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The results of three groups of experiments on the control of foot (basal 
disk) differentiation in Hydra viridis are well predicted by mathematical 
models of remarkable simplicity. In each of the experiments, a group of 
cells, called the actor, may or may not form a foot. The probability of foot 
formation is influenced by actor-specific properties and by properties of the 
rest of the animal, which may be called the setting. 

A natural interpretation of the mathematical models is that the actor 
forms a foot or not according to the balance of an inhibition of foot 
formation determined by the setting, and a critical inhibition level or 
"threshold", an assumed actor characteristic. Threshold and inhibition are 
assumed to be normal random variables, the means of which depend on 
the parameters of the experiment. A foot is assumed to form in an 
individual case if the threshold is greater than the inhibition. 

Whw transformed to a probit or logit scale, as described in the text, 
the mean intensity of inhibition appears to increase linearly with the 
quantity of foot tissue and to decrease linearly with increasing distance 
from the foot end of the hydra's body axis. The mean level of the threshold 
appears to increase linearly with time during which actor tissue is removed 
from inhibitory influences, but varies nonlinearly with position within 
the hydra. 

The inhibition-threshold models are tested here through statistically 
more tractable but numerically indistinguishable models of different 
mathematical form. If interpreted directly these models suggested that 
the odds that a foot will form are the product of an actor-determined scalar 
and a setting-determined scalar. The logarithms of these scalars are 
linear functions of the experimental parameters. 

t Present address: The Rockefeller University, New York, N.Y. 10021, U.S.A. 
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1. Introduction 

A hydra holds fast to its substrate by means of its foot (basal disk). When 
the basal disk of Hydra viridis is cut off, the animal regenerates a new disk. 
The dependence of foot formation on several manipulable parameters has 
been investigated (MacWilliams & Kafatos, 1968; MacWilliams, Kafatos 
& Bossert, 1970; MacWilliams, 1972). The designs of the experiments 
vary. However, in each case one can identify an actor, a group of cells 
which may form a basal disk or may not, and a setting, a group of cells 
whose properties (varying independently, by experimental design, to those 
of the actor) may influence the probability of disk formation. 

The data from these experiments have been shown (MacWilliams, Kafatos 
and Bossert, 1970; MacWilliams, 1972) to be consistent with a simple 
model in which foot formation is controlled by two factors, a continuously 
variable inhibition of disk formation determined by the setting, and a critical 
inhibition level, or threshold to inhibition, characteristic of the actor. In 
this model, the inhibition must exceed the threshold level in order to prevent 
the actor from forming a disk. For reasons which will become clearer later, 
we shall refer to this model as a probit model. 

The computational procedure used to test probit models by MacWilliams 
et al. (1970) has the disadvantage that it does not necessarily accept all 
models which can account for the data. While this shortcoming does not 
weaken the conclusion that a particular probit model is acceptable as a 
description of the data, it does make it impossible to buttress the case for 
a particular model by rejecting some possible alternative formulations. 

In this paper we solve this problem. We first introduce a general probit 
model of the control of foot formation in transplantation experiments, under 
which a variety of specific probit models may be naturally formulated. 
These models are well approximated numerically by testable models of a 
different mathematical form, which we shall call logit models. The logit 
models, which we shall describe more fully, are hierarchical log-linear 
models recently developed for the analysis of multidimensional, possibly 
incomplete, contingency tables. We test various logit models, including 
models that explicitly incorporate certain linear relationships between the 
values of the experimental parameters and the model variables, suggested 
by the probit models. The results make it possible to argue that certain of 
the logit models, and the empirically indistinguishable probit formulations, 
are the simplest acceptable interpretations of the experimental data. 

The probit models used in this paper may be very briefly characterized 
as follows. Given a number of experimental variables (such as time, quantity, 
or location), assume there is some function Z of these variables such that a 
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hydra forms a foot if its Z > 0 and fails to form a foot otherwise. All random 
effects in the experiments are summarized by assuming that the probability 
of foot formation in repeated experiments with the same values of the 
experimental variables is @(Z), where @(.) is the cumulative distribution 
function of a standardized normal distribution (mean zero, variance one). 
The probability of foot formation increases sigmoidally with Z. This paper 
reports a search for the simplest acceptable functions Z. These functions 
turn out to be linear [equation (1 l)] or at worst cubic [equation (13)] func- 
tions of the experimental variables. Such simplicity makes possible a simple, 
still entirely speculative, physical interpretation of the models. 

The following two sections describe the mathematics of the probit and 
logit models in greater technical detail. The section which describes "specific 
models and tests" gives a concrete account of the experiments and results 
of analysis. 

2. The General Probit Model 

We assume that a number of different things influence the actor's decision 
to form a foot or not. Each influence is modeled by a scalar variable Yi. 
The scalars are assumed to be summed, and a foot formed if and only if 
the sum exceeds a certain critical value K, which is a characteristic of the 
experimental system. Thus in an individual experiment, given: 

Z = - K + Y l +  ...+Y,, (1) 

a foot is formed if and only if Z is positive. 
In systems with only two influences Yl and Y2 a straightforward inhibition- 

threshold interpretation is possible. The criterion for foot formation may 
be rewritten : 

Z = Yl-(K- Y2) > 0. 

