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This chapter offers evidence that as a means of understanding the functional 
and evolutionary biology of the primates, mathematical models are at least 
worth their weight in paper. The basic idea of mathematical models and the 
possibilities and the limits of their usefulness are outlined in Section 1, 
"Mathematical Models." As morphological arguments for evolutionary con- 
clusions have become better defined, the use of mathematical models in 
morphology has increased. This trend is not without difficulties (as ex- 
amined in Section 2, "Morphology in Evolutionary Arguments"). As be- 
havioral and social characteristics of animals have appeared in evolutionary 
arguments, mathematical models are needed even more to help keep ideas 
dynamic (rather than typological), clear, and consistent (as explained in 
Section 3, "Behavioral Taxonomy"). Recent studies of casual social groups 
among human and nonhuman primates exemplify an explicit mathematical 
characterization of one aspect of social life. This characterization may pro- 
vide a useful base for comparative evolutionary inferences (detailed in 
Section 4, "Monkeys en Masse") . 

The data used in quantitative studies of social groups can be related to 
frequencies of other aspects of behavior (asymmetric relations such as 
dominance, symmetric pairwise relations such as play partnership, and 
individual behaviors) by representing data in multidimensional contingency 
tables (in Section 5, "Data Structures and Models for Social Behavior"). 
The frequencies of behaviors obtained from multidimensional contingency 
tables, and the frequency distributions of choice of habitat, may be inter- 
preted functionally on the basis of recent mathematically formulated dis- 
coveries in the psychology of operant conditioning (discussed in Section 6, 
"Frequencies of Behavior"). But most of the use of mathematical models in 
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studying the natural behavior, sociology, and ecology of primates (human 
and nonhuman) remains to be done (see Section 7, "Math and Aftermath"). 

Section I .  Mathematical Models 

Like Moliere's gentleman who learned at an advanced age that he had 
been speaking prose all his life, those who claim ignorance of mathematical 
models may be surprised to discover that they have used them ever since 
elementary school (even without benefit of the "new math"). This recogni- 
tion is important because insight into simple mathematical modeling can 
serve as a bridgehead to the understanding of much more complicated 
modeling. 

By way of introduction to simple mathematical modeling (Cohen 1970), 
consider the two statements, "One plus one is two," and "One apple plus one 
apple makes two apples." 

The second statement is an empirical statement about the world of ex- 
perience. Once we agree on a procedure for counting, if we place one apple 
next to another apple we will both count two apples. The first statement is 
an arithmetical theorem which can be proved from simpler axioms along 
with many interesting results such as "Two times two is four." 

Mathematical modeling is the act of imagination which proposes a con- 
nection between mathematical statements embedded in a mathematical 
structure, and some empirical observations. The difference between mathe- 
matics and mathematical modeling is like the difference in points of view 
one can have toward a microscope, which can be intrinsically interesting, 
or which can be a tool with which one extends one's perceived world. 

In full flower, a mathematical model exemplified by "the laws of elemen- 
tary arithmetic apply to apples and the way we count them" leads to such 
nonobvious predictions as "32,479 apples plus 90,503 apples makes 
122,982 apples." Although this prediction has probably never been 
checked empirically, the behavior of small numbers of apples conforms 
so well to the elementary assumptions of arithmetic that few would doubt it. 
But the conscientious mathematical modeler cannot rest with proposing, 
generalizing, and verifying his model in special cases. He must also search 
for the limits of its validity. After observing apples in large quantities (or 
making calculations about the strength of materials), the modeler should 
point out that when more than one hundred thousand apples are gathered 
together, some of them become applesauce. Ordinary arithmetic does not 
then apply. 

Nor does the truth of a model (arithmetic or any other) guarantee that 
the model is of interest. If instead of apples we put twenty monkeys to- 
gether, the arithmetical details may be of less interest than the formation 
of a troop. And if we put two troops together, the number of troops (though 
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arithmetically predictable) may be of less interest than the interactions 
between them. 

Whether a particular mathematical model interests a reader depends in 
part on the temperament of the reader, in part on the skill and insight of 
the modeler, and in part on the cooperation of nature. 

Mathematical models are important in the study of primate evolution 
when they assist scientists to clarify what they believe about the phenomena 
they study. By thus sharpening the beliefs and expectations of scientists, 
mathematical models help to confirm or reject their assumptions and hy- 
potheses. Mathematical models may facilitate finding explanations because 
they permit "what-if" experiments. If certain simplifying notions that are 
embodied in a mathematical model lead to qualitatively wrong predictions, 
then the scientist can abandon those bad notions. And even if they never 
lead to full explanations, mathematical models can clarify how much of the 
phenomena has been comprehended and expressed, and how good the result- 
ing approximations are. 

But mathematical models are not always necessary. Where ordinary 
concepts and everyday chains of logic suffice to give intellectual comfort 
with familiar kinds of materials, there is no scientific virtue in mathematical 
formalism. Three kinds of events can upset this amiable state of affairs: 
(1) a rise in the standard of intellectual comfort (as exemplified by other 
chapters in this book), so that what was once acceptable as an explanation 
is no longer adequate; (2) an extension of study to new kinds of materials 
where ordinary concepts and everyday logic are no longer competent (as in 
the study of "social evolution"); and (3)  initially unrelated conceptual 
inventions, often new mathematics, which change the setting and illumina- 
tion of familiar materials (see sections 5 and 7 to follow). 

Section 2 .  Morphology in Evolutionary Arguments 

The very progress of the study of primate evolution has created a need 
for mathematical models. 

A fair caricature of classical morphological arguments in primate evolu- 
tion may be provided by arranging four mandibles, one each from Parapithe- 
cus, Propliopithecus, Pliopithecus, and a modern gibbon, in a row (Clark 
1957, p. 91). By looking at this arrangement, the reader is supposed to 
conclude that the modern gibbon mandible evolved from the smaller but 
similarly shaped Pliopithecus mandible, which in turn evolved from the still 
smaller Propliopithecus mandible, which originated from the smallest man- 
dible, that of Parapithecus. But the graphic presentation of information does 
not make explicit at least two important steps which precede this conclusion. 

