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Abstract 

Leslie (1945) models the evolution in discrete time of a closed, single-sex 
population with discrete age groups by multiplying a vector describing the age 
structure by a matrix containing the birth and death rates. We suppose that 
successive matrices are chosen according to a Markov chain from a finite set of 
matrices. We find exactly the long-run rate of growth and expected age 
structure. We give two approximations to  the variance in age structure and total 
population size. A numerical example illustrates the ergodic features of the 
model using Monte Carlo simulation, finds the invariant distribution of age 
structure from a linear integral equation, and calculates the moments derived 
here. 

ERGODIC SETS; LESLIE MATRICES; NON-NEGATIVE MATRICES; POPULATION 
DYNAMICS; PRODUCTS OF RANDOM MATRICES; STOCHASTIC POPULATION MODELS 

1. Introduction 

We suppose (Cohen (1976), (1977); subsequently referred to as Parts I and I1 
respectively) that the successive Leslie (1945) matrices affecting a closed, 
single-sex population show a Markovian sequential dependence. Assuming a 
finite state space of bounded Leslie matrices and an ergodic Markov chain 
governing transitions in the state space, we give here a simple direct technique 
for obtaining the exact mean and approximate variance of the number of 
individuals of each age; the exact mean and approximate variance of the total 
population size; and the exact long-run rate of population growth. We illustrate 
the results numerically. 

Received in revised form 18 November 1976. 
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2. The model 

An array (vector, matrix, or column or row of a matrix) all of whose elements 
are non-negative and not infinite is called non-negative; an array all of whose 
elements are positive and not infinite is called positive; an array all of whose 
elements are zero is a zero array. 

Definition (Hajnal(1976)). An ergodic set H(s, g, r) is a non-void set of s x s 
non-negative matrices with no zero columns and no zero rows such that (1) any 
product of g factors which are members of H(s, g, r) is positive; and (2) for each 
h in H(s, g, r), min+(h)/max(h) > r > 0, where min+(h) is the smallest of the 
positive elements of h, and r is some positive number independent of h. 

Every primitive Leslie matrix (that is, any Leslie matrix some power of which 
is positive (Sykes (1969), Theorem 6)) is by itself an ergodic set. The incidence 
matrix of a non-negative matrix is defined as the matrix obtained by replacing 
each positive element of the matrix by 1. Any finite set of primitive Leslie 
matrices sharing an identical incidence matrix is an ergodic set. 

In demographic applications of the following model, X is the state space of 
Leslie matrices, S is the set of transition probability matrices for the Markov 
chain on X, and Y is the set of possible age structures. When the Markov chain is 
homogeneous, S contains only a single transition matrix t. 

If u is a vector with elements u(i), 1 1  u ) (  = C, I u(i) 1 .  
The model: Let X = H,(k, g,,  r,) be an ergodic set containing s distinct 

members (s finite) labelled X I ,  . . ., x,, and let S = Hz(s, gzr rZ) be an ergodic set 
each of whose members is stochastic. (We define a non-negative matrix to be 
stochastic if each column sums to 1.) Let {t,},=, be an infinite sequence, with 
repetitions possible, of members of S,  and let {X,,f,=, be a Markov chain with 
state space X and arbitrary initial distribution such that PIX,,+I = x, 1 X,, = x,] = 

t,,(i, j). (This is the transpose of the convention adopted in Part 11.) 
Let Y be the set of all positive column k-vectors with elements which sum to 

1. Let y o €  Y. Define {Y,,},=,, to be the family of random vectors with sample 
space Y such that Yo = yo with probability 1, and for n >0 ,  
Y. =X. . Yn-I/)I X, . Y.-I 11 .  Let {Z.},=, = {(X,, Y,)},=,. 