A foot is now formed if and only if Yl > (K- Y2). Thus Yl may be regarded 
as the threshold and (K- Y2) as the inhibition. The choice of Y, or Y2 as 
the threshold-modeling variable is of course arbitrary. 

Each variable Yi is associated with one or a combination of the experi- 
mental parameters. Each of the specific models we will propose and test is 
defined by the set of parameters and parameter combinations represented 
by its variables. 

The stochastic nature of the experimental system is modeled by assuming 
that the Y, vary from repetition to repetition of a single experiment. The 
variation of each Yi is assumed to be normal. Hence Z is also a normally 
distributed random variable. Since a foot is assumed to form if Z exceeds 
zero, we have exactly the model of the dose-response relation adopted in 
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probit analysis (Finney, 1964). Hence we call models of the form of 
equation (1) probit models. 

If the absolute value of the mean of Z is less than a few times its standard 
deviation, Z will be both positive and negative with non-negligible prob- 
ability. For simplicity, we assume that within any data set of given experi- 
mental design, the standard deviation a is constant. Since the frequency of 
foot formation depends only on the ratio of the mean to the standard 
deviation of Z, the model loses no generality if we set o = 1. Then for any 
given mean of 2, the model predicts that the probability of foot formation 

TABLE 1 
Frequency of foot formation andpredictions of a logit model in one 

sort of transplantation experiment 

Condition of Cut-regraft interval in minutes (T) 
grafted basal 

disk (S) 0 15 35 60 91 130 179 

Intact 
Observed 2 2 4 7 12 9 9 
Predicted 2.8 2.9 4.6 6 .O 11.5 8.1 9.1 
Out of 10 8 8 12 17 9 10 

Excised 
Observed 9 7 1 1  11 12 12 10 
Predicted 8.2 6.1 10.4 12.0 12.5 12.9 9.9 
Out of 10 7 11 13 13 13 10 

Model d.f. xa Ga 

The bottom half of the body stalk (peduncle), including the foot, of a hydra was removed 
and replaced by a similar piece from another hydra after a varying interval (T). In the 
first series, the regrafted fragment included the basal disk; in the second, the graft was 
a bottom half-peduncle from which the entire basal disk had been excised. For each 
combination of the cut-regraft interval and the condition of the graft's basal disk several 
experiments were performed. The host formed a basal disk of its own in some but not all 
cases. Observed frequencies of host's foot formation, previously unpublished, are identical 
to those in MacWilliams & Kafatos (1968). Predicted frequencies are from model 4. 
"Out of" is the number of experiments performed; d.f. = degrees of freedom; xa = 
Pearson's chi-square; G2 = likelihood chi-square. For model 4, marked t, the probability 
(calculated from Ga) of a worse fit by chance between observed and expected frequencies 
is greater than 0.05, an acceptable fit; for the remaining models, the probability of a 
worse fit is less than 0.005, signifying a poor fit. 
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is the area to the right of zero under a normal probability density curve 
with the given mean and standard deviation of 1. 

The effects of the experimental parameters on foot formation are modeled 
by allowing them to determine the mean values of the variables Yi. No 
assumptions are made about the form of this dependence; instead, we 
assume an independent value for each variable Yi for each possible value 
or value combination of the associated experimental parameter(s). For 
example, in model 4 for Table 2, a variable Y, associated with basal disk 

Frequency of foot formation andpredictions of logit models in a more elaborate 
transplantation experiment of the same sort described in Table 1 

Grafted disk Cut-regraft interval in minutes (T) 
size (S) 0 40 80 120 160 

No disk 
Observed 
Model 4 
Model 4a 
Out of 

Quarter disk 
Observed 
Model 4 
Model 4a 
Out of 

Half disk 
Observed 
Model 4 
Model 4(a) 
Out of 

Whole disk 
Observed 
Model 4 
Model 4(a) 
Out of 

Model d.f. xa Ga 

1 (F) (T, s )  19 120.30 131.25 
2 (F, T) (T, s) 15 83.32 92.62 
3 ( 6  s )  (T, s )  16 51.70 55.06 
4 t  (F, T) (F, S)  (T, S)  12 6.68 7.13 
q a ) t  (S linear) (T linear) (T, S )  17 7.94 8 a65 

Two additional classes of regrafted fragment were introduced, bearing half and quarter 
basal disks. Observations are from MacWilliams et al. (1970); predictions are from models 
4 and qa). For models 4 and 4(a) [equation (ll)], marked t, the probability of a worse 
fit is greater than 0.1, signifying a good fit; for the remaining models, the probability is 
less than 0.001, signifying a poor fit. 
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TABLE 3 
I 

Foot formation frequencies and logit model predictions in a second 
sort of transplantation experiment 

Final 
transplant 

position (P) 

Initial transplant position (D) 
7 6 5 4 3 2 1 

Observed 
7 Model 4 

Model 4(h) 

Observed 
6 Model 4 

Model 4(h) 

Observed 
5 Model 4 

Model 4(h) 

