Ergodicity of Age Structure in Populations with
Markovian Vital Rates, I: Countable States

JOEL E. COHEN*

This paper establishes new ergodic theorems for population age
structure. Let A;, A;, ... be denumerable Leslie matrices, and for
{=1,2, m(0) be age structures (vectors with elements m;(¥(0)), sat-
isfying the assumptions of the Coale-Lopez theorem. Let {A(t, w¢)}®:—;
be sample paths of a discrete-time Markov chain with sample space
{Ar} ka1, and mO(t) = A(t, w)A(t — 1, wg) -+ A(l, w)m@O(0). Then
for b=1, 2, ... (weak stochastic ergodicity) lim,, (E(m ;V(t)/m;D(t))>
— E(m;®@)/m:@®))*) = 0 if the chain is finite and weakly ergodic
(see [4]) or denumerable and weakly ergodic (see [13]). The limit holds
and (strong stochastic ergodicity) {m‘©(t)},.; converge in distribution,
if the chain is homogeneous, aperiodic, positive recurrent, and uni-
formly geometrically ergodic.

1. INTRODUCTION

The ergodic theorems of demography establish that
the present age structure of a unisexual, closed popula-
tion is independent of the population’s age structure in
the sufficiently remote past, but depends entirely on the

recent history of vital (birth and death) rates.

"~ The new ergodic theorems in this paper are based on
the following model (from which, for the moment, the
technical details are omitted). Suppose that at each
instant in discrete time, the array of age-specific birth
and death rates to which a unisexual closed population
is subject is drawn from a set S of such arrays. Given two
initial populations, and two initial arrays of vital rates
from 8, suppose that the vital rates in the next instant
of time are chosen from S according to a Markov chain
independently for each of the two populations. It will be
proved that the difference between corresponding mo-
ments of the age structures of the two populations
vanishes.!

This theorem is stronger than existing ergodic theorems
for the age structure of populations in that the histories
of vital rates of the two populations are independent
sample paths of a stochastic process which does not
ignore its own recent history.

In a paper neglected by demographers, Furstenberg
and Kesten [3] study a similar model, although their
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1 The age structures also converge in distribution or in law [8] if the Markov
chain is homogeneous. A proof of this, and an explicit means of finding the limiting
distribution, will appear subsequently.

results are restricted to stationary processes. Their
bounded positive matrices may be identified with block-
products of Leslie matrices (arrays of vital rates which
are defined later).

Smith and Wilkinson [16] and Athreya and Karlin [1]
analyze branching processes in which the probability
generating function of the offspring distribution is a
random variable subject to influence by its prior history.
In multitype branching processes, the mean value matrix
is equivalent to the Leslie matrix [14]. However, only
in [1] are multitype processes mentioned, and in that
case only extinction appears to be studied.

In work which has appeared since this article was
originally submitted, Le Bras [10], continuing earlier
heuristic analysis [97], identifies states of a finite ir-
reducible stationary Markov chain with arrays of vital
rates. His conclusions seem related to those of both [3]
and this article.

This paper proves the mutual convergence of moments
of age structure when the arrays of vital rates are chosen
from a denumerable (not necessarily finite) set S of such
arrays, according to a Markov chain which is not neces-
sarily stationary or homogeneous in time, regardless of
the initial age structure or initial array of vital rates in
the population.

Section 2 states some necessary known Theorems 1 and
2, and the new Theorems 3 and 4, and proposes exten-
sions of the new theorems. Section 3 proves the new
theorems.?

Because of limited space, the demographic and bio-
logical motivation for these theorems cannot be presented
in detail here. The empirical stimulus for the present
model is a dissatisfaction with assuming fixed vital rates,
deterministically changing vital rates (periodic or other-
wise), or stochastic vital rates which, at every time ¢, are
independent of the vital rates at all times before ¢. A
priori a Markovian model of age-specific vital rates seems
a step toward reality.

The plausibility and utility of the Markovian assump-
tion can be tested, because the model suggests a scheme
for incorporating historical human data into a new

2 A future paper will extend these results to uncountably many arrays of vital
rates and provide a numerical illustration.

© Journal of the American Statistical Association
June 1976, Volume 71, Number 354
Theory and Methods Section

335



336

method of population projection. Arrange all the age-
specific effective fertility and survival coefficients cus-
tomarily used in age-specific population projections into
a vector. Fit a linear first-order autoregressive scheme to
a historically observed sequence of such vectors. (Such a
scheme, which does require an uncountable state space
of vectors of vital rates, is merely a simple particular
specification of the Markovian model, not the only one
possible.) Use the estimated parameters and an initial
array of vital rates to project a distribution of arrays of
future vital rates. Given an initial age structure, this
distribution of future vital rates implies a distribution of
projected subsequent age structures and population
sizes. The empirical merit of this scheme, or of other pos-
sible parametric specifications of the Markovian model,
remains to be determined.

