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1. INTRODUCTION 

This paper proposes a translation of the deterministic Lotka-Volterra 
equations for the interaction of populations of two species in a single en­
vironment into a formally equivalent Markovian model for the interaction 
of populations of two species in an ensemble of similar environments. Unlike 
several discussions of the Lotka-Volterra equations, this paper explores the 
evolution of such an ensemble of interacting populations when some of the 
parameters of interaction are cOllsidered as subject to natural selection. The 
purpose of this theoretical development is eventually to illuminate inter­
actions of infections in parasitized, particularly human, hosts, and the fol­
lowing exposition will speak of individuals (hosts) with various kinds of 
infections. But interactions of any species distributed in discrete, or patchy, 
and approximately similar environments could also be studied in the same 
way (Section 6). 

The general motivation for this undertaking is in part empirical, in part 
theoretical. The empirical motivation is that studying even moderately com­
plex associations of species, when it is possible, is difficult and costly. 
Evaluating experimental interventions in ecology requires lmowledge of 
howa system would have behaved in the absence of intervention and hence, 
for want of adequate theory, requires replication of the original system. 
Small laboratory systems, though replicable with effort, may not always 
illuminate situations outside laboratories adequately (Smith 1952). 

Moulder (1969) has ingeniously combined the advantages of a natural 
system with small size and replicability by studying intracellular parasitism, 
using uniform populations of single susceptible cells as hosts. The problem 
of generalizing to the impact of a parasitemia on the whole organism rc­
mains, however, as Moulder points out. 

Ecological investigations of the interspecific interactions within ensembles 
of human beings exposed to infection by a variety of species offer one 
convenient and important solution to the problems of size, naturalness, and 
replication, because many such systems have been extensively studied. 

A theoretical motivation for the following approach is that, when it has 
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been difficult to understand the behavior of unique systems, it has sometimes 
been easier to understand ensembles of such systems. Kerner (1961) and 
Leigh (1965) have attempted to extend the machinery of statistical me­
chanics to ecological theory. The following, though using analytical tools 
more tailored to the systems at hand, is another attempt in the same spirit. 

The absence of interaction between the presence of one species of occu­
pant or parasite and the presence of a second in a population of replicated 
quadrats, or units of habitat, or parasitized individuals is defined here by 
saying that, if al and a2 are the respective probabilities of finding species 1 
and 2 present in an individual host, then the probabilities Po of an indi­
vidual having no species present, Pl of an individual having only species 1 
present, P 2 of an individual having only species 2 present, and P 3 of an 
individual having both species present are given by 

Po = (1- ad (1 - (2), 
Pl = al(l- (2), 
P2 = (1- at)a2, 
P3 = al'a2. 

(1) 

Estimates of the probabilities Pi are obtained by recording observations in 
the form of a 2 X 2 contingency table (fig. 1). Pielou (1969, p. 159-168) 
has reviewed the usual statistical tools for deciding whether the sample 
estimates of Pi are consistent with the model (1) of no interaction within 
the population of individuals, or with a model of no interaction within just 
the sam pie of individuals. 
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Section 2 of this paper will present a discrete-time, finite-state Markov­
chain model (in the manner of Coleman 1964) to aid the measurement and 
interpretation of the interactions such contingency tables may reveal, and 
will derive a continuous-time, finite-state Markov-chain equivalent to it. 
Section 3 will show that under a certain interpretation (in the manner of 
White 1970) of the variables in the Lotka-Volterra model, this continuous­
time Markov chain is formally identical to the Lotka-Volterra model near 
its equilibrium point in which both species are present. The parameters of 
the Lotka-Volterra model will be calculated from those of the Markov chain. 
Section 4 will review the statistical procedures for estimating the param­
eters in the discrete-time Markov model and will present tests required to 
reject some of the assumptions of the Markov mode!. Section 5 will explore 
the evolution of the equilibrium of the Markov chain when the parameters 
measuring interspecific interaction are allowed to change in response to a 
representation of natural selection. Finally, Section 6 will evaluate this new 
Markov-chain interpretation of the Lotka-Volterra model and the techniques 
used to make the interpretation. 

2. A MARKOV-CHAIN lVWDEL FOR INTERSPECIFIC INTERACTION 

The model to be presented, a Markov chain in discrete time and a derived 
Markov chain in continuous time, is a special case of the class of models 
discussed and applied in a different context by Coleman (1964, p. 103-188). 