Observed 
4 Model 4 

Model 4(h) 

Observed 
3 Model 4 

Model 4(h) 

0 bserved 
2 Model 4 

Model 4(h) 

Observed 
1 Model 4 

Model 4(h) 

Observed 
7 Model 4 

Model 4(h) 

Observed 
6 Model 4 

Model 4(h) 

Observed 
5 Model 4 

Model 4(h) 

Observed 
4 Model 4 

Model 4(h) 

Observed 
3 Model 4 

Model 4(h) 

Host's basal disk intact (H = 1) 
1 8 22 23 - - - 
0.8 8.8 20.7 23.4 23.7 24.4 24.9 
1.1 13.6 21.8 23.6 24.2 24.7 24.9 
- 5 16 21 24 - 
0.4 4.9 17.2 21.6 22.2 23.7 24.8 
0.3 5.7 15-7 20-1 22.0 23.7 24.8 
- - 8 18 18 19 - 
0.1 1.6 9.3 15.8 17.2 20-7 24.4 
0.1 1.7 7.4 12.5 16.1 20.5 24-2 

- - 5 4 15 24 
0 .O 0.3 2.6 6.3 7-5 12.0 22-2 
0 .O 0.4 2.3 4.9 7.7 13.2 21.9 
- - - 1 5 19 
0 .O 0.1 0.8 2.1 2.7 5.1 17.3 
0.0 0.1 0.6 1.4 2.5 5.4 15.9 
- - - - - 0 4 
0 .O 0 .O 0.1 0.2 0.2 0.5 3.5 
0.0 0.0 0 a2 0.4 0-7 1.6 7.5 
- - - - - 4 
0.0 0 .O 0.1 0.2 0.3 0.5 4.0 
0 .O 0.0 0 .O 0.1 0.2 0.4 2.4 

Host's basal disk excised (H  = - 1) 
2 16 23 - - - - 
2.2 15.3 23.3 24.4 24.5 24.8 25.0 
1.4 15.0 22.4 23.9 24.4 24.7 25.0 

9 21 24 - - - 
0.9 9.4 21.1 23.5 23.8 24.4 24.9 
0.7 10.8 20.4 22.8 23.8 24.5 24.9 
- - 19 21 22 - - 
0.4 5.3 17.7 21.9 22.5 23.8 24.9 
0.4 7.0 17.3 21.1 22.7 24.0 24.8 
- - 20 22 21 - 
0.2 3.1 14.0 19.7 20.6 22.8 24.7 
0.2 4.1 13.3 18.3 20.8 23.1 24.7 

- - 16 19 22 
0.1 1 .O 6.7 12.8 14.3 18.6 24.0 
0.1 2.3 9.1 14.5 17.8 21.5 24.4 



FOOT FORMATION I N  H Y D R A  93 

TABLE 3 (continued) 

Final 
transplant 

position (P)  

Initial transplant position ( D )  
7 6 5 4 3 2 1 

Host's basal disk excised ( H  = l)-continued 
Observed - - - - - 20 23 

2 Model 4 0.1 1 -0 7.0 13.2 14.7 18.9 24.1 
Model 4(h) 0.0 1.2 5.6 10.3 13-9 19.0 23-8 
Observed - - - - - - 24 

1 Model 4 0.1 0.9 6.4 12.5 14.0 18.4 24.0 
Model 4(h) 0.0 0.6 3.2 6.5 9.8 15.4 22.7 

d.f. xa Ga 

1 (F, D) (F,P) (F. H )  (D,  P, H )  26 
2 (F, D, H )  (F, P)  (D.P, H )  20 
3 (F. D.P) (F. H )  (D,  P, H )  17 
4 t  (F.P, H )  (F. D) (D,  P, H )  20 
4(a) (F, P, H )  ( D  linear) (D,  P, H )  25 
4(b)t ( P  lin.; P, H )  (F, D) (D,  P, H )  25 
4(c)t (P, H lin.; P)  (F, D) (D,  P, H )  25 
4(d) ( P  lin.; P, H )  ( D  lin.) (D,  P, H )  30 
4(e) (P, H lin.; P)  ( D  lin.) (D ,  P, H )  30 
4 ( f ) t  ( P  lin.; P, H lin.) (F, D) (D,  P, H )  30 
4(g) ( P  lin.; P, H lin.) ( D  lin.) (D,  P, H )  35 
4(h)t ( P  lin.; P, H lin.) ( D  cubic) (D,  P, H )  33 
5 (F, D. H )  (F. D, P)  (D,P,  H )  11 
6 t  (F, D, P)  (F, P. H )  (D. P. H )  11 
7 t  (F. D, H )  (F. P, H )  (D. P, H )  14 
8 t  (F, D, P)  (F, D. H )  (F, P, H )  (D. P, H )  5 

The eight apico-basal eighths o f  a hydra's body column were numbered from 0 at the 
basal end to 7 at the head. The seven planes between the pairs o f  body annuli were 
numbered from foot to head as 1-7. Annuli corresponding to  the numbered eighths were 
removed from a donor hydra and grafted laterally into a wound made at one o f  the planes 
o f  section in a host, the basal disk o f  which was removed in some experiments. The annuli 
were scored after two days for foot formation. Observed frequencies o f  foot formation 
for various combinations o f  original transplant position (D),  final position o f  transplant (P), 
and host condition ( H )  are from MacWilliams (1972). "-" means no experiments were 
performed; otherwise n = 25. Predictions are from model 4, equation (12), and model 4(h), 
equation (13). t ,  as in Table 2. 

size S has four mutually unconstrained means, one for each of the disk 
sizes (0, 1/4, 1/2, 1) used in the experiment. In model 5 for Table 3, a variable 
which depends upon the combination of the transplant's original position 
(seven values) and the condition of the host basal disk (two values) has 
14 means, which may be arbitrarily related to one another. 