Other applications in view include the study of the use
of different habitats (with corresponding different arrays
of vital rates) by mobile animal populations; and the
comparison of age structures of biological populations on
islands which are subject to similar patterns of weather
but not necessarily identical sequences of weather con-
ditions (with, again, corresponding sequences of vital
rates).

2. THEOREMS, OLD AND NEW

Closed, unisexual populations are observed at discrete
times ¢t = 0, 1, . Individuals are identified by their
age at last birthday, starting from age 0 and stopping at
age K > 1. The age structure of a population is given by
a (K + 1)-vector of nonnegative real numbers in which
the jth element is the (not necessarily integral) number
of individuals of age j at last birthday, 7 =0, ..., K.

Define C to be the (uncountable) set of all (K + 1)
X (K + 1) nonnegative real matrices of the (Leslie)
form

Jo S fe1 fr
So 0 0 0

A=10 s 0 0 (2.1)
0 0 sk O

where all elements other than the first row and the sub-
diagonal are zero, subject to the following conditions.

i. There is some number ¢ > 0, and there are at least two
distinet integers 4o, jo, where 0 < %, jo < K, such that the
greatest common divisor of 4o + 1 and jo 4 1 is one and for
every matrix 4 in C, fi; > e and f;; > e

ii. Foral AinC, e<s;j<1lforallj=0,...,K—1.

iii. There is some M’ > ¢ > 0 such that for all 4 in C and for
allj, 0 < <K, f; <M < .

In (2.1), f;is interpreted as the ‘“‘effective” fertility of
individuals in the jth age class, that is, the number born
to individuals aged 7 who survive to the start of the next
time interval. s; is the proportion of individuals aged j
at the start of a time interval who survive to become
aged j + 1 at the start of the next time interval.

Lopez [11] proves the following theorem of weak
ergodicity.
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Theorem 1: Let m(0) and n(0) be two nonnegative
(K + 1)-vectors with finite elements m;(0) and 7;(0),
0 < j < K, such that for at least some j° and some j”,
0 <7, 7 < max (io, jo), my(0) >0 and n(0) > 0.
(These vectors m(0) and n(0) are the two initial popula-
tion vectors.) If, for ¢ > 1,

m@E =AHAE—1) ---
nt) =AHA¢—-1) ---

where 4(0), 0 = 1,
all7,7,0 <4, < K,
lim ([m;@#)/n;(®)] — [m:@)/n:)]) =0 .

t >0

A(1)m(0) ,
A(1)n(0) ,

., t are any elements of C, then for

(2.2)

(2.3)

Corollary 1: Let e; be a (K + 1)-vector with elements
S, k =0, 1, , K, where 65 = 1if j =k 6 = 0 if
j # k. (Thus, e;7-m({) = m;({).) Let- m(0) and n(0)
satisfy the assumptions of Theorem 1. Let ¢ be any time
greater than a positive constant n (calculated from K,
20, Jo in [117]). Let A(6), B(6), 6 = 1, , t, be any ele-
ments from C. Then for any § > 0, however small, there
exists a times > ¢such thatforany 4;,r=t+4+1,...,s,
from C,

e;TA;Aj,_, - Aji, A(E) -+ A(1)m(0)
l:eiTAJ'uAia-l cer A LA - - A(1D)m(0)
&Aoo A,B() - B(l)n(O):I (2.4)
eTAj, -+ A;,,B@®) --- B(1)n(0)

Proof of Corollary 1: From the a%gebraic identity
[mj(S) B mi(S)]
ni(s)  ni(s)
m;(8)\ /ni(8)\[ni(s mq(s
=( i( ))( ]())[ (s) ()]’ ©.5)
ni(s)/ \ni(s)/Lns(s)  m;(s)
a necessary and sufficient condition for the vanishing of
either quantity in square brackets to imply the vanishing

of the other, as s — «, is that for any fixed ¢ < s there
exist constants ay, 8;, such that for s large enough,

0 < ar < (m;(s)/nj(s))(n;(s)/ni(s)) < Be < o . (2.6)

From Lopez’s proof of Theorem 1 [11, p. 55], if m(0) and
n(0) satisfy the boundedness and positivity assump-
tions of the theorem, so also will any m(¢) = A(f)---
A1)m(0) and any n(f) = B(f)---B(1)n(0). After
time n(= N, in Pollard’s notation [15]), all components
of m(¢) and n(t) are positive, so the ratio m;(t)/n;(t) is
defined for all j, 0 <j < K. Then for any ¢ > n,
m;(t) /n;(f) can never become either zero or infinite.