3. First and second moments; asymptotic growth rate 

Definition. Let s, s', k and k '  be positive integers. Let X be a set of s 
matrices x,,  . ., x, each of size k x k'. Let t be an s x s '  matrix, with elements 
t(i, j), i = 1, . . ., s ;  j = 1, - ., s'. Define t @ X  to be the matrix of size ks X k's' 
containing ss' block submatrices each of size k x k t  in which the i, jth block 
equals t(i, j)x,, i = 1, . . ., s ;  j = 1, . . ., s t .  More explicitly, for u = 1, - . ., ks; 
u = 1, . . ., k's', if u = ik + a and u = jk l+  b where a = 1, . ., k ;  b = 

1, . . ., k', then (t @X)(u ,  u) = t(i + 1, j + l ) ~ , + ~ ( a ,  b) is the element in the uth 
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row and vth column of t @X.  If T is a (not necessarily finite) set of s x s '  
matrices, define T @ X  = {t @ X  : t E T). (Thus @ is defined only when the left 
argument is one or a set of s x s '  matrices and the right argument is a set 
containing s labelled matrices.) 

When the elements of X are distinctly labelled copies of a single matrix x, then 
t @ X  is the Kronecker or tensor product of t and x. 

Lemma. If X = Hl(k, gl,  r,) is a finite ergodic set with s members and 
T = HZ(s, gz, r2) is an ergodic set, then T @ X  is an ergodic set. 

Proof. Let A be a member of T @ X .  A has no zero columns and no zero 
rows. Also min'(A)/max(A)> r,r2 > 0 .  Let g = g,g2; let A l ,  . . ., A, be any g 
members of T @ X ;  and let A = A . . . A,. Each block submatrix of A is the 
sum of a product of a scalar contributed by members of T and a k x k matrix 
contributed by X. The scalar is an element of the product of g l  positive matrices 
each of which is the product of g2 members of T (hence positive). The k x k 
matrix is a product of g2 positive matrices, each of which is the product of gl 
members of X (hence positive). Since every block of A is positive, so is A. The 
lemma is proved. 

Under the assumptions and notation of the model in Section 2, let U, an s x 1 
matrix, specify the initial distribution of the Markov chain {X.}, i.e. U(i) = 

P[X,=x,],i=l,~~~,s.LetB=U@XandA,=t,@X.(Bisskxk;eachA, 
is sk x sk.) Let J be the k x sk matrix constructed by juxtaposing horizontally s 
copies of the k x k identity matrix Zk. If lk is a column of k l's, J = (1, @Ik)=. Let 
M[i, j] refer to the i, jth block submatrix (of size k X k )  of any s'k X s"k matrix 
M, whatever s f  and s", and V[i] to the ith block k-vector in a column sk-vector 
V. Round parentheses are reserved for individual elements of a vector ( . )  or 
matrix (. , .). 

In our notation, a standard result for Markov chains is that P[X, = x,] = 

(t,-l . . . t, U)(i),  for n > 1. For n 2 gz, since S is an ergodic set, P[X, = x,] > 0. 

Theorem 1 (means). (i) E(Xlyo) = JByo. 
(ii) For all n 2 1, let L, denote the random matrix X, . . . X,.  Then for 

n 2 g 2 ,  E ( L , + , ~ ~ ( X , , ~ = X , ) = ( A ,  . . .AIByo)[ i ] lPIX,+l=x, ]  and 

= (A, . . . A Byo)[i]ll((A. . . . A IBYO)[~]  11. 
(iii) For n 2 1, E(L,+lyo) = JA, . . . AIByo. 
(iv) If f is a homogenous linear function such that the expectation exists, 

E[f(L,+lyo)] = f(JAn'. . . AlByo). 
(v) Let d be the Hilbert projective metric between two positive vectors; that 
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is, if a and b are positive vectors, d(a, b) = In [max, (a(i)/b(i))/min, (a (i)/b(i))]. 
Let yo, y; be two elements of Y; U, U' any two initial distributions for XI 
(U, U ' 2  0 and 1 U 1 = 1 ' 1  = 1 )  Then lim.d(E{L.+lYo( Yo = yo; U), 
E{L,+, Yo I Yo = y;; U')) = 0. The limit is approached exponentially fast. 

Proof. (i) (Byo)[i] = U(i)xiyo = PIXI = xi] E [Xlyo ( XI = x,] so JByo = 

C, U(i)xiyo = E(X1yo). 
(ii) and (iii). We proceed by induction. 

= 2 P[Xl = x,, x2 = xi] xix,yo 
j = l  

= P[X2 = x,] C P.[X1 = x,, X2 = xi 1 x2 = x,] xix1y0 
, = I  

= P[X2 = x,] E(X2Xly0 ( X 2  = x,). 