Our models do not specify a priori numerical values for the variables Yi 
and K. Rather, the models may be considered hypotheses that satisfactory 
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numerical values exist. Given a specific model and any set of numerical 
values for the means of Yi and K, predicted foot formation frequencies may 
be calculated. The ability of a particular model to account for the experi- 
mentally observed frequencies of foot formation is determined by seeking 
the set of numerical values for which the corresponding predicted frequencies 
best fit the actual frequencies of foot formation. If the difference between 
the best possible prediction and the actual results, as judged by statistical 
measures, can be reasonably attributed to sampling error, the model is 
considered acceptable. 

3. The Log-linear Approximation: Logit Models 
To test particular cases of the general probit model, we use the compu- 

tationally well-understood hierarchical log-linear models recently developed 
for the analysis of multidimensional contingency tables (Bishop, 1967, 
1969; Goodman, 1969, 1970, 1971a,b, 1972; Mantel, 1970; Fienberg, 1970, 
1972). Our data may be viewed as contingency tables: in each data set the 
effects of several parameters on the frequency of foot formation are reported; 
the corresponding contingency tables have one dimension for each of the 
experimentally manipulated parameters and a further dimension for the 
outcome, this last with two possible values, foot or no foot. A log-linear 
model specifies that the logarithm of the number of experiments falling into 
each cell of this table is given by the sum of a set of scalar variables, each 
associated with one or a combination of the dimensions of the contingency 
table. 

In the data of Table 2, for example, two experimental parameters are 
manipulated: the size of the basal disk of the setting, and the disk regenera- 
tion time in the actor. If F denotes the contingency table dimension corre- 
sponding to the result (foot formation, F = 1 ; or not, F = 0), S denotes 
the dimension corresponding to basal disk size, and T denotes the regenera- 
tion-time dimension, each cell in the contingency table may be specified 
by a subscript of the form ijk, where i = 0, 1 for the variable F; 
j = l , 2 ,  . . ., 5 for the variable T; and k = 1,2, 3,4 for the variable S. 
Let Xijk be the expected frequency for cell ijk. (All logarithms in this paper 
are to the base e.) The general log-linear model for this table is then 

In xi,, = 6 + 1 ~ + A ~ + A ~ + L ~ + + ~ s + 1 T , " + A ~ ~ s  (2) 
subject to the constraints 

C A ~ = x ~ ~ = x n ; ~ = C n ; s = ~ ~ p = x ~ ~ = ~ ,  
i i i k i k 

(3) 
FTS - C Aijk - C 1g = 1 nF = 0, 

i i k 
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where the superscripts indicate the experimental parameters, or combina- 
tions of experimental parameters, associated with each of the A variables. 

The odds of foot formation (defined as the ratio of expected numbers 
of cases of foot formation to expected numbers of cases of no foot formation) 
for any combination of the experimental parameters are given in the general 
log-linear model, as a consequence of equation (2), by 

X X jk = e x  [(A - A) + ( A  - A )  + ( A  - A )  + ( A  - A ) ] .  (4) 

The constraints in equation (3) on the A parameters reduce equation (4) to 

X, j k / ~ o  jk = exp (212: + 21;: + 21;; + 2 1 3 ) .  (5) 
The frequency of foot formation f;., = (odds/(odds+ 1)) is then predicted 
by equation (5) to be 

fjk = [1+ exp ( - 2A7 - 2ATT - 2A7: - 21TTf)I -'. (6) 
This is an equation for the logistic curve 

y = [I +exp ( - 2 4 - '  (7) 
and may be written in the simplified form 

. logit ( fjk) = A: + AT: + A;: + (8) 
where 

Because of the appearance of the logit function in equation (8) we shall 
refer to the particular cases of the general log-linear model which follow 
as logit models. 

It is well known (Berkson, 1951) that when appropriate scales are chosen 
the logistic curve and the cumulative normal distribution are very similar, 
differing in value by a maximum of less than 1.5 %. The dependence of the 
frequency of foot formation on the 1 variables in logit models is thus indis- 
tinguishable from the dependence of the frequency of foot formation on 
the variables Yi in probit models, equation (I), in experiments involving 
small sample sizes. 

