i ,P J j ,P J (  (D[ j ,P( i ,  PI( = (DCi, P:/(ID[j, PI1 > 0, so ID[i, P(j,Pl( < 0. 

Lemma 4 and Lemma 1 readily provide the explicit formula, for 1 < i < j < n and 
an irreducible A >, 0, dr/daij = - J D[j, P J i ,  PI J/zz=,J D(k) 1 > 0, where P is the strictly 
increasing sequence of n - 2 positive integers from 1 to n left after deleting both i and j. 

THEOREM 3. If A 2 0, r = r(A) > 0, then for i = 1, . . . , n, d2r/da:i 2 0. If A is also 
irreducible, d2r/da:, > 0. 

Proof. Since all elements of A except a,, are fixed, we write the cha~acteristic equation 
of A as a function of r and a,, only: f (r, a,,) = (Dl = 0. Assume A is irreducible. Then 

d2r/dall = - (af [(a2f /aa;,) (af /ar)= - 2(af /ar) (af /aall) (azf/araa,,) 

+ (a2f /ar2) (af laall)zl, (2) 

a standard formula. Lemma 1 gives af/ar = 8f /axl,, explicitly. Lemma 2 guarantees 
that af /ar > 0 since A 2 0 is irreducible, so khe quotient on the right of equation (2) 
is defined. Since (Dl is linear in each element of A, azflaa;, = 0, so the first term in the 
square brackets on the right of equation (2) vanishes. As in Theorem 1, 

Thus d2r/da;, > 0 if and only if 

+(azf/ar2) (af laall) - (azf/araa,,) (aflar) = b > 0. (3) 
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Lemma 1 implies a2f/aal1 ar = - C,,,,,J D(1, i) 1 and by substitution 

b = - (Ci~i<j~~JD(iSj)l). JD(1)J + (Cl<i<nJD(l, (C~<i<~lD(i)l) 
= Cl<i<n\D(~)JCl<i<n~D(l~i~~l - lD(i)lCi<i<j~nlD(i,j)l 
= Cl<i<n(D(i) ((D(1, i) 1 

+ Xl<i<i<n[lD(i)l lD(l,j)l+ lD(j)l ID(1, ill - ID(1) I lD(i,j) 11. 
In  this last expression for b, the first summation is strictly positive by Lemma 2. 
(When n = 2, the first summation reduces to r -all and the second vanishes, so 
b = r -%,, which may be verified directly.) To show d2r/da:i > 0 it suffices to show 
that for all i, j satisfying 1 < i < j < n we have 

lD(i)llD(l,j)l+ lD(j)~~D(l,~)~ - lD(l)l lD(i,j)l gij 2 0. 

In  terms of the included rows and columns, rather than the excluded rows and 
columns, gij = (D[l,j,P]((D[i,P]( + ID[l,i, P]((D[j, PI( - (D[i, j,P]((D[l,P]I, where 
P is the strictly increasing sequence of all positive integers < n and different from 1, i 
and j. Now a form due to Stouffer ((9), p. 358), without his restriction that dl,, = 1, 
m = 2, ..., n, gives 

lD[l,i,jll = lD[l.ll(D[i,jl(+ (D[i11ID[l,jjJ+ ID[j:\JID[l,il( 
+diidijdji+dijdjidi1-2ID[1I(IID[j]lIDrj]I. 

Applying Lemma 3 andnoting that (D[1, i, j, PI( = (Dl = 0 gives 

ID[pllg~ = 2lD[1,Pl((D[i,P]((D[j,Pjl 
-2lD[l,PI11D[i,j,P)1)D[P]I - 1D[l,P)i,Pl1ID[i,PJj,PIJJD[j,PJl,P]J 
-]D[1,P]j,P1JID[j,Pli,PlJJD[i,PJl,P]J. 

By (7), p. 372 

lD[i9j,pIIlD[P11 = ID[i,PlI)D[j,P]I - JD[i,PJj,P]J)D[j,PJi,PlI. 