Thus JA ,By0 = E (X2X1 YO). 
Assuming inductively that 

which we have established for n = 2, we calculate, using the Markovian structure 

of {X"), 

and, repeating the argument for n = 2, find 

and 

JA, . . . AIByo = (A, . . . AIByo)[i] = E(Ln+lyo). 
I = 1 

(iv) If f is a homogenous linear function of a k-vector such that the 
expectation exists, 
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( u )  By the lemma, T @ X  is an ergodic set. Apply (iii) in combination with 
Theorem 3 of Hajnal (1976). This proves Theorem 1. 

For example, if ck is a row k-vector with elements ck (i), then E(ckLn+,yo) = 
ckJAn . A ,By,. When X contains only primitive Leslie matrices and ck (i)  = 1 
for i = 1, - . ., k, E(ckLn+,  yo) given by Theorem l(iv) is the expected total 
population at time n + 1 starting from a population of size 1 with age structure yo 
at time 0. If ck(io) = 1, ck( i )  = 0 for i +  i,, then Theorem l(iv) gives the expected 
number of individuals in age category i,. 

Corollary 1. For all n 2 1, let tn = I. Let A = t @X. Then t has positive 
maximal eigenvalue 1 and A has positive maximal eigenvalue A, each with 
corresponding eigenmanifold of dimension 1. Let .rr denote the unique positive 
right eigenvector of t associated with eigenvalue 1 such that 1 )  .rr ( 1  = 1. Then for 
any initial distribution U, lim,P[X,, = x,] = .rr(i). Let a be the unique positive 
right (column) eigenvector of A and P the unique positive left (row) eigenvector 
of A associated with the eigenvalue A and satisfying 11 a 1 )  = C , a ( i ) P ( i )  = 1. 

Then (i) 

and 

(ii) limn E ( L n + l y o (  Xn+, = X , ) ~ E ( I J L . + ~ ~ ~ I I  I X n + ,  = x,) = a[ i ] / l ( a [ i ]  ( 1  and 
limn E (L,, I yo)ll( E (Ln+,  yo) 1 1  = Cia [i]/C, a (u).  The sum in the last numerator is 
the blockwise sum of s k -vectors, while the sum in the denominator is the scalar 
sum of all elements of a .  

(iii) limn E[(Ln+,yo)(j)  ( X n + I  = x,]lE [(Lnyo)(j) I Xn = x,] = A 

and 

for j = I;.., k ;  i = 1;..,s. 
(iv) For all i and j ,  with probability 1, lim,n-'log[L.(i, j)] = A. 
Thus A is the limit proved to  exist and denoted as E by Furstenberg and 

Kesten ((1960), corollary on p. 462). Our  Corollary 1 gives an easy explicit means 
of calculating that limit. 



Cor rec t ions  t o  "Ergodic i ty  o f  age  s t r u c t u r e  i n  popula t ions  wi th  Markovian 
v i t a l  r a t e s ,  111: F i n i t e a t a t e  moments and growth r a t e ;  an  . i l l u s ~ a t i o n , "  by 
J o e l  E. Cohen. Adv. Appl. Prob. 9 ,  462-475-41977). 

P. 466. Replace t h e  last f o u r  l i n e s  by: 
( i v )  For a l l  i and j ,  wi th  p r o b a b i l i t y  1, lim n'l log C ~ ~ ( i , j ) l  5 l og  A, 

wi th  s t r i c t  i n e q u a l i t y  i n  g e n e r a l .  n 

The a lmost  s u r e  l i m i t  i n  ( i v )  is proved t o  e x i s t  and denoted as E by 
Furs tenberg  and Kesten (1960, c o r o l l a r y  on p. 462).  Our Coro l l a ry  1 g i v e s  
an easy  e x p l i c i t  means of  c a l c u l a t i n g  a n  upper bound on t h a t  l i m i t .  The 
i n e q u a l i t y  . fol lows f ran t h e  upward concav i ty  of log .  