First, the reader and author of the figure must assume that mandibles are 
of evolutionary significance and that, unlike certain other morphological 
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complexes in the organisms, the mandible is reliably and importantly related 
to the life, form, and evolution of the whole animal. Then both reader and 
author must characterize each mandible in a way that permits comparison 
among them, perhaps according to size, particular shapes and relative 
proportions of mandibular components, and specifications of the distribution 
of bone density. This characterization of the mandibles in a way that makes 
them comparable is actually the process of model construction; it is the 
abstraction from the complexity of real objects to an intellectually tractable 
description of what matters. 

Second, the reader and author construct transformations of their char- 
acterizations of each mandible into those of the next mandible. The reader's 
sequence of transformations must be internally consistent (so that the step 
from Parapithecus to Propliopithecus is not too different by some measure 
from the step from Pliopithecus to Hylobates). Further, these transforma- 
tions must be consistent with additional knowledge that the author and 
reader possess about the animals and evolutionary principles. Boorman 
(1970) offers an enlightening discussion on measures of distances between 
complicated objects. 

Because, in classical morphological arguments, so much of the process 
from evidence to conclusion is private, there is enormous room for the 
author and his readers to arrive at different conclusions. If I think that 
only the shape and size of the canines significantly affect diet and evolution, 
while you attach much more importance to molars and mandibular size, 
and a third person believes that the scapula really matters and the mandible 
is not worth bothering with, then each of us will characterize the evidence 
differently. If I have one belief about phylogenetic allometry and you have 
another, even starting from the same characterizations we may differ in 
which evolutionary transformations we employ as standards of distance. 

In ,,spite of the great room for disagreements in the abstract, in fact sub- 
stantial agreement has obtained in classical morphology. The whole man- 
dible is one important determinant and consequence of diet and it is a mor- 
phological concomitant of other evolutionary changes. Progressive increases 
in its size without drastic changes in its shape constitute a plausible evolu- 
tionary sequence. 

A great part of the rise in the intellectual standard of living among 
primate morphologists has been devoted to making explicit and otherwise 
improving procedures for characterizing (modeling) the objects of their 
studies. D'Arcy Wentworth Thompson superimposed square grids (Cartesian 
coordinates) on drawings of forms, and showed how they could be simply 
distorted to produce drawings of apparently related forms. 

Oxnard ( 1969c, pp. 75-76) observed: 

The shape of a biological specimen may be represented by a series of measure- 
ments of different kinds taken on the specimen. One way, therefore, of repre- 
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senting the specimen is as a single point located in a multidimensional space. 
The coordinates of this point are the actual values of each of the measure- 
ments, and the many dimensions are the many different measurements. . . . 
[See also Howells, Chapter 5.1 But each original measurement does not 
necessarily give completely new information about a particular specimen; for 
instance, a second measurement of the radius of a circle tells us nothing new 
at all about the circle. 

A mathematical technique called canonical analysis provides a way of 
combining measurements into a new set of dimensions such that each addi- 
tional dimension in this new set provides the maximum increase in informa- 
tion (by some measure of information) about the shape of the specimen. 
Canonical analysis may show that a much smaller number of dimensions 
suffices to characterize specimens, though thes: dimensions would not have 
occurred to a naive observer. Given improved characterizations, improved 
speculations about how evolution transforms one to another are possible 
(Oxnard 1969c, pp. 92-95). 

Multivariate statistical methods have also been used to reveal morphologi- 
cal relations among populations of men. Howells ( 1970a) found discrimi- 
nant functions which would characterize efficiently the differences among 
17 populations of contemporary human skulls. He used these functions 
(1970b) to  assist in the interpretation of skulls of Mount Carmel man. 

These multivariate statistical methods improve earlier eyeball "guessti- 
mations" of form. But these methods can cause problems which call for 
more refined and different mathematical modeling. Here is an example: 

Suppose we are investigating a polygenic character. Suppose also that 
the number of genes (additive polygenes, not loci) for this character is 
proportional to the length of time that some spherical morphological feature 
grows. But the measured aspect of that feature is its volume. In this case, 
the number of genes for the feature will be related to the measurement of 
the feature as x is to x" and in general as x is to f (x) .  

Suppose that for five known populations, numbered 1, 2, 3, 4, and 5, 
the numbers of genes for this character are, respectively and exactly, 1, 2, 
3, 5, and 6, and hence that the phenotypic measurements (which are the 
only direct measurements we can make) are 1, 8, 27, 125, and 216. We 
observe now a new sixth population with phenotypic measurement 343. 
The linear phenotypic distance between population 6 and population 5 
(namely, 343 - 216 = 127) is greater than the linear phenotypic distance 
125 - 1 = 124 between population 4 and population 1. We therefore con- 
clude from linear analysis of phenotypic measurements that populations 1 
and 4 are more closely related than are populations 5 and 6. 

But if our concept of relatedness is to be based on genetic similarity, it 
is clear that two populations ( 5  and 6)  which differ in only one polygene 
are more closely related than populations (1  and 4)  which differ by three 
polygenes. Further, on the genotypic level, populations 1, 2, and 3 are 
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about as closely related as are populations 4, 5, and 6; but on the pheno- 
typic level, the discovery of population 6 appears to make populations l ,  2, 
and 3 more closely related, relative to the whole scale of variation. 

If, as Norbert Wiener purportedly said, what we want are measurements 
that will stay put when our backs are turned, the accessible phenotypic 
measurements are clearly less satisfactory than the inaccessible genotypic 
ones. One role for theory is to transform measurements, e.g. f (x) ,  into 
evidence, x, which will not require a new view of the world to accommo- 
date every new experience. The mechanized algorithms of linear statistical 
analysis may be very useful aids in preliminary probes designed to discover 
what theory must accomplish, but they are not adequate theories. 

Section 3.  Behavioral Taxonomy 

In the study of behavior, the temptation to affirm that seeing is believing 
is no weaker than in the study of morphology, and the need for theory to 
relate observations to some underlying invariants is no less urgent. 

In 1898, Charles Otis Whitman emphasized behavioral approaches to 
evolution: "Instincts and organs are to be studied from the common view- 
point of phyletic descent." His successor Konrad Lorenz (1958) put it thus: 

As phylogenists, Whitman and Heinroth both sought to develop in detail 
the relationship between families and species of birds. To define a given group 
they had to find its "homologous" traits; the resemblances between species 
which bespeak a common origin. . . . Behavior, as well as body form and 
structure, displays homologous traits. 