Hence )DIP:Ilgij = 21D[i,PJj,PIJJD[j,Pli,P]) JD[l,P]J 
I 

- (D[l,Pli,P]I(D[i,Plj,P]((D[j,PIl,PII 
I 
I - (D[1,Plj,PII(D[j,P(i,P1(ID[i,PI1,PI(. 
( By Lemma 2 ID[P]l > 0 and D[1, P] > 0. By Lemma 4, if i +. j, I D[i, PI j,P]I < 0. 
/ Hence gi, 2 0. Thus d2r/da;, > 0 when A 2 0 is irreducible. 

( When A 2 0 is reducible, let A, be the irreducible square submatrix on the main 
diagonal in which all falls in the canonical form of A ((3), p. 75). As in the proof of 
Corollary 1, there are three cases. If r(Al) < r(A), then dr/dall = 0 and d2r/da& = 0. 

/ If r(Al) = r(A ) and A, is of order 1 x 1, then dr/da,, = 1 and d2r/da& = 0. If r(Al) = r(A) 
) and A, is of order 2 x 2 or larger, d2r/da?, > 0 by applying the proof for the irreducible 

i 
case to A,. This proves the theorem. 

! COROLLARY 3. If A A 0 is irreducible, an upper bound for d2r/dafl in terms of the 
principal minors of D = rI - A is 

2(Z?=11D(i)l)-3 lD(l)l (Zl<t<n\D(i)l) (Cl<i<nlD(l,i)l). 
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Let A 2 0 be primitive, that is, for some m, Am > 0. Form = 1,2, .. ., let 

where a\?) is the ith diagonal element of Am, and let gm(all) = (Tr (Am))llm. Kingman (4) 

uses the fact that r = lim,,, gm. Since d2gl/da2,1 = 0 and d2r/datl > 0 by Theorem 3, 
one might hope that d2gm/datl < d2g,n+l/da41, or at  least that d2gm/daE 2 0 for 
m = 1,2, ... . However, it is readily checked that there exist 3 x 3 matrices A > 0 
such that d2g,/dafl < 0. 

The proof of Theorem 3 by direct calculation yields little insight into why the 
main diagonal elements of a non-negative matrix play a special role. It may be 
relevant to note that Tr(Am) is a polynomial of degree m in a,,, all other diagonal 
and off diagonal elements of A held constant, in which the coefficient of a%-l is 0, 
m = 1,2, ... . As a function of aij, i .t. j ,  all other elements held constant, Tr(A2m) is 
a polynomial of degree m and Tr(A2m-1) is a polynomial of degree m - 1, m = 1,2, . . . . 

5. Frobeniua normal form 

THEOREM 4. Let A be a non-negative matrix in Frobeniua normal form, i.e. a,, = a, 2 0, 
i = 1, ..., n, a,,,,, = 1, i = 1, ..., n-  1, and all other elements 0. Assume that a, > 0, 
a,-, > 0 and if n > 2, then also ak > 0 where k < n - 1 and gcd(k, n - 1) = 1. Then 
d2r/dat > 0 and d2r/dai < 0. 

Proof. We calculate d2r/da; for i = 1, . . . , n, using equation (2) with ai replacing a,,, 
and show the claimed inequalities when i = 1 and i = n. The assumptions about the 
first row of A ensure that A and A(n) are irreducible, in fact, primitive. Since 

we have af/ar = nrn-I - C7z2(n - j) a j  m-1-j, 

a2f /ar2 = n(n - 1) m-2 - j=l (n - j) (n - j - 1) a j  rn-2-j, 

a f/aa, = - rn-,, azf/ aa4 = 0, azf/ar aa, = - (n - i) ~ - ( - l .  

Since r is the largest real root off and lim,,, f (x, a,) = + co, we have a f/ar > 0. Because 
aflaa, < 0, the sign of d2r/da4 is the opposite of the sign of 

a = 2(af l ay )  (azflar aa,) - (azf/ar2) (af pa,). , 

(If a,, is replaced by a, in the definition of b in equation (3), then a = - 2b.) After 
substitution and rearrangement 

a = n( - n - 1 + 2i) rWn-l)-* + CTzl(n - j) (n + 1 + j - 2i) a, r*n-1)-2-*. (4) 

When i = 1, 

where 
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Here B = (bij) 2 0 is a matrix of order (n - 1) x (n - 1) in Frobenius normal form with 
with b, = [n(n - I)]-' (n - j )  ( n  - 1 + j )  a j ,  j = 1, . . . , n - 1. Since 

for j = 1, ..., n - 1, B < A ( n ) ,  B + A(n), so r (B)  < r (A(n) )  < r = r (A) .  Therefore 
F(r) > 0 ,  a < 0,  and d2r/da4 > 0. 