So at any time ¢ > n, for all j, there exist numbers
ro(t), Ro(t) such that 0 < ro(t) < m;(t)/n;i(t) < Ro(?)
< . From time ¢ + 1 onward, the same sequence of
matrices is applied to both m(¢) and n(¢). Lopez’s proof
of Theorem 1 implies, then, that for all s > ¢,

0 < 7o) < my(8)/ni(s) < Ro(t) < =,
j=0,...

2.7)



Population Age Structure Under Markovian Vital Rates

From [11, p. 567, at any time s > n,

0 < RIS n;({®)/ns(t) SR < o,

5,7 =0,...,K . (28)

Taking a; = ro(t)/R and B; = Ry®)R gives (2.6).
Theorem 1 guarantees that the left side of (2.5) vanishes
as s — t — o ; hence, the corollary.

Theorem 2 (from [19]): Let S-be a denumerable
state space with at least two distinct elements and
I =1{1,2, ...} the set of indices of elements of S. Sup-
pose an irreducible, aperiodic, positive recurrent geomet-
rically ergodic Markov chain on S has time-homogene-
ous one-step transition probabilities P = {P;}:;er,
where P; is the conditional probability that the state of
the chain at time ¢ + 1 will be the state indexed by j,
given that the state of the chain at time ¢ is the state
indexed by’ 7. Then there exists a unique sequence
{m;, 7 € I} satisfying

m>0, j&E€I,
mi=1,
€
= o (2.9)
1rj=Z1riP¢j, all JEI,
eI

[Pii® —mi| < Mupt, 2, jE€EI,Mi;;<w,p<1,

where P;;(® is the {-step transition probability from ¢ to
J, Pi;M = P;j, and p is independent of 7, j.

Such a chain will be cailed uniformly geometrically
ergodic if My; < M < », 4, j & I. Every time-homo-
geneous finite irreducible aperiodic Markov chain is uni-
formly geometrically ergodic.

Theorem 3 (strong stochastic ergodicity): Let S be a
denumerable subset, containing at least two distinct
elements, of the set C of Leslie matrices defined before
Theorem 1. Let I be the set of indices of the elements
{Ay, As, ...} in S. Let m(0) and n(0) satisfy the hypothe-
ses of Theorem 1. Suppose o

m() = AMA@E—1) -+ A@Am() ,

(2.10)
n(t) = B@)Bt — 1) --- B(2)Am(0) ,

where the sequence A(2), A(3), ... of matrices from S
is determined by a time-homogeneous irreducible aperi-
odic positive recurrent uniformly geometrically ergodic
Markov chain on the state space S starting from state
A, and the sequence B(2), B(3), ... of matrices from
S is independently determined by the same Markov
chain starting from the state A,. More precisely, for all
ktinl,t=12, ...

PLAGt+ 1) = A |A®) = Ar] = Pre

A(1) = A, with probability 1 ;
P[B(t+ 1) = A4;|B(t) = Ax] = Pu ,

B(1) = A, with probability 1

(2.11)
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Then for every integer b > 1,0 < 1,5 < K,
lim (E(m;(t)/mi(t))® — E(ni(t)/n:())®) = 0 (2.12)

t—>o

and m;(t)/mi(t) and n;(t)/ni(t) converge in distribution
ast— «.

Define a transition matrix P of a denumerable-state
Markov chain as regular if it is aperiodic and irreducible.
Suppose a Markov chain has the successive regular transi-
tion matrices P(1), P(2), .... Let H(¥) = P(1),P(2)
-++ P(t). Let I be the index set of states. The chain is
weakly ergodic in the sense of [4] if, for every ¢, 7, £in I,
and for every e > 0, there exists ¢ such that

[hij(®) — he; () | < €

where h;;(t) is the 4, jth element of H (t). For such a chain
lim, ., h+;(f) may not exist. The chain is weakly ergodic
in the sense of [13] if, for every choice for the origin of
time and for every e > 0, there exists ¢ such that for
every 1, j, £1in I, (2.13) Lolds.

(2.13)

Theorem 4 (weak stochastic ergodicity): Let S be a subset
of the set C of Leslie matrices defined before Theorem 1.