Marrying behavior and morphology in the study of primate evolution, 
Tuttle (1969b) studied the hands of the great apes. Although using no 
mathematical models, he characterized the role of the hands in locomotion 
by the bone structures in modern and fossil apes, and by the behaviors of 
modern apes in knuckle-walking, fist-walking, and modified palmigrade 
walking. He considered plausible transformations of these descriptions and 
showed them to render unlikely some suggested evolutionary sequences 
leading to man. Remarkably, Tuttle (1969b, p. 957) declined to claim that 
knuckle-walking devolved from fist-walking and not modified palmigrade 
locomotion, or vice versa. Even without a mathematical model, Tuttle 
obtained what is often one of the chief benefits of a mathematical model: a 
demonstration that present data are insufficient to choose among different 
possible transformations leading to a given result. 

Detailed studies of one aspect of primate morphology or behavior, such 
as those of Oxnard and Tuttle, have the virtue of specifying the procedure 
for measuring the dimensions of the object of study with sufficient public 
detail that another worker can check the measurements on his own material 
or adapt the procedure to new kinds of materials. 
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Studies in similar detail of the behavior of human individuals in a social 
setting led Bales (1955) to propose four broad categories of talk: positive 
emotional reactions, attempts to solve a problem, questions, and negative 
emotional reactions. In observing primates whose language, if it exists, is 
not understood or difficult to observe, only the first and last categories of 
acts seem applicable. These categories reappear in the behavior of rhesus 
monkeys. Altmann (1968, pp. 62-63) first defined a detailed behavioral 
repertoire for rhesus monkeys, and then looked inductively for groupings 
in the sequences of those behavioral elements. He found these groups: 
primarily affinitive and mild tactile signals; primarily agonistic signals; 
primarily sexual signals of males; primarily sexual signals of females; play; 
suckling and weaning; aggressive chases; carrying of infants; and two 
miscellaneous agonistic patterns. Applied to other species, Altmann's de- 
tailed procedure might lead to comparable groupings of behavior patterns. 

Section 4 .  Monkeys en Masse 

Even some of the most systematic attempts to advance from individual 
behavior to social systems return to a level of discourse comparable to that 
of morphology before D'Arcy Thompson, because they follow the strategy 
of arranging homologous bits of (social) anatomy in suggestive sequences 
as Clark (1957, p. 91) arranged four mandibles to represent a hylobatid 
lineage. 

Crook and Gartlan (1966) named five "adaptive grades" of primates, 
moving from forest dwelling through forest fringe and tree savannah to 
grassland or arid savannah, with concomitant changes in diet, diurnal 
activity, size of troops, reproductive units, male mobility, sexual dimor- 
phism, and population dispersion. In this typology, Crook and Gartlan 
specified "size" of troops (which they called "groups") in successive grades 
as "usually solitary, very small groups, small to occasionally large parties, 
medium to large groups, . . . [and] large groups. . . ." Here any actual 
measurement of the size of troops is implicit. The introduction of a 
Cartesian grid for all visible dimensions or aspects of the primate adapt++ 
tions is clearly not even contemplated. 

Kummer (1968) and Altmann and Altmann (1970) provide explicit 
measurements of many different aspects of social patterning in baboons. 
These cross-sectional studies of single species run no risk of overlooking 
aspects of behavior or ecology which lack apparent homologues in other 
species. Perhaps in reaction to global and glib comparative essays less 
scrupulous than that of Crook and Gartlan (1966), these studies indulge 
sparingly in comparative or evolutionary speculation. The detail with which 
their observations are made and reported offers the possibility of making 
similar observations on other primate species, and then making potentially 
credible comparative speculations involving explicit mathematical models. 
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Rather than studying in detail the social behavior of one entire species, 
and leaving comparative work for later, another approach is to select one 
aspect of social behavior and study it comparatively in great detail, leaving 
other aspects of social behavior for later. Such a narrow but longitudinal 
approach may provide suggestions and indications, early in the course of 
study, about those aspects of social behavior which have evolutionary 
interest or which correlate in interesting ways with other characters of 
evolutionary interest. If both the longitudinal and cross-sectional approaches 
are well based in careful observation, and if the principal elements of each 
species' sociobiology have evolutionary meaning and therefore comparative 
homologues, the two approaches should lead to similar evolutionary 
inferences. 

One narrow aspect of primate social behavior which has been studied 
comparatively by means of mathematical models is the formation of casual 
or spontaneous social groups (Cohen 197 1 ; and in press). 

In the early 1950s, John James observed the sizes of freely forming small 
groups of human beings in a variety of situations. James defined freely 
forming groups as "those whose members are relatively free to maintain 
or break off contact with one another; that is, they are ones where informal 
controls on behavior are at work and spontaneity is at a maximum." He 
included in his observations only those "groups in which the members 
were in face-to-face interaction as evidenced by the criteria of gesticulation, 
laughter, smiles, talk, play, or work. Individuals who merely occupied 
contiguous space were not counted as members of a group." Goffman's 
(1963) far subtler analysis of social interactions in public places makes it 
clear that James' definitions and approach overlook a great deal, but does 
not render them less useful for present purposes. 

The full frequency distributions of the nearly 18,000 groups James 
observed in 21 different situations were published in Coleman (1964b, 
pp. 368-373). Situations observed included pedestrians in Eugene, Oregon 
on a spring morning; shopping groups in two Portland, Oregon department 
stores; and play groups in Eugene in the spring on the playgrounds of 14 
elementary schools (directed or organized play was not included in the 
observations). 

In 1961 Coleman and James observed that a Poisson distribution with 
the zero value truncated described nearly all of the observed frequency 
distributions very well. Coleman proposed a set of assumptions about a 
group's probabilities of transition from one size to another which led to a 
prediction at equilibrium of a truncated Poisson distribution of group size. 