When i = n, a = + n(n - 1) r-lG(r) where 

G(r) = rn-I - [n(n - I ) ] - I  x y ~ : ( n  - j )  ( n  - 1 - j )  a rfi-1-j = \rI(n-l)x(n-l) - Cl . 
Here C = (cij) 2 0 is a matrix of order (n - 1) x (n - 1 )  in Frobenius normal form with 
clj = [n(n-  I ) ] - l ( n - j ) ( n -  1-j)aj .Forj  = 1, ..., n-1,O < ( n - j ) ( n - 1 - j )  < n ( n -  1) 
so C < A(n), C + A(n) and r(C) < r (A(n) )  < r. Therefore G(r) > 0, a > 0 ,  and 
d2r/dai < 0. This proves Theorem 4. 

COROLLARY 4. Under the assumptions of Theorem 4 ,  d2r/daz-, < 0 for n = 3 and 
n = 4. 

Proof. When n = 3 and n = 4, i = n- 1, a > 0 in equation (4) .  

6.  Demographic applications. Demographic models often employ the Leslie(6) 
matrix 

where si is the proportion of individuals in age class i who survive from one discrete 
time-point to the next, and b, is the birth rate per individual in age class i, adjusted 
for the survival of newborn individuals to the next time-point. 

COROLLARY 5. Let L be a Leslie matrix of order n x n, n 2 2, with si > 0,  i = 1, . . . , n - 1 
and b, 2 0 satisfying the assumptions made in Theorem 4 regarding the ai, i = 1 ,  .. ., n. 
Then r(L)  i s  a strictly convex function of b,, all other elements of L held constant. r (L)  
i s  a strictly concave function of (s,-, b,), all other elements of L held constant. When 
n = 3 and n = 4, r ( L )  is a strictly concave function of b,-,, all other elements of L held 
constant. 

Proof. By the Danilevsky algorithm ((2), p. 167), L is similar to a matrix A in 
Frobenius normal form with a, = b,, ai = b, nj~: sj,  i = 2, . . . , n. This matrix A 
satisfies the assumptions of Theorem 4, and has the same spectrum as L. 

Some interpretations of Corollary 5 are immediate. r (L)  is the long-run growth 
rate per unit time of a closed age-structured population with constant vital rates 
given by L.  If a population adjusts its vital rates, equal successive increments in b, 
will yield successively increasing increments in r (L) ,  while equal successive increments 
in s,-, b, will yield positive but successively decreasing increments in r(L) .  Con- 
versely, each successive reduction by a fixed amount in b, will result in successively 



smaller reductions in r(L) ,  while each successive reduction by a b e d  amount in 
sn-, bn will result in successively larger reductions in r(L) .  These observations do not 
bear on comparing the effect on r(L) of a given change in b, with a given change in 

Sn-1 bn. 
Corollary 5 also provides useful bounds in the framework of a stochastic population 

model. If, a t  each point in discrete time, a population's vital rates are given by one of 
k Leslie matrices Lei), i = 1 ,  . . . , k, chosen with probability T,,  CtE1 ni = 1, independently 
of the Leslie matrix occurring at  any other time, and if each Lei) satisfies the assumptions 
of Corollary 5, then the long-run rate of growth r* of the population is (1) 

If the Lei) are all identical except for bp', then by Corollary 5 and Jensen's inequality, 
r* < ~ $ = , . r r ~  r(Lci)). If the Lei) are all identical except for scLl bg) ,  then r* > C:=,ni r(Lci)). 

This work was supported in part by the U.S. National Science Foundation grant 
BMS74-13276. 
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