For convenience, l will speak of individuals getting infected with a 
species or losing that infection and as having single or mixed infections. 
Readers interested in islands are requested to translate into islands getting 
colonized by or suffering the extinction of a species and as having single- or 
mixed-species faunas or fioras. 

Suppose two species are available to infect individuals. Consistent with 
the notation in (1), an individual is said to be in state 0 if he is infected 
with neither, in state 1 if he is infected with species 1 but not species 2, in 
state 2 if he is infected with species 2 but not species 1, and in state 3 if he 
is infected with both species. Suppose that transitions among these states 
occur as diagramed in figure 1. The labels attached to the arrows may be 
interpreted either as transition probabilities, when the changes of state 
occur in discrete time, or in the limit as transition rates when the changes 
occur in continuous time. 

In discrete time, figure 1 means that between time t and some later time 
t + 1:', where 1:' is the unit of time, the row vector pet) = [PoU), Pl (t), 
P 2 (t), PaCt)], which gives the probability distribution of individuals over 
states, will change by pet + 1:') = pet) . T, where the transition matrix T is 
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and the parameter values are restricted by the requirement that aU elements 
Ti} in the matrix fan in [0, 1]. 

As a model, such a Markov chain assumes that there is no interacholl 
among individuals making transitions among these states, so that oue may 
speak indifferently of an individual 's probability of being iu a state or of 
the probability distribution of individuals among states. Hence, the modei 
approximates the role that the density of other infected individuais may 
play in the incidence of infection by a constaut. The modei aiso assumes that 
an individual 's probabilities of transition from a given state are indepen­
dent of what states he occupied previously. Such a model neglects immunity 
acquired from previous infection. Hence, in order for it to be relevant to 
actual immunogenic parasitic diseases, it may be necessary to define the 
states of the contingency table (fig. 1) in terms of the presence or absence 
of species-specific antibodies in sera rather than in terms of the presence or 
absence of the parasites themselves. The two assumptions just described 
may not be so bad when, for example, the individuals are not human beings 
but separate lakes and the inhabitants are Ectoprocta (BushneU1966). 

The particular model (2) embodies two additional strong assumptions. 
First, because of the zero minor diagonal, it assumes that in the period of 
time 't', there can be no direct diagonal transitions (between states 0 and 3 
or 1 and 2) in figure 1; that is, only one infection at a time can be lost or 
gained. Second, it assumes that the decrease in the probability of infection 
with species 1 when species 2 is present compared with when species 2 is 
absent is equal to the increase in the probability of loss of infection with 
species 1 when species 2 is present compared with when species 2 is absent, 
and similarly when 1 and 2 are reversed. (A less confusing mathematical 
statement of this assumption appears as [15] below.) 

That the model (2) is a strong model embodying a very restrictive set of 
assumptions may be seen by comparing the smaU number, six, of arbitrary 
parameters it contains relative to the possible number, 12, of different 
parameters such a four-state Markov chain could assume. 

If pet) is subtracted from both sides of the identity pet + 't') = pet) . T 
which precedes (2) and if the unit of time 't' is aUowed to approach zero, the 
continuous rates of change Pl in the state probabilities are obtained as a 
function of the infinitesimal matrix of transition rates of the process 
(Karlin 1968, p. 218-225). The resulting set of equations for Pt shares two 
important properties with the epidemic models, which are also first-order 
differential equations whose variables are fractions of a population, pro­
posed by Muench (1959) : the equations are linear in the state probabilities 
(or in the categories of the population) ; and the models are "conservative" 
(Karlin 1968, p. 223) in that, roughly speaking, the probability gains (or 
losses) of each state are always exactly balanced by the probability losses 
(or gains) of the remaining states. When Po has been eliminated by noticing 
that Po = 1- Pl - P2 - Pa, the continuous-time Markov chain becomes 

Pl' = Àl - Pl (!-ll + Àl + À2 - E2) - P 2Àl + P a (!-l2 + E2 - Àl ), 
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p,,/ == 1..2 - PlÀ2 - P2(/l2 + 1..2 + 1..1 - El) + Pa (/lI + El - 1..2), (3) 

Pa' == Pl (')-2 - E2) + P2(Àl - El) - P 3(!l1 + El + /l2 + E2). 