3 2 
P. 470. I n  Eq. ( 3 ) ,  t = t 3 3 = TI.13 

T T , n o t  13. TI , where ~r is t h e  g i v e n  3-vector .  
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Proof. Let Q = a p ,  that is, Q(i, j )  = a ( i ) P u ) .  Q is of rank 1 and 
lim,A "/An = Q (Karlin (1968), pp. 478-479). This matrix limit is to  be under- 
stood elementwise. Hence A "ByolAn = QByo = a(@Byo), where PBy,, is a scalar. 
Theorem 1 (ii),(iii)imply (i).Taking norms and dividing gives (ii). (iii) follows from 
(i). Finally the s g l  matrices consisting of all possible products of g l  factors drawn 
from the set X satisfy assumption A1 of Furstenberg and Kesten ((1960), p. 462). 
Since {X,} satisfy the conditions of Theorem 2 of Furstenberg and Kesten 
((1960), p. 460), their corollary (p. 462) and Part (i) above imply (iv). 

Corollary 2. Under the assumptions of Theorem 1 and Corollary 1, suppose 
that {X,) are identically and independently distributed, that is, t(i, j )  = U(i)  
where U describes the distribution of X I  and t(i, j )  = P[X,+, = x, 1 X,, = x,]. Let 
x * = 2:=1 U(i)x,. Then x *  is primitive and has a positive maximal eigenvalue of 
multiplicity 1, denoted A *. Every eigenvalue of x *  is an eigenvalue of A = 

t @ X ,  and if A is the positive maximal eigenvalue of multiplicity 1 of the matrix 
A, then A = A*. Moreover, if a, is the positive right eigenvector of A 
corresponding to A and a * is the positive right eigenvector of x * corresponding 
to A *, normalized so that ( 1  a, ( 1  = ((a  * ( 1  = 1, then a * = Ja, or  C, a,[i]. 

In demographic terms, the long-run growth rate of a population subject to 
identically and independently distributed Leslie matrices is the same as the 
long-run growth rate of a population subject to  a single average Leslie matrix. 

Proof. Since x * is a weighted average of members of an ergodic set, it must 
be  primitive, and therefore possess a spectral radius A * as described. Let c be 
any eigenvalue of x * with corresponding eigenvector a ,  so x *a = ca. Define the 
sk-vector p blockwise by P [ j ]  = U(j)x,a/c, j = 1, . . ., s. Then (Ap)[i]  = 

~ ( i ) x , ' ( C f i [ j ] )  = U(i)xi(C,U(j)x,a/c) = U(i)x,a = cp[i] .  Thus c is an eigen- 
value of A with corresponding eigenvector p. In particular A * is an eigenvalue 
of A,  so A *  5 A. Now let c be any eigenvalue of A with corresponding 
eigenvector p. Writing A p  = c p  blockwise gives U(i)xi (C, P[j])  = c p  [i]. Sum- 
ming over i gives x *(C,p[j]) = c(CiP[i]). So  A is an eigenvalue of x * and 
A S A * .  

Theorem 2 (variances). Resume the assumptions of Theorem 1. 
(i) I f f  is a homogeneous linear function such that the variance exists, then a 

first approximation to  its variance is the variance of the conditional means, 
which is 

Var[E{f(Ln+lyo) 1 X"+l)] 

(ii) A second approximation to the variance is obtained by approximating the 
distribution of L,+lByo by the s 2  discrete points 
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xiE(L.yo (X. = x,) with probability t.(i, j)P[X, = xi]. 

The resulting approximation is 

Proof. (i) For any measurable function g of a vector, the variance 
when it exists is given by 

Var[g(L.+lyo)] = Var[E{g(Ln+lyo)) Xn+l)] 
+ E { E  [ g ( ~ , + ~ y ~ )  - E { ~ ( L , ~ , Y ~ ) I  x . + ~ ) I ~  I x ~ + ~ )  

= the variance of the conditional means 
+ the mean of the conditional variances 

(Parzen (1962), p. 55). Hence a first approximation to Var{f ( . )) for any linear f 
is to ignore the mean of the conditional variances and calculate the variance of 
the s quantities 

where (A. . . - A ,Byo)[i]lPIX,,+l = x,] should be interpreted as 0 if 
PIX.+I = x,] = 0. Thus as a first approximation 

Var [f (L,+IyO)] = Var [E{f (Ln+lyo) I Xn+l)l 

which simplifies slightly when f is linear and homogeneous to 
Z=, (f{(An . . . AIByO)[i]))Z/P [X,,+] = xi] - (f[JA. . . . A 1 ~ y o ] ) 2 .  