Let m(t), n(f) be defined as in (2.10). Here, the se-
quence A (2), A(3), ... of matrices from 8 is determined
by a weakly ergodic inhomogeneous Markov chain with
regular transition matrices P(1), P(2), ... and state
space S, starting from state A;. The sequence B(2),
B(3), ... of matrices from S is independently deter-
mined by the same Markov chain starting from the state
A,. More precisely, for all k, ¢ in the index set I,
t=1,2 ...

PLA(+1) = A(JA®) = 4] = Pu@) ,

A(1) = A, with probability 1 -;
P[B(t+1) = 4/|B() = 4] = Pu(®) ,

B(1) = A, with probability 1

(2.14)

i. If the chain is weakly ergodic in the sense of Hajnal, assume
the number N > 2 of states in S is finite.

ii. If the chain is weakly ergodic in the sense of Paz, assume the
the number of states in S is denumerable.

Under either Assumption i or ii, for every integer b > 1,
(2.12) holds.

Neither Theorem 3 nor Theorem 4 asserts that the
convergence (2.12) is uniform over the order b of the
moment. Only (2.12) will be proved here. After seeing
these results and a draft of the paper cited in Footnotes 1
and 2, Norman Kaplan (via personal communication,
July 1975) proved concisely the convergence in distribu-
tion asserted in Theorem 3.

Generalizations of Theorems 3 and 4 may affect either
the operator, which is here narrowly specified as a Leslie
matrix, or the stochastic process governing the choice of
operator, here, particular kinds of Markov chains.

Theorems 3 and 4 obviously apply, by [3, Lemma 3.3],
if Leslie matrices are replaced by strictly positive matrices
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bounded above and bounded away from zero. The
theorems probably apply if Leslie matrices are replaced
by certain classes of power-positive matrices, positive
linear operators satisfying certain contraction conditions
(see [6, 77), nonlinear operators of Solow-Samuelson
type [17], or certain Banach space operators [2].
Theorems equivalent to Theorems 3 and 4 probably
apply (conditional on nonextinction) if the Leslie or
strictly positive matrices are interpreted as the expected
value matrices of multitype branching processes in ran-
dom environments (see [1, 16]), or if the vital rates of
Leslie matrices are viewed as parameters of Bernoulli
trials (see [12, 14]).

Theorems 3 and 4 obviously apply if the order of de-
pendency in the Markov chain is increased from first to
any fixed order.

The theorems probably apply if the Markov chain is
replaced by an ergodic Markov chain in which the transi-
tion matrix is itself an iid random variable (see [187]), or
indeed by any strictly stationary metrically transitive
discrete-time stochastic process.

It may also be possible to relax the assumption that
the stochastic process generating the sequence of opera-
tors applied to one population is identical to the stochastic
process for the other population. Hajnal [5] shows how
close the transition matrices of two Markov chains have
to be for them to have the same type of long-run be-
havior. Such conditions may suffice to guarantee, for a
homogeneous process, convergence in distribution of the
age structures.

3. PROOFS OF THEOREM 3 AND THEOREM 4

Proof of Theorem 3: Let s, t, s > t > 1, be the two time
periods, and b be any positive integer. Then, under the
assumptions of Theorem 3, the following moments exist
by (2.8) and are equal to

E(m;(s)/mi(s))®
=Z Z Z ZPliszzJ’a"'Ph—lft"'
J2 €I 3EI IS js €I
TA; oo Aj - AjAm(0)Tb
I )] @)
eTdy, - Ay - AnAm(0)

and E[ (nj(s)/n:(s))?] is identical to (3.1), save that n(0)
replaces m(0), A, replaces A, and P,;, replaces Pyj,. Let
8 > 0 be an arbitrary small positive number, and let
m*(t) = A:'m(0), taking ¢ as fixed for the moment. Now
choose s — ¢ to be large enough to satisfy the following
two conditions. (The possibility of finding such a value
of s —t, given any 4, is guaranteed by Corollary 1.)
First, for every m(t) = 4;, --- 4;m(0), there exists a

number 8:(ji, ..., j2) such that [61(j;, ..., J2) | < 6 and
e.iTAis e A‘jl+lm(t)
eiTAJ'a e A.‘i:+1m(t)
e.TA.a “ e A m*t) . .
= o d i ( + 61(.70 ceey .72) . (32)
eTA; -+ A;,m*Q)
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Second, for every n(t) = A;, --+ A;,4.n(0), there exists

a number 85(js, ..., j2) such that [6:(j;, ..., J2) | <8
and
ejTA.’is e Ait+1n(t)
eiTA-is e AJ:+1n(t)
ejTAjs cee Ait+1m*(t)
= + 02(js, ..., 72) . (3.3
eTA;, - A, m*{) (i . @3

Now by the binomial theorem, for any finite integer b,
(x + 8)® = x* 4 6C, where, if x and § are uniformly
bounded above, so is C. Hence, (3.1) may be rewritten,
and (3.2) and the binomial theorem may be used to obtain

Bmi(s)/mi(s))?