The next year Harrison White pointed out that Coleman's model treated 
each group as if its behavior were independent of the sizes of all the other 
groups in the system of groups (in the playground or in the department 
store). White proposed several "sociological" models in which the behavior 
of particular groups depended on the number of groups of other sizes in 
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the system. These models differed in assumptions about the flow of individ- 
uals between the system and its environment, the flow of members among 
the groups, and the dependence of rates of arrival to and departure from 
groups on sizes and numbers of groups. In spite of substantial differences 
in assumptions, White claimed to show that all the models led to an 
equilibrium distribution of group size given by the truncated Poisson. As did 
Tuttle in considering alternate pathways for the evolution of knuckle-walk- 
ing, White concluded that "more elaborate empirical investigations . . . 
will be needed to test the applicability of and to discriminate among simple 
stochastic models for the circulation of members among casual groups." 

In 1964 Goodman criticized the mathematics of Coleman and White, 
but concurred in the conclusion that a variety of models could lead to 
the same equilibrium distribution. He proposed yet another model. 

Thus James discovered a striking regularity in the social aggregations of 
large collections of people, although only 18 of James's 21 observed fre- 
quency distributions were well described by the truncated Poisson distribu- 
tion. Coleman, White, and Goodman provided several different explana- 
tions, each accompanied with a plea for further empirical research. 

These stochastic models for systems of social groups appeared at the 
same time as the first of the contemporary spate of primate field studies. 
The coincidence raised the hope of finding primate field data on casual 
social groups which, first, would show whether the Poisson regularity held 
for primate species other than man; and second, would discriminate among 
the existing models leading to the Poisson distribution. 

In 1967, Stuart Altmann directed me to the last table in Thomas T. 
Struhsaker's doctoral dissertation on vervet monkeys in East Africa. For 
each night of observation in this table, Struhsaker recorded which individual 
monkeys of a particular troop were sleeping together in one tree top, 
which monkeys if any in another, which if any in a third, and so on. 

These sleeping groups are not casual groups within James' definition 
because the vervets cannot leave in the middle of the night, and during 
sleep there may be hardly any interactions. Nevertheless I assumed that 
the groups represented a snapshot of the state of the system of groups 
within the troop at the time that the monkeys ascended into the trees for 
the night. The frequency distribution of group size was clearly not Poisson. 
But it approximated a truncated negative binomial. 

Now, either the process of forming human casual social groups and the 
process of forming vervet sleeping groups are different, or both are manifes- 
tations of some common underlying process (at least as far as their size is 
concerned). I preferred the latter alternative, and invented a family of 
stochastic models, called linear one-step transition (LOST) models, which 
depend on two ratios, a / d  and b / d ,  of three parameters, a, b, and d.  
Parameter a is a proportionality constant which measures the rate at which 
individuals join groups, independently of the size or identity of the individ- 
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uals in the groups. Parameter b  is a proportionality constant which measures 
the rate at which individuals join groups in proportion to the numbers of 
individuals in those groups (but independently of the identities of the 
individuals in the groups). Parameter d  is a proportionality constant which 
measures the rate at which individuals already in groups make independent 
decisions to leave their groups and become isolates. For positive values of 
b, these models predict a truncated negative binomial distribution of group 
size; and for b  = 0 they predict a truncated Poisson distribution of group 
size. 

Thus, these models encompass Struhsaker's data on vervet sleeping 
groups and those data of James previously described by the truncated 
Poisson distribution. Reexamination of James' three distributions which 
did not fit the Poisson showed that two of them also could be fitted by the 
truncated negative binomial. 

These data were not sufficient to test whether the detailed assumptions 
of the LOST models concerning arrivals and departures were true, but the 
detail in Struhsaker's observations was sufficient to rule out a variety of 
other models that had been proposed as mechanisms leading to the nega- 
tive binomial distribution. 

To test directly the detailed mechanisms of the LOST models, I observed 
the free play of four-year-old humans in the Cambridge Nursery School. 
There appeared to be no large differences between what the LOST models 
assume about the dynamics of group formation, and how the actual sizes 
of play groups changed over 30-second intervals. This surprising result 
did not show that the same dynamics were at work in any species of non- 
human primate; it merely failed to rule out the possibility that the LOST 
dynamics were at work among humans. 

I then wanted to see whether monkeys' undirected socializing could be 
described by the same models as human socializing. In 1969 Stuart Altmann 
provided me with an opportunity to answer my questions by joining his field 
project on baboons in Kenya. The setting of this study, as of 1964, is 
described by Altmann and Altmann (1970). Details on my observations 
appear in Cohen (in press). In brief, of the seven troops I observed for 
sufficient periods, only one had a group size distribution which fit the 
predicted distribution poorly (using less than fully efficient methods of 
estimation and a test of goodness of fit with artificially increased power). 

The generally acceptable agreement between the observed frequency 
distributions of group sizes in men and monkeys and the fitted distributions 
shows that a single family of models may suffice for present purposes. The 
dynamic assumptions of the models have been tested only on nursery school 
observations. Since the models characterize those situations they describe 
by the two numbers a / d  and b / d ,  the net result of the studies to date can be 
summarized by a list of the primates observed and their associated values of 
a /d  and b /d .  
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Table 19-1. Median values of the parameters of the linear one-step 
transition (LOST) models for various primates 

Vervets (Struhsaker) 1.15 0.66 
Yellow baboons 0.12 0.16 
Human four-year-olds 0.33 0.10 
Mixed humans (James) 0.86 0 

The median values of the parameter ratios for baboons in Amboseli were 
chosen as typical. The vervet parameter values are based on Struhsaker's 
observations during nights when all members of the troop were noted. The 
nursery school figures are an average of the estimates obtained on different 
days of observation weighted by the number of observations on each day. 
Finally, the figures based on James's observations are the medians of Cole- 
man's estimates for the 18 cases where the truncated Poisson distribution 
was descriptive and my estimates for the two other cases where the negative 
binomial distribution was descriptive. 

The systems of casual social groups characterized by the LOST models 
bear the same relation to the whole social behavior of a primate species that 
the hand or perhaps a single digit do to the total morphology of an orga- 
nism: they are important, and not the whole picture. The models show 
one way to characterize, perhaps usefully, a complicated kind of social 
behavior by a small number of parameters. Characterizing a primate social 
system by parameters embedded in a predictive model is self-validating: 
one need take the characterization and the parameter values seriously only 
when the predictions of the model are confirmed. If the equilibrium dis- 
tribution of group sizes in a system of casual social groups is neither a 
truncated negative binomial nor a truncated Poisson, then the parameter 
values-no matter how operationally defined-are no longer providing 
useful information. 