Specific logit models set various of the A variables in the general model, 
equation (2), to zero. There is a logit model corresponding to each probit 
model. For instance, the model 

In Xi,, = e+~;+lljT+~:+~I"j'+aj'k" (9) 

which predicts foot formation frequencies A, which satisfy 

logit (fjk) = A: +A:; (10) 
is isomorphic to a probit model which assumes that only the regeneration 
time (variable T, subscript j) influences foot formation. The variable 1: 
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plays the role that K plays in equation (1). The A variables without super- 
script F, whose values do not depend on F, are involved only in modeling 
the experimental design. 

For each interesting probit model, we have tested the corresponding logit 
model. The logit models are referred to in the tables by their abbreviated 
list of parameters (Bishop, 1967; Goodman, 1970). Each parenthesized 
group of letters in an abbreviated list of parameters specifies a margin of the 
contingency table which the corresponding margin of the expected frequency 
table is required to fit exactly. A margin in a multidimensional contingency 
table is a sum of cell frequencies over one or more of the table's dimensions. 

For each logit model, an iterative proportional fitting procedure finds the 
maximum likelihood estimate of the expected frequency corresponding to 
each observed frequency. One of us (J.E.C.), who carried out the numerical 
computations, used a slightly modified version of a computer program 
written by Bishop for the iterative fitting procedure. Additional computer 
programs were written to solve the estimated frequencies for the values of 
the A variables, and to obtain the estimated frequencies when the A variables 
were assumed subject to linear or cubic constraints. 

The goodness of fit of the expected to observed frequencies is measured 
by Pearson's classical X2 and by the log-likelihood ratio G2, both of which 
have the distribution of x2. The number of degrees of freedom is the 
difference between the number of measured frequencies and the number 
of independent scalars estimated from the data. It should be noted that in 
incomplete contingency tables mutual dependencies may exist among the 
non-zero A variables beyond those implied by equation (3). When working 
with log-linear models, the degrees of freedom are customarily calculated 
by subtracting a fixed number for each fitted margin from the total number 
of contingency table cells. The number of degrees of freedom to be sub- 
tracted for each margin is a routine calculation except in Table 3, where 
the margin (D, P) has nine degrees of freedom, (F, D, P) has nine, and 
(D, P, H) has five. 

4. Specific Models and Tests 

(A) TABLES 1 AND 2 
In the experiments reported in Tables 1 and 2 the foot and the basal 

half of the body stalk (peduncle) were removed from a hydra at time zero, 
initiating foot regeneration. The regenerating foot is considered the actor 
in this experiment. After a variable regeneration time a new basal half 
peduncle bearing a foot, a part of a foot, or no foot was grafted to the 
original animal. Foot formation by the actor was assayed. In these experi- 
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ments the actor is characterized by the regeneration time prior to grafting 
while the only other experimental variable, the size of the foot attached 
to the graft, determines the properties of the setting. 

The models for Tables 1 and 2 are identical. Model 1 is the hypothesis 
that neither the regeneration time T nor the size of the transplanted foot S 
influences foot formation in the actor. The frequency of foot formation is 
therefore predicted to be the same for all values of the experimental para- 
meters. The large values of X Z  and GZ relative to the degrees of freedom 
show that this hypothesis is unacceptable. Model 2 is the hypothesis that 
foot formation is influenced by the regeneration time T but not by the foot 
size S. Model 3 assumes an influence of S but not of T. Both models 2 and 3 
are unacceptable as descriptions of the data. 

Model 4 assumes two variables, one depending on the regeneration time T 
and one on the transplanted foot size S. No variable influencing foot 
formation which depends on the combination of T and S is assumed. Thus 
this model is given in logit form by equation (8) with ,IFST E 0. The fre- 
quencies of foot formation expected according to this logit model are given 
under the observed frequencies in tables 1 and 2. The fit is acceptable in 
Table 1 and excellent in Table 2, in which the sample size is twice as large. 

Model 4 in probit form is equivalent to an inhibition-threshold model 
proposed for the data of Table 2 by MacWilliams et al. (1970). The variable 
dependent on S (the setting property) corresponds to these authors' inhi- 
bition intensity. The T-dependent (actor) variable corresponds to the 
threshold. The probit model that MacWilliams et al. (1970) tested incor- 
porated an additional assumption that on a probit scale the threshold 
increased linearly with regeneration time. Plotting the optimized inhibition 
values determined in the course of testing the model suggested to them a 
linear dependence of inhibition intensity (on a probit scale) on basal disk 
size. We now inquire whether the similar linearities are apparent with the 
present totally different and fundamentally sounder method of computation, 
and whether models incorporating these linearities describe the data of 
Table 2 acceptably. 

In Fig. 1, the estimates of ,I::, the A variable corresponding to inhibition, 
are plotted as a function of the transplanted basal disk size, and the estimates 
of ,I:; (the threshold) as a function of the regeneration time. The deviations 
from linearity are strikingly small: the linear correlation coefficient is 
- 0-999 for S and + 0.969 for T. 

Model 4(a) assumes both of these linearities. This model replaces the 
variable ,IFS by a linear expression of the form as+bsS and ,IFT by 
aT+bTT. The as and bs are estimated by least-squares fits of straight lines 
to the data plotted in Fig. 1. Here S is measured in units of basal disks and 
T.B. 7 
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Time (min) Fraction of foot tmnsplanted 

FIG. 1. Estimated parameters A:; and Aft in the logit form of model 4 for Table 2, as 
functions of the experimental variables time (T) and basal disk size (S). Straight lines 
are fitted by least squares. 

