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A finite set of first-order, linear, autonomous ordinary differential equations 
which conserves the total amount of some substance flowing in a system will 
exactly describe the distribution of that substance among observable states 
which leak (or suffer mortality) if and only if the rates of leakage into or out 
of all the states are identical. 

A finite set of first-order, linear, autonomous ordinary differential equations 
with continuously time-varying coefficients is used to model the flow of people, 
particles, or probability density in a discrete state space in continuous time in 
epidemiology (Muench [1959]), ph armacology (Bellman [1970]), Markovian 
models (Hoem [1969]), and a vast variety of other applications. Such models may 
be written Z = Ax, where x is the column vector whose components give the 
amounts of substance in each state, the superior dot means derivative with 
respect to time, and A is a continuous square matrix function of time. Excluding 
empty systems, we assume with no loss in generality that x(O)= * 1 = 1, where 
1 is a column vector of which each component is 1, and superscript T means 
transpose. If 0 is the column vector of which each element is 0, then the condition 
that the model be conservative, i.e., that the amount of substance flowing in the 
model be neither created nor destroyed in time, is simply AT . 1 = 0. We 
assume A is such that for t > 0, x(t) > 0. 

The phenomena described by such conservative linear models frequently have 
leaks: flows from the observable states considered in the model to unobservable 
states. In epidemiological models, people die or emigrate while the living in 
various states of health or parity are being counted. In pharmacological studies, 
particles are excreted, degraded, or otherwise escape measurement as the 
remaining concentrations in various organs are assayed. To model such pheno- 
mena, let M be a diagonal matrix whose diagonal elements measure the 
continuously time-varying rate of leakage between (into or out of) the observed 
states and an unobserved state. Assuming no losses to start with, the state 
vector y of this model satisfies 9 = (A - M) y, y(0) = x(0). 
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Then the fractions of the observable substance which remain in each of the 
observable states are the components of z = y/(y’ . 1). We prove that z = x if 
and only if M = m1, where m is a continuously time-varying scalar and I is the 
identity matrix. The point of the theorem is that if mortality or leakage rates 
differ from one state to another, then estimates of the rates of flow A based on 
the observable distributions z of substance among states will be biased. 

In Hoem’s [1969] analysis of Markov chains, x corresponds to the partial 
probability distribution when there is no mortality and z corresponds to the 
probability distribution of the observable states when transitions have been 
influenced by mortality. Hoem ([1969, p. 1541) established that M being scalar 
is sufficient to assure z = x, generalizing the result previously known for neutral 
mortality change. The present note establishes Hoem’s result and, for the first 
time, its converse, with a new, concise proof. Whereas the proof of sufficiency 
does not require the assumption made above that x > 0 and hence z > 0, 
the proof of necessity does. 

To prove z = x if and only if M = m1, calculate i. Since 

jrT . 1 = yT(AT - MT) 1 z -yTMTl 

because AT * 1 = 0, we have 

i = AZ - Mz + zTMTlz. (1) 

Now if M=mI, then i=Az-mzfmz=Az since zT*l =I; and 
since z(O) = x(0) we must have z = x always. Conversely, if z = x, then 
subtracting i - AZ from (1) implies Mz = (zrMTl)z. Since (zTMTI) is a 
scalar and z > 0, M = (zTMTl)I, as desired. 

This result has at least one practical application (Cohen [1973]). 
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