The characterization of social systems by operationally defined parameters 
embedded in models gives concrete meaning to the phrase, "the evolution 
of social systems." Such evolution is simply the trajectory in time of the 
parameter values typical of a taxon and situation, within the span of evolu- 
tionary time that the models are useful. 

The estimates of b / d  in the rightmost column of Table 19-1 decline as 
one reads down the table. Though the difficulties of evolutionary inference 
from the behavior of presently existing species are manifold, I wonder if 
there is any evolutionary meaning to the decrease in the role of individual 
attraction in relation to individual departures ( b / d )  and the ascendancy 
of group attraction in relation to individual departures ( a / d ) .  A theory of 
this phenomenon, if it exists, is evolutionary theory, and can be distinguished 
from the theory of the social system itself. 
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Section 5 .  Data Structures and Models for Social Behavior 

The studies of casual social groups just described report observations on 
the frequency distribution of the size of groups engaged in a particular 
class of activities (informal socializing). 

Transaction flows are another common form of reporting quantitative 
observations of social behavior. In transaction flows, an actor and an object 
are designated; for example, a speaker and a listener (Bales 1968), a 
dominating chicken and a dominated chicken (Guhl 1956), or a threatener 
and a threatened subject. Transaction flows are usually reported as a matrix 
in which the rows correspond to actors and the columns correspond to 
objects. The number in the ith row and jth column reports the frequency 
with which individual i acted upon individual j. In such matrices, the 
diagonal is zero or undefined. The statistical analysis of such matrices, 
assuming certain probability models, has been treated by Bishop and Fien- 
berg (1969), Fienberg (1969), Goodman (1968), and Wagner (1970). 
When the individuals are lumped into classes such that one member of a 
class may act upon another member of the same class, the diagonals need 
not be zero (e.g. Altmann 1968). 

A third form of recording quantitative observations of social behavior 
consists of matrices in which rows and columns are identified as before but 
in which the individual entries record the frequency of some conjoint action, 
such as the frequency with which monkey i and monkey j slept together 
in the tree tops (Struhsaker 1967b, p. 112). Clearly this relation is sym- 
metric: the entry in row i and column j equals the entry in row j and 
column i. When columns and rows are identified with individuals, the 
diagonal may be left undefined or may record the frequency of the action 
(if meaningful) by the isolated individual. The half-matrix above the 
diagonal suffices to record the pairwise frequencies when rows and columns 
are identified with individuals. When individuals are pooled into classes, 
the diagonal is required as well. 

A fourth form of recording quantitative observations of social behavior 
(to which I will return in Section 6 )  constitutes a frequency distribution on 
patterns or elements of behavior. This frequency distribution tells, for 
example, how often all individuals chased, fled, slept, or played. Altmann 
(1965) gives a frequency distribution on a behavioral repertoire of 120 
elements. 

A fifth method that could be employed to record quantitative observa- 
tions of social behavior is the multidimensional contingency table. Each 
dimension is associated with an individual in the social system. Each cate- 
gory along the dimensions is associated with an element in a behavioral 
repertoire. This repertoire must be defined so that its categories are mutually 
exclusive. This requirement excludes a repertoire which permits an animal, 
for example, to be groomed and to be grooming at the same time if these 
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are considered two different elements of the repertoire. Multidimensional 
contingency tables have recently been used to analyze lizard feeding be- 
havior and interspecific interactions in ecology (Schoener 1970). A simple 
guide to their statistical analysis in this context is available (Fienberg 1970). 
To my knowledge, these tables have not been used to record social behavior. 

The information contained in the first four forms for recording observa- 
tions of behavior can be derived by arithmetic from this fifth form. Further, 
a model for the probabilities of observations in the cells of the multidimen- 
sional contingency table implies models for each of the other four arrays 
of observations, by the same arithmetic operations performed on the pre- 
dicted probabilities. In this sense, a model for the multidimensional contin- 
gency table is an underlying model for the other kinds of observations. 
In particular, a model of independence in conjoint action as recorded in 
symmetric matrices (the third form above) and the Poisson or negative 
binomial theoretical distributions of group size (as predicted by the LOST 
models of the previous section) can both be derived from a single, simple 
partial model for the multidimensional contingency table. (The much more 
difEicult problem of the effects of collapsing multidimensional contingency 
tables when a model of independent dimensions is not assumed is being 
studied by Bishop [1971].) 

To keep the example simple, suppose we have a primate troop of only 
three individuals that do only four things: chasing, fleeing, sleeping in the 
troop's roost, and playing in the troop's playpen. All individuals in the 
troop are presumed to be in view with each observation of the troop. (This 
assumption avoids all the difficult problems of sampling.) At any time, each 
of the animals is engaged in precisely one of these activities. An animal can 
be engaged in chasing if and only if there are one or more animals fleeing 
from it, and an animal can be fleeing if and only if there are one or more 
animals chasing it, and no animal can be both chasing and fleeing at the 
same time. (In the common sense of the terms "chasing" and "fleeing," 
an animal may be both chasing and fleeing at the same time; but we require 
the categories to be defined as disjoint.) Any binary social relation, such as 
talking and listening, which satisfies the same properties may be substituted 
for chasing and fleeing. Arbitrary n-ary relations may be recorded in the 
same contingency table format so long as there are at least n individuals 
in the troop. 

Then observations of the entire troop's social activities may be entered in 
the three-dimensional array with four categories in each dimension, as shown 
in Table 19-2. Here the letters a, b, c, . . . x,  y, z, A are numbers of obser- 
vations. Roman numerals I, 11, I11 identify the three individuals, and ( 1 ) , 
(2) ,  (3) ,  (4) identify chasing, fleeing, sleeping, and playing, respectively. 

The zeros are logical zeros. For example, the entry in the third row and 
third column of the first panel is zero because if animal I is chasing ( I ) ,  
and animal I1 is sleeping (3) ,  by definition of "chasing" animal I11 must 
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Table 19-2. A multidimensional contingency table to record social 
behavior in a troop of three individuals ( I ,  11, I l l ) ,  each having 

four patterns of behavior [ ( I ) ,  ( 2 ) ,  (3) ,  ( 4 ) ] ,  entries 
a, b, c, . . . y, z, A being observed frequencies 

be fleeing (with frequency d, row (2) ) , and cannot also be sleeping. All the 
other zeros are argued similarly. 