The proportion of individuals who are infected with species i, whether or 
not the other species is present, is Yi == Pi + Pa, i == 1, 2. From (3), the 
rates of change Y/ in the proportions Y, infected with each species are 

y l' == Àl [ 1 - ( 1 + ~: ) YI - (~:) y 2 J, 
Y 2' == À{ 1 - (~:) YI - ( 1 + ~2) Y 2 J. 

(4) 

At equilibrium, the rates of change on the left sides of (3) and (4) are zero, 
and the equilibrial values of the Pi and Yi may be found by Cramer 's rule. 
In particular, 

and 

P3'~ == Àl/l2 (À2 - E2) + À2/l1 (À1 - Ed + (}'1 + À2) (Àl - Ed (À2 - E2) 

(!l1 + /l2 + Àl + À2) [C/l1 + À1) (/l2 + À2) - E1E2] 

À1 (À2 + /l2) - E1À2 
Y1*==~--~~~~--~-----

(À1 + '/lI) (À2 + /l2) - E1E2 ' 

Y 2* == À2 (À1 + /ld - E2À1 

(À1 + '/lI) (À2 + /l2) - E1E2 • 

(5) 

(6) 

The equilibrial values Po*, P 1*, and P 2* may be found from (5) and (6). 
In the language of this model, the hypothesis of no interaction between 

species 1 and 2 means that the rates of infection or loss of infection with 
one species are not affected by the presence or absence of the other and 
hence that El == E2 == O. When El == E2 == 0, 

P * - À1À2 == Y 1*Y2*. 
a - (!l1 + À1 ) (/l2 + À2 ) 

(7) 

If Y i*, the equilibrial proportion infected with species i, is identified with 
ai, an individual 's probability of infection with species i, then the model of 
no interaction (1) is reproduced exactly. The deviation between (5) and 
(7) is one measure of the strength of the interaction. 

3. LOTKA-VOLTERRA SYSTEMS NEAR EQUILIBRIUM 

The classical Lotka-Volterra equations for the competition of two species 
in a limited environment (Keyfitz 1968, p. 288-291) are 

Xl' == r1X1(1- aXl - aX2 ), 

(8) 
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where Xi (assumed nonnegative) is a measure of the abundance, and X{ Ïs 
a measure of the rate of change in abundance, of species i, i = 1, 2, and aU 
parameters are assumed positive. 

The system (8) has four stationary points where Xl = 0: when Xl = 
X 2 = 0; when Xl = 0, X 2 = l/b; when Xl = l/a, X 2 = 0; and when 

X*- b-a 
1 - ab _ a~' 

X *- a-~ 2 - . 
ab - a~ 

(9) 

This last stationary point, the only one of interest henceforth, is a stable 
equilibrium if 

ab > a~. (10) 

The stability of the system (8) at this stationary point (9) is completely 
determined by the stability of the linear approximation obtained from 
expanding the right si de of (8) in a Taylor series about (9) and truncating 
aH nonlinear terms. 

or 

The linearized approximation to (8) at the point (9) is 

X 1'= (XI -XI*)(-a,r j X 1>X') + (X2 -X2*) (-arIXI*) , 

rl(b-a) 
XI' = (1- aXI - aX2 ) , 

ab - a~ 

X 2' = r2(a - ~) (1- ~XI- bX2). 
ab - a~ 

(11) 

(12) 

These equations (12) are formally identical to the equations (4) for the 
Markov chain under the identification: 

Xi = Yi, i = 1, 2, 
a = 1 + !ll/ÂI, 

b = 1 + !-t2/Â2, 

a = Et/ÂI, 

~ = E2/Â2, 
r. = Âi/X.*, i = 1, 2, 

(13) 

where X.* are given by (9). Thus, if the abundance Xi of species i is taken 
as the proportion Yi of an individuals who are infected with species i, then 
the behavior of a Lotka-Volterra competitive system in the vicinity of its 
stable point (9) is given exactly by the Markov-chain model of Section 2. 
The six parameters of the Lotka-Volterra system are uniquely specified by, 
and uniquely specify, those of the Markov model as in (13). If the param-
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eters a, b, a, ~, rI, and r2 are assumed positive when (8) describes competi­
tion, then Ei, A;" andJ.4, i = 1, 2, must also be positive. 

Under this identification of Xi with Yi, the usual measure of abundance 
as the density of malarial parasites in the blood of an infected child or the 
number of birds of a species on an island is replaced with the number of 
individuals (children or islands) in which the species is present. The idea of 
replacing a continuously varying property of a single system with the 
!)roportion of replicated systems Ilaving an alI-or-none attribute is due to 
White (1970), who proposes and carries out the technique in a different 
context. 