Tis in minutes. The result is a model with only three independent parameters: 

logit ( fjk) = - 0.46 - 1.69s + 0.0075T. (11) 
The numerical values of the constants in equation (11) are rounded to two 
significant figures, although the original calculations were done with five 
significant figures. The frequencies expected from equations (11) are given 
as the predictions of model 4(a) in Table 2. 

The values of x2 and G2 in Table 2 show that, for the 17 d.f. (= 20 
measured frequencies of foot formation minus 3 parameters), the fit is 
excellent. Model 4 and model 4(a) may be compared by seeing if the 
difference in measure of fit for two models is significant for the corre- 
sponding difference in number of degrees of freedom. Table 2 shows that 
they differ by 5 d.f., but the difference in G2 is only 1.52, not significant 
at the 0.1 level. The same is true of the difference in x2. Thus there is no 
significant improvement in fit from assuming that the I s  are not linear 
functions of their corresponding physical variables. 

A factor appropriate for converting from logit variables, such as S and T 
in equation ( l l ) ,  to probit variables such as Ys and YT in equation (I), is 
1-19 = (0.8413)-', where 0.8413 is the integral of the standard normal density 
function from - o~ to 1 .O. The values of the logit model linear proportionality 
constants bs and bT given above, when multiplied by this factor, are the 
proportionality constants showing the dependence of the probit variables 
Ys and YT on the experimental parameters S and T. Values of 0.36/40 min 
or -2*O/basal disk may thus be calculated. The values given in or apparent 
from MacWilliams et al. (1970) are 0.37140 min and -2.l/basal disk. 

From equation (ll),  it follows immediately that, for 0 < f < 1, 
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Here the subscripts j and k, specifying respectively the values of T and S, 
have been omitted. Equations of this form describe self-limited autocatalysis, 
bimolecular reactions, and enzyme reactions (Berkson, 1951). If the fre- 
quency f is taken as directly proportional to the mass of some unknown 
chemical species which controls foot formation, these equations suggest a 
simple physical interpretation of equation (1 1). According to this speculative 
interpretation, the quantity of the hypothetical foot-forming substance 
increases autocatalytically in time; the quantity of the substance decreases 
with autocatalytic kinetics as far as permitted by the quantity of some 
supposed substance homogeneously distributed through the foot tissue; 
and the two reactions that increase and decrease the quantity of this hypo- 
thetical foot-forming substance proceed completely independently of each 
other. 

In summary, the data of Tables 1 and 2 are well described by assuming 
independent effects of incubation time and transplanted foot size on the 
frequency of foot formation. In Table 2, these effects may be described as 
linear functions of the physical parameters of the experiment when frequency 
of foot formation is transformed to either the logit or the probit scale. 

(B) TABLE 3 

In each of the experiments reported in Table 3, an annulus (the "actor" 
in this experiment), consisting of a lengthwise eighth of the body column, 
was removed from a donor hydra and grafted laterally into a wound made 
in a host animal (the "setting") at one of the seven planes of section that 
divide the animal into eighths. The basal disk of the host was removed in 
some experiments. The transplanted annuli were numbered 0 to 7 according 
to position in the donor, starting basally. Only annuli 1-7 were used in the 
experiments. The final transplant positions were numbered from 1-7 starting 
basally. The actor annuli were scored after two days for foot formation. 

Table 3 gives the observed number of cases of foot formation as a function 
of three parameters: the original position D of the actor, the final position P, 
and the condition of the host's basal disk H. D is thePonly actor-specific 
parameter; P and H characterize the setting. 

Model 1 for these data is the hypothesis that the three experimental 
parameters influence foot formation independently; hence equation (1) is 
simply Z = K +  Y,+ Y,+ Y,. Since this model provides an unacceptable 
description of the data, it and simpler models assuming O,1, or 2 independent 
influences can be rejected. Consequently, any acceptable model must assume 
that at least one pair of the experimental parameters interact, that is, an 
acceptable model must include at least one variable which depends on two 
parameters simultaneously. 



100 J .  E. COHEN A N D  H .  K .  MACWILLIAMS 

The three possible pairwise interactions are between D and P, D and H, 
and P and H. The first two of these entail the unattractive assumption that 
the influences of the actor and setting are not independent. Model 2 assumes 
a variable depending jointly on D and H and a second variable depending 
on P. Model 3 assumes a variable depending jointly on D and P and one 
depending on H. Model 5 assumes both of these interactions. All three 
models fail to describe the data acceptably. 

The only remaining two-parameter interaction, that between P and H, 
the two parameters which describe the setting, is incorporated together 
with a variable associated with D in model 4. The model may be interpreted 
as the hypothesis that foot formation is controlled by two factors, one whose 
value is determined by the actor's original position and one whose value 
is determined by both setting-specific parameters. The model provides an 
excellent description of the data. 