(ii) As a second approximation to Var{f(L,+lyo)), we add to the first an 
approximation to the conditional variances. This approximation is obtained by 
replacing each exact conditional distribution of f(L.+lyo) given 
X,,, = xi, i = 1, . . ., s, by a distribution of s point probability masses. In the 
approximate distribution of f(Ln+]yo) given X,+, = xi, the jth point is constructed 
by assuming that X. = x, and that Lnyo exactly equals its conditional expectation 
E(L,yO 1 X. = x,). 

Explicitly, the ith conditional variance, given X.+] = ,xi, is 

The second term is known exactly. We approximate the first by 
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Since 

P [ X ,  = x,, X,, ,  = x,]  = t,,(i, j ) P [ X .  = x,] = P [ X ,  = x, I X,+,  = X , ] P [ X , , + ~  = x , ] ,  

we have the transition probabilities of the so-called 'reversed process' associated 
with {X.) (Karlin (1968), pp. 136-137) as 

P [ X .  = x, ( X , + l  = x,]  = t,(i, j ) P [ X ,  = X ~ ] / P [ X , , + ~  = x , ] .  

Thus 

Thus our approximation to the mean of the conditional variances is 

2 2 (i, j )  [ f  (x,  ( A , ,  . . A I Byo)[ j ] )12/P [ X ,  = X ,  ] 
, = I  , = I  

The negative term in this expression equals the positive term in the exact 
expression for the variance of the conditional means, so that finally our second 
approximation is 

This proves Theorem 2. 

As in the example following Theorem 1, this theorem can give two approxima- 
tions to the variance of the total population size and the variance of the number 
of individuals in any age category. 

4. Numerical illustration 

This artificial numerical example illustrates by Monte Carlo simulation that 
the distribution of age structure becomes independent of initial conditions. It 
shows that under homogeneity the long-run distribution of age structure 
obtained by Monte Carlo simulation can be calculated by numerical solution of a 
renewal equation in Part 11. It finds the mean and approximations to the variance 
of age structure using Theorems 1 and 2 and shows that these calculations are 
consistent with the Monte Carlo results. Finally it compares the long-run rate of 
growth with the growth rates implied by three approximations to the Markovian 



470 JOEL E. COHEN 

model. These comparisons show.that the mean age structure under the Marko- 
vian model may differ from the stable age structure of the mean of the vital rates 
obtained by weighting each Leslie matrix according to its long-run probability. 

Let k = 2; individuals are young (age group 1) or old (age group 2). Let s = 3 
and X = {x,,  x,, x,} where 

with corresponding maximal eigenvalues A ,  = 0.8684658, A, = 1.0000001, and 
A, = 2.0954451. Let the Markov chain {X.},,, be homogeneous where t(i, j )  = 

P[X,+,  = x, ) X ,  = x,] and 

(2) 

To 7 decimal places, the chain's equilibrium probabilities are given by .rr in 

where 1, is a 3-vector each element of which is 1.  

4.1. Uniform weak ergodicity. Two hundred independently simulated sam- 
ple paths of the joint Markov process {Z,,} = {(X,, Y,)} started from ZI = (XI, yl). 
Another 200, referred to as {ZA} = {(XL, YL)}, started from Z :  = (x2, y,), where 
(1) gives x ,  and x,, and 

Since there are only two age classes, age structure is determined by the 
scale-free ratio W,, = Yn(2)/Y,,(1). W,, is the number of old individuals at time n, 
conditional on the choice, for each realization, of an initial population size such 
that the number of young individuals at time n is exactly 1. Y. is not in general 
independent of total population size 1;. L,yo at time n nor, equivalently, is 
(L.ytr)(2) independent of (L.yo)(l). Hence the expectation of ratios E(W.) = 

E[(L.yo)(2)/(L.yo)(l)] is not in general equal to the ratio of expectations 

E [(Lnyo) (2)IIE [(L.~o)(l)l. 
To test the equality of distribution of the two random variables Wzol and 