The condition for Rtability (10) becomes, in the parameters of the Markov 
model, 

(14) 

which is always satisfied because Âi ~ Ei and Ili> 0 under (13). This is 
hardly surprising, since the Markov-chain model to which the linearized 
T,otka-Volterra system is equivalent has a single stationary point which is 
stable. 

Let Ti; be the elements of the transition matrix T in (2), where rows and 
columns are indexed starting from zero. Un der the assumption that the 
minor diagonal is zero (barring two changes in the state of infection at 
once, a reasonable assumption for the continuous-time Markov chain), it 
may be shown that the neceRsary conditions fol' (4) to be formal1y identical 
to (12) are 

(15) 

4. ESTIMATION AND TESTING 

The data in the four cells of figure 1 make possible the estimation of 
three independent proportions, such as Po, Pl, and P2 , or Yl , Y 2 , and P 3 • 

The data are obviously insufficient to estimate separately the six parameters 
of the Markov model, let alone to test the assumptions underlying it. 

The necessary theory and techniques for estimating and testing the 
discrete-time and continuous-time Markov chains presented here appear 
compendiously in Billingsley (1961, p. 23-32, 45-51). The analysis of in­
dependence in a discrete-time Markov chain on a contingency table is even 
carried out explicitly (Billingsley 1961, p. 29-30). Coleman (1964, p. 177-
188) also discusses the estimation of transition rates apparently unaware of 
Billingsley's work. 

For the discrete-time model, the essential ide a is to observe a sample of 
transitions among states from one time to the next. If Nij is the number of 
transitions which begin in state i and go to state j (i and j are not nec es­
sarily distinct) and Ni. is the number of transitions which begin in state i, 
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then the maximum-likelihood estimate tif of the transition probability Ti} 
from state i to state j is Ni;/Ni .• The conditions and tests related to this 
estimation procedure need not be repeated here from Billingsley (1961). 

To test whether the observed transitions are consistent with the conditions 
(15), we note that given Ni., the Ni} are multinomially distributed with the 
probabilities Ti; given by the ith row of the transition matrix T in (2). 
Rence, ECti;) = Ti;' var(tij) = T i;(l- Ti;)/Nio, and COV(ti;, t,el) = (-Ti; 
Tkl/Nd'ôik.l On the null hypothesis that the observations come from a 
Markov chain with transition matrix T as in (2), the expectation of the 
random variables 

(16) 

is EUh) = E((J2) = 0 and the variances may be estimated by 

var((Jd """ 
tol(l- tod 

+ 
tlo(l- t lO ) 

+ 
t2s (1 - t2S ) 

+ 
t32(1- td 

No. N], N 2. N s . 

(17) 

var((J2) """ 
to2 (1 - to2 ) 

+ 
tls (l - h3) 

+ 
t;:w(1- t20 ) 

+ 
fat(l- fat) 

N N N 2. N s. O. 1. 

An observed value of ()i, divided by its estimated variance (17), may then 
be assigned the distribution function of a standardized normal variate to 
see whether the observations are consistent with conditions (15). The two 
tests, one for (Jl and the other for ()2, are not independent, because 

(18) 

Rence, the power of the test of the compound hypothesis (15) against the 
alternative that equality does not ho Id in either or both relations cannot be 
found simply by multiplication of the powers of the two separate tests of 
the hypotheses that each equation holds against the separate alternate 
hypotheses of inequality. 

5. EVOLUTIONARY DYNAMICS 

So far in this paper, the parameters [l;., Ài' and lOi, i = 1, 2, have been 
treated as given and fix:ed and the units of time have been interpreted as 
shorter than those in which the parameters change measurably. In order to 
study the effects of selection on the parameters, we now assume that the 
system of two parasite species and their host species is locked on to its 
equilibrium (5) and (6). We consider how the parameters evolve, in time 
units on the evolutionary scale, to affect that equilibrium. 