The predicted frequencies of foot formation, out of 25 trials, are given 
for each combination of experimental parameters as "model 4" underneath 
the observed frequencies in Table 3. The predictions of this model are also 
given for those regions of the table where experiments were not carried out. 

The remaining models 6, 7 and 8 assume interactions in addition to those 
of model 4. Since they estimate more parameters from the data than does 
model 4, they naturally also fit well. But comparison of the degrees of freedom 
and of the measure of fit shows that in no case does the goodness of fit 
improve significantly. Hence the data provide no justification for the addi- 
tional assumptions of these models. In particular, model 6 shows that nothing 
is gained by assuming an interaction between the transplant's original and 
final positions. Model 7 demonstrates that the assumption of an interaction 
of the host's condition H with the original position of the donor annulus D 
is also unnecessary. Model 8, which contains all possible pairwise parameter 
interactions, shows that the description of the data cannot be significantly 
improved by abandoning the assumption that the influences of host and donor 
(actor and setting) are independent. 

Thus the assumptions of model 4 are minimal, in that any simpler 
model of the general form under discussion fails to describe the data 
acceptably, and sufficient, in that the data provide no evidence for additional 
assumptions. 

Model 4 in probit form is equivalent to an inhibition-threshold model of 
MacWilliams (1972). In MacWilliams' model, the inhibition (the setting 
property) could be described satisfactorily as a linear function of position 
in both hosts with and hosts without basal disks. The actor-specific (threshold) 
property was found to be monotone with position, but changed more rapidly 
with position at the ends of the animal than in the middle, and could not be 
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acceptably described as linear. In logit form model 4 is 

logit ( fjkl) = I: + I:? + I:: + A:? + I;:?. (12) 
Here IF corresponds to K in the probit model, equation (I), while AFD 
represents the variable depending only on the original position of the trans- 
planted piece. The last three terms represent the dependence of the frequency 
of foot formation on the setting parameters P and H. The parameters IF" 
do not depend on position. Figure 2 shows the estimated IFD, IF", and IF"" 
as functions of position. It is not clear from the plots which of these functions 
can be acceptably approximated as linear. 

Specific models were therefore tested. In each case, the Is  which were not 
assumed to be linear were given the values obtained in model 4. For each 
set of parameters assumed to be linear functions of annulus number, slopes 
and intercepts were estimated by fitting lines by least squares in three ways: 

Head end Foot end 
Annulus 

FIG. 2. Estimated parameters AT:, AT:, 12;; in the logit form, equation (12), of model 4 
for Table 3, as functions of the annulus number in the donor and host hydra. The line 
segments between plotted points are intended only to guide the eye. 

I 
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first to the parameters for all seven annuli, second to the parameters for all 
annuli except annulus 1 (closest to the basal disk), and third to the parameters 
for all annuli except numbers 1 and 7. Expected cell frequencies were cal- 
culated for each of these sets of slopes and intercepts. The parameters based 
on the slopes and intercepts (but not the Is  not assumed to be linear) were 
then modified by a crude numerical search procedure to locate the fit which 
minimized G2. In models which include most of the present models as 
special cases, Mantel & Brown (1973) use an iterative Newton-Raphson 
search procedure which is probably preferable. Because of the factorization 
of model 4, the use of the As from model 4 within models 4(a)-(g) is appro- 
priate. The minimization of X2, which has the same asymptotic distribution 
as G ~ ,  gives asymptotically the maximum likelihood parameter estimates 
(Cramer, 1946). The resulting fits are optimal, subject to the limitations of 
the search procedure and finite sample sizes. 

Models 4(a), 4(b) and 4(c) in Table 3 assume the linearity, respectively, 
of 17:, I:[ and I::? as functions of position. The measures of goodness 
of fit show that the actor parameters A:: cannot be approximated linearly. 
Either of the remaining sets of variables, which characterize the setting, may 
be linearly approximated. 

Models 4(d)-(e) assume the linearity of both I;: and one of the remaining 
sets of variables, A;[ or Iyr respectively. Not surprisingly, these models 
fail to describe the data. 

Model 4(f) assumes the linearity of both sets of setting variables 17; 
and IT;? but not the linearity of the actor variables. This model does fit the 
data quite acceptably. Comparison of model 4(f) with models 4(b), 4(c) 
and 4 shows no significant improvement in fit from giving up the assumption 
that the setting variables are linear functions of position in the host. 

Model 4(g) assumes that all parameters in model 4 which are functions 
of annulus number are linear functions. As expected, this model fails to 
describe the data. 

Finally model 4(h) adds to model 4(f), which assumes that the setting 
variables are linear functions of position, the further assumption that the 
actor variable is a cubic function of position. A cubic equation was fitted 
by the method of orthogonal polynomials to the values of ,477 estimated in 
model 4. The resulting coefficients were then modified in a numerical search 
for the best fit. The final explicit form of model 4(h), with seven fitted 
coefficients, is (after rounding) 

logit ( fjkl) = 1.18-2.170 +0.53D2 -0.050D3 +0.52P 
+(-1.32+0.18P)H. (13) 

Because of the asymmetry of the values of I77 with respect to annulus 4, 



FOOT FORMATION I N  H Y D R A  103 

as shown in Fig. 2, it is likely that a substantially larger number of observa- 
tions might reveal that the present cubic approximation in equation (13) is 
inadequate. So far no acceptable model simpler that equation (13) has been 
found for Table 3. 