=3 -+ 2 Py, o+ Py
J2 Jt
'(Z cor 2 Pijiy o0 Py,
Jt41 Js
.I:efTAf, v A4y e A,-zAlm(O))ij>
eTA;, -+ A, (45 --- A;Am(0))
=Z "'Zpljz"'Ph_m
J2 Jt
(Z w0 2 Pids o P,
Jt+1 Js
eTAj, -+ Aj,m*() . N
l: d ’ s +61(.7!’ sy .72)] )
eTA;, -+ A,,m*Q)
= Z le-ljt

ZPIJ'z
Jt

'(Z coo 2 Pigiy o Py,
Jt+1 Js

eJ'TAJ's tee Ajz+1m*(t) d
'[eiTA,-. = A,-,Hm*(t)] )
+Z ZPliz Pja—ljaﬁl(jt}"'}j2)
iz Js Brle ey i)
= Z Plj:(t—‘l) <Z e Z Pjtjt+l e P.’ia—lja
Jt Jt4+1 Js
ejTAig e Ait+1m*(t) b
[eA : Aa'mm*(t)])
+2 o X Py Pj, ;01(Jty « - +y J2)
" " B1(fay e v vy §2) 5, (34)

where B,(js, ..., J2) is given explicitly in (3.8).

The last step of (3.4) follows because Pi;,V, the
(t — 1)-step transition probability from state 1 to state
s, is simply the sum over all (¢ — 2)-tuples (Ja, «++; Je—1)
of the products of one-step transition probabilities.

Now choose ¢ large enough so that, for all 7, in I,

Py, =, + v(Js) lve(G0 | <8/2 ,

t=1,2. (3.5)
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The possibility of finding a value of ¢ such that (3.5) holds
uniformly in all j; is' assured by uniform geometric
ergodicity. Using (3.5) in (3.4) gives

E(m;(s)/mi(s))®
= Z Tj, (Z Z Pf»jt+1 ' Pjs—lja
Jt Jt+1 \ Js
[ejTAJ's e Ait+1m*(t)]b>
eTA;, - Ait+1m*(t)
+. 'Yl(jt)<z Z P:iti¢+1 te Pia—lic
Jt+1 Js
l:e:iTAJ'a te Ait+1m*(t):|b> )
eiTAJ'a : Ait+1m*(t)
+ 2 Piy -+ PjLi0i(Js, -y J2)
.1'2 Js
Bi(jo -+ .s d2) . (3.6)
An identical argument gives an expression for

E[ (n;(s)/ni(s))*] which is the right side of (3.6) with
v1, Pij, 81 and B; replaced, respectively, by va, Paj,, 8,
and B 2.

Then the absolute difference is given by

| E(mj(s)/mi(s))® — E(n;i(s)/ni(s))?|
= | = (2 - T Pais o Pi
e;TA; .-+ Aj m*®)7°
'[eﬂAj. : Ajmm*(t)] )+ z
Z [Plfz Tt Pja—l]‘aalt(jb coey j2)Bl(j8y ceey .72)
- P2f2 e Pia—lia62(jtr ) j2>B2(j8) ey .72)]

< 6R* 4+ 26B = §(R* 4+ 2B), (3.7)

where R is the bound in (2.8) and the bound B satisfying

B > Bi(jsy « - -y J2)
b /B\N[eTA;, -+ Aj,m*@)T"
AN Forenwnec
Loe(Gey ooy g)I1, £=1,2, (3.8)

depends on R and b and does not increase as § decreases.
Since the last member of (3.7) can be made arbitrarily
small by choice of §, the difference between the moments
in the first member of (3.7) vanishes. Thus, (2.12) is
proved.

Proof of Theorem 4: The proof is a repetition of the
proof of Theorem 3, except for two changes. First, for all
%, Jurin T and all t = 1,2, ..., Py, () replaces P, ,.
Second, instead of (3.5), choose ¢ large enough so that,
for all j,in I
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Py;, ) = hy;, (0

Py, + v(Ge)
= hi;, (&) + (70 -

The possibility of finding a value of ¢ such that (3.9)

holds uniformly in all j; is now guaranteed by (2.13) and,

in Case i, the finiteness of S. From (3.6) onward, the

proof is adjusted for the replacement of m;, by hi;;(t) or
h2jt (t).

[Received March 1974. Revised May 1975.]
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