Table 19-3 illustrates the four derived data formats, in the order in 
which they were first described. The entries in these arrays show how they 
were derived from the counts in the multidimensional contingency table 
(Table 19-2). Part I of Table 19-3 gives the frequency distribution of 
sleeping group sizes and the frequency distribution of play group sizes. For 
example, the frequency with which exactly two animals were observed 
playing together is u + y + z. The frequency with which all three animals 
slept in one group is r. 

The frequencies with which particular pairs of animals engaged in chas- 
ing and flight are given in part 2 of Table 19-3. Thus animal I chased animal 
I11 with frequency b + c + d +e, whether or not animal I also chased 
animal I1 or was joined in chasing I11 by animal 11. 

The frequencies with which each pair of animals slept together and 
played together are given in part 3 of Table 19-3 regardless of the presence 
or absence of the remaining animal in the troop. Thus animal I1 and animal 
I11 slept together with frequency r + x. 

Finally, the frequencies with which the acts of chasing, fleeing, sleeping, 
and playing were observed are given in part 4 of Table 19-3. Since A is the 
frequency with which all three animals were observed playing at the same 
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Table 19-3. Four frequency distributions derived f rom the multidimensional 
contingency table (Table 19-2) : 3.1, group sizes; 3.2, transaction flows; 

3.3, pairwise conjoint actions; 3.4, behavior patterns 

3.1 
Size o f  Frequency o f  Frequency o f  Play 
Groups Sleeping ( 3 )  Groups ( 4 )  Groups 

3.2 
Fleeing ( 2 )  

I I1 I11 
I 0 a + c + f + g  b + c + d + e  

Chasing(1) II h + l + m + n  0 b + l + q + w  
111 h + i + j + k  a + i + p + v  o 

3.3 
Sleeping ( 3 )  pairs Playing ( 4 )  pairs 

I I1 I11 I I1 I11 
I 0 r + t  r + s  I 0 Y + A  ~ 4 - A  

11 r + t  0 r + x  11 Y + A  0 u + A  
I11 r + s  r + x  0 I11 z + A  u + A  0 

3.4 
Behavior Frequency 

( 1  2 a + 2 b + c + d + e + f + g + 2 h + i + j + k + l + m  

time, each such observation contributes 3 to the number of times which 
the act of playing was observed; similarly for the other entries multiplied by 
numbers. 

The point to be made is that if the contingency table in Table 19-2 is 
available, all the other forms in Table 19-3 of describing social behaviors 
follow by arithmetic. 

A model of quasi-independence which is widely used for the analysis 
of transaction flows (Bishop and Fienberg 1969, Fienberg 1969, Goodman 
1968, Wagner 1970) attributes to each individual i = I, 11, I11 a chasing- 
strength at, I ,  and a fleeing-strength a i ( ~ ,  , both of which are dimensionless 
probabilities between 0 and 1.  The model predicts that the frequency with 
which individual i will be observed chasing individual j will equal Nai( l)aj(n) ,  
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where N is the number of observations of the whole troop. For symmetric 
relations such as sleeping or playing, the matrices of expectations Nai(3)aj(3) 
= Naj(3)ai(3) and Ncq4)aj(4) = Naj(4)ai(4) are symmetric. That there is no 
statistical or logical necessity for observations of pairwise interactions to be 
described by a model of quasi-independence is most convincingly demon- 
strated by the failure of real data to be so described (Altmann 1968). 

To relate the symmetric model for a conjoint action, e.g. playing (4),  to a 
Poisson or negative binomial distribution for the size of play groups, we 
construct a model for the 2 x 2 x 2 contingency table in part 1 of Table 
19-4, which is obtained from Table 19-2 by collapsing the four elements 
of the behavioral repertoire into two elements, namely, "playing" and "not 
playing." (When there are n animals in the troop, this censorship yields a 
2" contingency table for the frequencies of conjoint playing.) The model of 
independence, which gives each animal i a probability a t (4) ,  i = I, 11, 111, 
of joining in play, independently of all other animals, assigns to each com- 
bination of animals the probabilities in part 2 of Table 19-4. When these 
are transformed to a symmetric matrix part 3 of Table 19-4 analogous 
to part 3 of Table 19-3, it appears that the probability that any animal is 
paired with any other animal in play equals the product of their respective 
probabilities of playing; hence that the model of quasi-independence is 
satisfied. 

When the probabilities in part 2 of Table 19-4 are transformed to a 
frequency distribution of group size as in part 4 of Table 19-4, it appears 
that if all the animals' probabilities of play at(4) were equal to a((, ,  then 
group sizes would be binomially distributed, with probability parameter a(4) 
and with n = 3. It is well known that if n becomes large and a(4, remains 
small so that na(c,  is moderate, the binomial distribution approximates the 
Poisson distribution with parameter A = na(4).  If the animals in a large 
troop were divided into classes, the members of which played only with 
other members of the same class, and the probabilities a(4) were distributed 
over the classes in an approximately gamma distribution, then the group 
size distribution for the whole troop would be approximately negative 
binomial. 

This derivation of the Poisson and negative binomial distributions from 
the underlying model of independence presented in part 2 of Table 19-4 
rests on the assumption that all ai(4) are equal. This assumption may be 
relaxed. If the probabilities at(4) are distributed over the animals i in a beta 
distribution, then it may be proved that the distribution of group sizes will 
be hyperbinomial. As n gets large, for small group sizes and subject to cer- 
tain reasonable constraints on the beta distribution (small variance), the 
hyperbinomial distribution approximates a binomial distribution. The de- 
tails of this argument and the explicit form of the restrictions on parameters 
which make this limiting process valid may be found in Pratt, Raiffa, and 
Schlaifer (1965, ch. 9) .  This binomial distribution of group sizes yields 
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Table 19-4. Modeling the multidimensional contingency table in order to relate 
models o f  pairwise conjoint actions and group size distributions:* 4.1, Table 
19.2 censored to show only playing (4) or not playing (-4); 4.2, model o f  in- 
dependence for 4.1; 4.3, model for pairwise conjoint actions implied by 4.2; 

4.4, model for group sizes implied by 4.2 

4.4 
Size o f  
groups Probability that a play (4) group will have the size given 

0 (l-a1)(l-a2)(l-a3) 
1 al(l-a2)(1-a,) + (1-al)a2(l-a,) + (l-al)(l-a2)a3 
2 (1-al)ala2 + al(l-azIa3 + ala2(1-a3) 
3 ala2a3 

*In this table a4 means a,,,,, i's probability of playing. 

the Poisson and the negative binomial distributions by the same processes 
as before. 