The setting terms 0.52P+ (- 1 -32 + 0.1 8P)H predict a dependence of 
logit (f;.,,) on the final transplant position of 0.34 per eighth animal length 
when the disk is absent ( H  = - 1) and 0.70 when the disk is intact ( H  = I), 
with a difference of 2.64 produced at position 0 when the disk is removed. 
Multiplying these by the conversion factor 1.19 gives 0.40, 0.84 and 3-14 
as predicted coefficients for the probit model. The corresponding values 
determined for the probit model are 0.53, 0.99 and 3.46 (MacWilliams, 
1972). The slightly poorer agreement in this case may reflect differences in 
assumptions and computational procedure or the deviations from linearity 
of the setting variables as functions. of position (Fig. 2). The dependence 
of the actor variable on position (Fig. 2) is qualitatively the same as found 
by MacWilliams (1972): steep at both ends but nearly flat in the middle. 

The number of cases of foot formation expected from model 4(h) for 
each possible combination of donor annulus, host position, and host con- 
dition, including but not restricted to those combinations for which measure- 
ments were actually made, appear underneath the data in Table 3 as 
"model 4(h)". 

5. Discussion 

This analysis confirms that previously proposed probit models, in which 
two normally varying scalars, "inhibition" and "threshold", control foot 
formation, provide a simple, acceptable interpretation of the experimental 
data. We are unable to propose a simpler general hypothesis consistent with 
the data. The acceptability of these simple models does not prove that 
more complex models are false, but suggests that they are uneconomical 
in the present state of knowledge. 

The previously reported linear dependence of inhibition and threshold 
to inhibition on certain experimental parameters has also been confirmed. 
It is important to note, 'however, that the probability values assigned to the 
linearized model (4(a) in Table 2 and 4(a)-(h) in Table 3) do not have the 
interpretation customary in confirmatory statistics, where a model is chosen 
before the data are examined and the correspondence of the data to predic- 
tion is assayed. Here the linearity of the As as functions of the experimental 
parameters appeared after examination of the data; the linearized models 
would probably not have been tested for fit had the parameters appeared 
grossly different. If models of the form of equation (11) and equation (13) 
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describe well future replications of the corresponding sets of experiments, 
the probability values associated with X 2  and G~ will have their classical 
interpretation. 

This analysis in no way excludes non-linear dependencies in which the 
deviations from linearity are smaller than the resolution, which is limited 
by the sample size, of the statistical measures of fit which we used. 

The models we have found satisfactory are not probit models directly 
but log-linear numerical approximations to them. Hence one must consider 
the possibility that the control of foot formation in transplantation experi- 
ments is fundamentally logistic. If it is, our findings suggest that the odds 
of foot formation are the product of two scalars, one specific to the actor 
and one to the setting. For example, model 4 for Tables 1 and 2 sets 
AFTS = 0 in the right member of equation (5). Hence that exponential can 
be written as the product of one factor depending only on F and T, which 
is the actor-specific scalar, and another factor depending only on F and S, 
the setting-specific scalar. In the linearized forms of the logit models, such 
as model 4(a) for Tables 1 and 2, it is the logarithms of the scalars which 
depend linearly on ,the experimental parameter values. 

If individual animals do perform some analog of multiplying the actor- 
specific scalar by the setting-specific scalar to obtain the odds of foot for- 
mation, the decision to form a foot or not could then be made by comparing 
the probability derived from these odds to an internally generated, uniformly 
distributed random variate. 

Since their predictions are so similar, the choice between logit and probit 
models for a given data set is often made on the basis of simple personal 
preference. In this the two authors of this paper differ. J.E.C., following 
Berkson (1951), favors logit models, citing: (1) the ease of constructing 
mechanisms which behave logistically; (2) the fact that logit models do not 
require, as do probit models, an unexplained normal variation in the funda- 
mental parameters of the system modeled; (3) the superior mathematical 
tractability of logit models. H.K.M. is attracted by the formal simplicity of 
the decision-making process postulated by the probit models, and finds the 
assumption of normal variation easy to accept, inasmuch as the system's 
fundamental parameter values are assumed here to be functions of experi- 
mental variables, which themselves cannot be perfectly controlled. The 
authors agree that in the absence of decisive evidence, both types of explana- 
tions must be regarded as viable, and it is necessary to keep an open mind. 

All models presented here are phenomenological. Although suggestive, 
they do not suffice to specify a physical mechanism. Even if it were possible 
to associate these models with specific kinetic proposals, such as those of 
Gierer & Meinhardt (1972, 1974) direct evidence would still be required 
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to determine the biochemical basis of, and to select among, kinetic models. 
The function of our models is to highlight the regularities which physical 
mechanisms must explain. 

We thank Yvonne M. M. Bishop and John Guckenheimer for very helpful 
discussions of previous drafts, and the U.S. National Science Foundation for 
partid support. 
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