W&, = Y~o,(2)/Y~ol(1) ,  the corresponding sample cumulative distribution func- 
tions, each based on 200 simulated values, were compared by a two-sample 
Kolmogorov-Smirnov test. The difference was not significant at the 0.2 level. 
The sample mean and sample variance of WmI were, respectively, 0.68873 and 
0.09367. The sample mean and sample variance of W:ol were 0.73658 and 
0.12055. These sample variances do not differ significantly, according to the 
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F-test. The sample means do  not differ significantly by the t-test. The sample 
density functions, with the grouping in Table 1, do not differ significantly, 
according to a xz-test of homogeneity. Thus the 400 simulations offer no 
evidence for a difference in the distributions of W,,,, and W;, , , ,  which had a 
combined sample mean of 0.71266 and variance of 0.10742. 

4.2. Renewal equation for invariant distribution (Part 11). If W ,  = w, and if  

the vital rates at the next time are X,,, = x,, then 

( 5 )  
W"+, = x, (2, I)/(& ( 1 , l )  + W"X~ (1,2)), 

= f i  (w"). 
Here f, is not the linear homogeneous function of Theorem 1. Let B be any 
Bore1 set of real numbers (for example, a closed interval). Then in terms of 
(X,,, W,,) rather than of (X,,, Y,,) = Z,, the limiting or invariant probability F is the 
solution of 

for j = 1, 2, 3 and every B. Here I B ( b ) =  1 if b E B, I B ( b ) =  0 if b e  B. 
To find F numerically, we approximated (6) by a family of linear equations 

and iteratively substituted each trial solution for F into the right side of the 
approximation to (6). 

Monte Carlo simulation and renewal equation solution for equilibrium distribution of age structure 

Intervals B of Monte Carlo simulation frequencies 400F(X X B )  
age ratio W X , ,  = W;OI = combined from 

w = y ( 2 ) l y ( l )  Y Z O I ( ~ ) / ~ Z O I ( ~ )  y ; 0 1 ( 2 ) / y k x ( l )  Equation (6 )  

Total 200 200 400 399.995 
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Table 1 shows the aggregated frequency distribution of the 400 simulated 
values of Wzol and the expected frequencies 400 F ( X  x B )  over w -intervals B of 
length 0.1. The goodness of fit of the Monte Carlo frequencies to those predicted 
from F was assayed after pooling the predicted frequencies over [1.4, 1.6) by 
assigning 8 degrees of freedom to  the X 2  value of 12.227, which is not significant 
at the 0.1 level. 

In Figure 1, the density of F is approximated by a rectangle of appropriate 
height over each of the 256 intervals of length w = 0.006250 in [0,1.6], for each xi 
in X. Sometimes the age structure gives full information about the vital rates and 
(nearly) vice versa. For example, W,E[O,O.l) if and only if X, = x,. 

4.3. Mean and variance of age ratios. With X given by (1) and t given by ( 2 ) ,  
A = t @ X i s  

with maximal eigenvalue A = 1.0771776 and corresponding right (column) and 
left (row) eigenvectors a and /3 given by 

Figure 1 
The invariant joint distribution F  of age structure and vital rates, assuming Equations ( 1 )  and (2). 
The abscissa w  is the ratio y  (2 ) / y  (1) of old to young individuals. The top panel, labelled F ( X  x d w ) ,  
approximates the marginal density of w  regardless of concurrent rates. Each panel below 
approximates the joint density of w  and the most recently applied Leslie matrix x,. For each w, the 
density in the top panel is the sum of the densities in the three below. For each x,, the sum of the 
densities over all w  is n(j)  in Equation (3). The arrow under each of the three lower panels indicates 
the stable age ratio when only the corresponding vital rates are repeatedly applied. The arrow under 
the top panel marks u  * ( 2 ) / u  * ( I ) .  
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Thus the long-run expected value of W,,, given that X,=xi, is 
a (2 i ) / a (2 i  - 1 ) ,  i = 1, 2, 3 ,  so that E(W,) = X i  .rr(i)a(2i)/a(2i - 1) = 0.7198994. 
The ratio of expectations is [ ( Ja ) (2 ) ] / [ ( Ja ) ( l ) ]  = Xia(2 i ) /X ,a(2 i  - 1) = 

0.6335754. According to a two-tailed t-test using the Monte Carlo sample 
variance, the theoretical mean E(W,)  does not differ from the Monte Carlo 
sample mean of 0.71266 at the 10 percent level. The ratio of expectations was not 
recorded for the Monte Carlo simulation. 