Hence it is possible to go from a single underlying model as represented 
in part 2 of Table 19-4 to both the model of quasi-independence in pair- 
wise interactions and the same equilibrium distributions of group sizes 
(Poisson and negative binomial) which are predicted from other (LOST) 
modeis. The multidimensional contingency table (Table 19-2) offers a way 
to unify apparently different quantitative approaches to the analysis of 
social behavior, and raises an obvious further question (as Stephen E. 
Fienberg has pointed out privately): What model of the full Table 19-2 
will predict quasi-independence for part 2 of Table 19-3 and symmetric 
quasi-independence for symmetric pairwise activities such as part 3 of 
Table 19-3? The answer is instantly obvious to neither him nor me. 
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Section 6.  Frequencies of Behavior 

Why are the frequencies of behavior what they are? If the frequencies 
are presented as a summed distribution over the repertoire (e.g. part 4 of 
Table 19-3), then an initial procedure is to explain the frequencies by deriv- 
ing them from some probability model of the underlying contingency table 
(Table 19-2). Thus if one is interested only in the frequency of playing, 
one could relate the frequency to the underlying probabilities C Y ~ ( ~ ) ,  i = I, 
11, I11 of joining in play. This is only temporarily satisfying, and merely 
changes the question to: why are the probabilities (1) = ( I ) ,  (2) ,  
(3) ,  (4) what they are? 

One answer to this question may be based on physiological mechanisms 
in the animal which are triggered by its environment with a frequency cor- 
responding to the frequency of the behavior. When a clear-cut trigger 
exists, as in many mating rituals, this answer can be illuminating. It is 
less satisfactory when animals behave in similar ways in a variety of cir- 
cumstances and when, under similar circumstances, different individuals 
and species behave variously. 

A response of evolutionary biologists is that when individuals of a 
species achieve behavioral equilibrium in an environment, the frequency 
distribution of observed behavioral patterns is that which is most adaptive, 
in the sense of maximizing Fisher's Malthusian parameter. For example, 
Altmann and Altmann ( 1970, pp. 198-201 ) attempt to explain a baboon 
troop's allocation of time to different quadrats of a habitat as one which 
maximizes the sum of the differences between benefits and costs (measured 
in terms of reproductive success) associated with each quadrat. Testing 
this approach requires a direct measurement of the benefits and costs 
associated with each quadrat occupied or behavior pattern observed. 
Field studies of primates are only beginning to provide such measurements. 

However, direct quantitative evidence is available that pigeons, rats, 
and people in psychological laboratories match their behavior to the re- 
wards for different acts provided by the environment. The following de- 
scription is based on Herrnstein (1970; and in press). 

Suppose a pigeon in a Skinner box has a choice of two disks to peck at. 
Suppose that for each disk there is a minimum interval of time (possibly 
different for each disk) such that as soon as the pigeon pecks after that 
interval it is reinforced with food, but if it pecks before the end of the 
interval it gains nothing; and suppose this interval fluctuates around some 
mean. This schedule of reinforcement is called a "variable interval" sched- 
ule and usually produces in pigeons a rate of pecking far greater than the 
rate of reinforcement. 

Herrnstein showed that the pigeons matched their pecking to the re- 
wards from each disk. For example, when the average rate of reinforce- 
ment from the left disk was 30 reinforcements per hour and the average 
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rate from the right disk was 10 per hour, then each pigeon delivered 
three-quarters = 30/(30 + 10) of its pecks to the left disk and one-quarter 
to the right. An extensive series of experiments led to the conclusion 
(Herrnstein in press) that "responding and reinforcement are related by 
a constant of proportionality, k. Reinforcement, however, is not measured 
absolutely, but as a ratio between the reinforcement conditional upon the 
response and total reinforcement." If Pi(l) is animal 2s rate of performing 
acts of category (I), and R , l )  is the reinforcement to acts of type (I), then 
Herrnstein found: 

The number of different acts visibly reinforced is m. R(o ,  is a residual 
reinforcement for acts not listed in the repertoire, akin to the animal's 
proclivity for self-generated entertainment without external reinforce- 
ment. It follows that for each animal i the probability a,,,, of acts of type 
(I),  I = 1, 2, . . . m, among all m overtly reinforced acts in the repertoire, 
is : 

Hence there is a matching between relative rates of response and relative 
reinforcement. 

An important implication of expression (1)  noted by Herrnstein is: 

Contrary to intuition, responding may therefore be more or less indifferent 
to the reinforcement it produces. If the response's reinforcement is a large 
part of the total reinforcement, which is to say that the reinforcement ratio 
in equation [I] is close to 1.0, then responding will stay close to the value of 
k ,  And conversely, if the response's reinforcement is only a small fraction of 
the total reinforcement, then the response will be quite sensitive to variations 
in its reinforcement, in the limiting case being directly proportional to it. 

The confirmation of the generalization summarized by equation (1)  in 
more than 50 experiments suggests that it also might be a valuable aid in 
interpreting frequencies of behavior outside of Skinner boxes as attempts 
to match environmental reinforcements. 

The baboons' occupancy of different quadrats is not a behavior with a 
rate, but a choice with duration. An experiment which shows that the 
same regularity, Equation ( 1 ) , describes such choices is described by 
Herrnstein : 

Pigeons were given the chance to choose between blue or amber illumination 
of the experimental chamber. One peck at a disk changed it to amber if it was 
blue, and vice versa. Every now and then, the pigeon (who was hungry) was 
given a bit of food irrespective of its responding. The rate of feedings de- 
pended on the color of illumination. At any moment, the pigeon could switch 
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from the prevailing color to the other. Except for the lack of a response re- 
quirement, the two schedules were variable intervals running concurrently, 
so that it was advantageous for the pigeons to switch back and forth to col- 
lect the feedings that were coming due. . . . the pigeons kept the proportion 
of time spent in a given color of illumination equal to the proportion of rein- 
forcements obtained therein. 

If the various quadrats of a baboon's habitat provide resources in an 
approximation to a variable-interval schedule, then the observed durations 
of occupancy of the different quadrats may indeed be matching the net 
gains from the quadrats, as the Altmanns have suggested. The finding 
of the experimental psychologists shows that such matching occurs in the 
laboratory and defines the precise form of the distribution of net benefits 
which should be looked for in the field. That the net gain from different 
quadrats, or from different patterns of behavior in the field, in fact matches 
the duration of occupancy or frequency of performance, remains unproved. 

Section 7 .  Math and Aftermath 

In addition to those already mentioned, other mathematical techniques 
are ripe for a fruitful union with empirical techniques and observations 
within the next few years. Moreover, the growth of mathematical models 
peripheral, but nonetheless related, to primatology may offer suggestive 
leads. 

One area of primatology ready for a union of existing models and data 
is the study of dominance. Many data of varying degrees of detail (Kawai 
1958; Itani et al. 1963; Mizuhara 1964; Bernstein and Draper 1964; 
Bernstein 1968b, 1969, 1970; Uyeno 1967; Delgado 1967; Vandenbergh 
1967; Sade 1969a; and others) have never been compared systematically 
with theory (e.g. Landau 1968; Boorman 1970, and in preparation). 
Mathematical models recently developed in the theories of preference and 
measurement (Roberts 1969) seem readily translatable into sociological 
situations where transitivity is absent. But their relevance remains unex- 
plored. Structural models of roles in human societies may well offer insight 
into primate social relations when simple dominance models fail (Lorrain 
and White 1971). 

Second, the population genetics of primate troops is now becoming 
accessible to study through the conjoint development of improved methods 
of assessing and understanding the genetic status of individuals (Court- 
Brown 1967, Harris 1970), improved models of small, nonrandomly 
breeding populations (Karlin 1969), and long-term studies of primate 
populations including observations on obvious genetic malformations 
(Itani et al. 1963, pp. 29-36) and genealogy (Sade, Chapter 17). 

Third, the study of primate diseases (Cockburn 1963, Fiennes 1967, 
Bray 1968) offers an excellent testing ground for theories of parasitism, 
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prudent predators (parasites), and the mutual adaptation of host and para- 
site. Mathematical models of the transmission of malaria, for example 
(Macdonald 1957), require primate studies when monkeys as well as men 
belong to the reservoir of potential hosts (Contacos and Collins 1969). 
The same conclusion applies to mathematical models of schistosomiasis 
(Goffman and Warren 1970) for the same reason (Miller 1960). 

Several potentially applicable developments in peripheral areas related 
to primatology have already been mentioned. Others have been reviewed 
in the fields of social psychology (Abelson 1967, Whitla 1968), sociology 
(Coleman 1964a, 1964b), ecology (Watt 1968, Pielou 1969), political 
science (Bernd 1966), and stochastic models (Bartlett 1960, Bartholomew 
1967). Recent flowering of the analysis of incomplete demographic data 
has immediate utility in primate studies, a field in which observations are 
often fragmentary (United Nations 1967). 

What is required of data collectors and of data analyzers in order to 
promote full and rapid employment of available mathematical models, and 
development of new mathematical models, in primate behavior, sociology, 
and ecology? 

As for the data generator, I subscribe to the dictum which E. 0. Wilson 
enunciated at an informal Harvard seminar: the state of biology is such 
that a person at any level of mathematical sophistication can make sub- 
stantial contributions. Nevertheless, the magnitude and effectiveness of 
those contributions can be improved by sufficient mathematical self-confi- 
dence to scan theoretical literature critically and to search for conclusions 
or predictions relevant to field work. 

A simple example illustrates how an appreciation of the models which 
underlie field techniques can improve the use of field data. A familiar 
method of estimating the density of points in a plane is to choose random 
points and measure the distance from each to its nearest neighbor. The 
density of points may be estimated from the square of the mean of the 
distances or from the mean of the squares of the distances. Kendall and 
Moran (1963, p. 38) have shown that it is more efficient (i.e., gives an 
estimate with smaller variance) to use the latter estimate than the former. 
Hence following the inattentive routine of just presenting the average of 
nearest-neighbor measurements would not be taking full advantage of 
available information. Such mishandling of field data can destroy valuable 
information in them. 

I would urge field primatologists to publish as full and detailed accounts 
of systematically collected data, along with the methods of collection, as 
possible. And I would urge them to encourage their students to have 
calculus through ordinary differential equations, probability theory, and 
some modern algebra. Properly taught, such courses can lay the foundation 
for confident consultation with active modelers. 

The mathematical modeler also needs to gain an appreciation of what 
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is important and what is feasible in primate field studies. He can gain such 
appreciation by participating actively in primate field studies, or by con- 
sulting frequently and for a long time with field workers, or by trusting his 
armchair insight and luck. The first option is best. The armchair is an ideal 
vantage point from which to overlook the obvious and make impossible 
demands: when estimating density by choosing random points and measur- 
ing the distance to the nearest neighbor, the field worker must have 
alternative procedures if the random point is in a patch of six-foot-tall 
grass occupied by an elephant. 

A warning issued to physicists by Bridgman (1927, p. 209) has equal 
relevance to those who construct and take seriously mathematical models 
in the life sciences: 

There is an aspect here of our physical research that is often lost sight of, 
namely, the small proportion of successful discoveries compared with the 
number of investigators. Certainly the number of unsuccessful attempts, even 
in the case of those fortunate individuals who make the great discoveries, is 
very much greater than the number of their successful attempts. (Faraday's 
reputed satisfaction with a 1/ 10% return comes to mind.) This must always 
be taken into account in estimating the probable chances of correctness of 
any new theory. With so many physicists working to devise new theories, the 
chances are high that many false theories will be found, in which a number 
of phenomena may apparently fit together into a new relation, but which 
eventually prove to be inconsistent with other phenomena, so that the pro- 
posed theory has to be abandoned. As physics advances and the number of 
investigators and the amount of physical material increases, one has to be 
more and more exacting in one's requirements of a new theory. 