As a first approximation to the variance of W,, the variance Var [E(W,(  X,)] 
of the conditional mean of W,, again based on a,  is 0.0842221. This value is 
significantly smaller than the Monte Carlo sample variance of 0.10742 since 
X Z =  (399)(0.10742),(0.084222) = 508.9 with 399 degrees of freedom. 

As a second approximation, we calculate the variance of the random variable 
W *  which takes values W ( i ,  j )  with probabilities F*(i,  j ) ,  i, j = 1 ,  2, 3, where 
W ( i ,  j )  is the ratio of the second to  the first element of the 2-vector x i a [ j ]  and 
F*(i, j )  = t(i ,  j).rrG) from (2 )  and (3). Explicitly, 

The variance of W *  is then 0.1137813, which is acceptably close to the Monte 
Carlo sample variance since now X:, = 376.7. 

Robert M. May (personal communication, 11 April 1974) and Ronald Lee 
communication, 9 July 1974) independently suggested other approxi- 

mations to the long-run distribution of W based on x * defined in Corollary 2. 

4.4. Comparison of models. Table 2 compares three long-run parameters of 
the Markovian model (line 1) with three approximations to that model. The 

TABLE 2 
Comparison of long-run growth rate and age structure 

Age structure, old + young 

Model Growth Expectation Ratio of 
rate of ratios expectations 

(1) (11) (111) 

(1) X, Markovian 1.07718 0.71990 
(2) X. i.i.d. 1.07697 0.73600 
(3) X. constant 1.07697 0.61639 
(4) Linear averages 1.09414 0.67333 
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parameters are: the rate of growth (column I), the expected ratio E(W,) of old to 
young individuals (column 11), and the ratio of the expected number of old to the 
expected number of young (column 111). 

Line 2 describes the case of Corollary 2. In spite of being subject to the same 
matrices of vital rates with the same long-run frequencies as the population in 
line 1 ,  the population in line 2 has (in this example, but not in general) a lower 
long-run growth rate. A population which alters (by migration or  habitat 
selection, for example) the sequential dependence among its vital rates, all else 
remaining constant, can also alter its long-run growth rate. This control of 
sequential dependence may be an arena for the action of natural selection. 

The expected ratio of old to young (column 11) differs from the ratio of 
expected old to expected young individuals (column 111), in both lines 1 and 2. In 
the analysis of variable populations, it is quantitatively important to distinguish 
between averaging before and averaging after taking proportions. 

The two indices of age structure in columns I1 and I11 change in qualitatively 
opposite directions (in this example) as { X , )  changes from Markovian (line I )  to 
independent and identically distributed (line 2). It is not safe to use one index of 
age structure as a qualitative indicator of the behavior of the other index under a 
perturbation of the sequential dependence in the vital rates. 

The model in line 3 replaces the random X. by a fixed x * = Ci r( i )x , .  The 
growth rates and ratios of expectations in lines 2 and 3 are identical (Corollary 
2). Within line 3, the two indices of age structure are identical because there is no 
long-run variation in a population's age structure. 

Line 4 demonstrates that one naive approach to estimating the vital rates in 
lines 1 or  2 does not give exact results. Recall that hi is the dominant eigenvalue 
of x,. Let a, be the corresponding right eigenvector, 11 ai 11 = 1, i = 1, 2, 3. Then 
the 'growth rate' in line 4 is C,r(i)Ai,  the 'expectation of ratios' is 
C, n-(i)a, (2)/ai(l) and the 'ratio of expectations' is (Xi r(i)ai(2))/(Ci r ( i ) a i ( l ) ) .  
None of these naive estimates matches lines 1, 2 or  3 because none of the 
parameters is a linear function of the Leslie matrix to which it refers. Another 
naive approximation to the growth rate, IIA :"'= 1.056217, fails equally. 
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* Typographical errors on p. 22 of this paper should be corrected. In Theorem 3(iv), the region of 
integration should be 2, not C .  In Theorem 3(v), 11.3 and 4, x should be x '  and y should be y ' .  