1 The Kronecker clelt;1. Ô il<' satisfies Ô il, = 1 if i = li; and ô il' = 0 if i oF Tc. 
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A full analysis would model the evolution of aH six parameters. As a first 
step, we will model the evolution of Ei, assuming fixed, positive Îct,)Ai, i = 1, 2. 
Whereas the identification (13) of the Markov-chain proportions (4) with 
the competitive Lotka-Volterra equations (8) required Ei to be positive, the 
Markov-chain model (2) of interspecific interaction imposed no restriction 
on the sign of Ei, and hence neither will the following. The index j will refer 
below to one of the two parasite species, and the index k will refer to the 
other, while i will refer to both species, i = 1, 2. The decision to model only 
the evolution of the Ei meal1S that the parameters Aj, ftj are assumed to have 
beel1 determined in the absence of species k by the joint evolution of species 
j and its envirol1ment, where the environment consists of the host and all 
parasites other than species 1 and 2. 

If the presence of species k changes species j 's infection rate from Aj to 
Ai - Ej and the defection rate from !-li to !-lJ + Ef> we assume that the change 
Ei is under the control of species k in the sense that species k will evolve to 
bring about a value of EJ most favorable to species k. As a crude approxima­
tion, we assume that species k measures how good a value of Ei is by the 
equilibrium abundance Y/;i<' determined by (6) from Ei. Because the elements 
of T in (2) are not allowed to be negative, the values of Ei must lie in a 
closed box B in the (El, E2) -plane, 

B = {(El (t), E2(t)) 1 - !-li ~ Ei(t) ~ Îct, i = 1, 2}. (19) 

Thus, species k is assumed to face the followil1g simplification of natural 
selection: 

find Ej in B that maximizes Y k*, 
(20) 

given Ek in B and positive Al, A2' !-l1, !-l2. 

Though the global optimal EJ in B will be rewarded with the large st abun­
dance Y k*, we assume that selection can act only through gradients in Y k* 
associated with local neighborhoods of Ef. Hence, the effective procedure by 
which evolution seeks to carry out the maximization (20) could be repre­
sented by equations of the form 

dEj _ 0 ilYk Ok> 0, (21) ---a:t- k ilE}' 

or sorne similar form in which dEijdt has the sign of ilYk*jilE}. The solution 
to (21) or a similar form is a trajectory in the (El, E2)-plane traced out in 
time by the current value of (El (t), E2 (t) ). The qualitative features of any 
sueh solution may be readily sketched by noting from (6) that 

(22) 

Hence, within the box B, where Y k* and the denominator in (22) are always 
positive, the sign of ilYk* jilE} equals to sign of Ek. Four cases may be con­
sidered. 
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First, if Ele < 0, then species k increases Y le * by decreasing Eh in the lÏInit 
to -!lj. Since species j then faces a negative Eh it increases Y/ by lowering 
Ele to -!lie. Thus, species k maximizes its abundance by ensuring that no indi­
viduals infected with species k and with species j lose their infection with 
species j. At equilibrium in evolutionary time, Ei = -/li; the system moves 
to the lower left corner of B, and all individuals have double infections 
(Pa = 1). This equilibrium is locally stable since small perturbations of 
these negative values of Ei will stillleave Ei negative; hence, the equilibrium 
will be reestablished. 

The equilibrium associated with this first case might be identified as a 
symbiosis between two parasites which is obligatory for the hosto Such a 
situation might obtain, for example, with a pair of rumen ciliates which 
digest cellulose for a ruminant (Oro111966, p. 4-5). In the course of evolu­
tion toward this equilibrium, a 2 X 2 contingency table of observations of 
the state of infection of the hosts would reveal a positive association between 
the infecting parasites. At equilibrium, there would be no observations to 
enter in states 0, l, and 2 and hence no use for a contingency table. 

In the second case, if Elc > 0, then species k increases Y Ic* by increasing Ej 

to the limit of ÀJ. Since species j then faces a positive Eh it increases Y/ by 
similarly increasing Elc. Thus, species k maximizes its abundance by ensuring 
that no individuals infected with species k become infected with species j. 
At equilibrium in evolutionary time, E. = "A. (the upper right corner of B), 
and no individuals have double infections (Pa = 0). Then 

(23) 

This case, in which species k faces a positive Eh was identified as the case 
of competition in Section 3. Though the complete exclusion in evolutionary 
time of double infections follows mathematically from the schema of evolu­
tion assumed, the ration ale underlying this outcome is easily grasped in­
tuitively. Suppose l, species 2, seek to maximize my abundance and you, 
species l, impose a positive E2. Then l have worse luck infecting hosts who 
are already infected with you (lower infection rate, higher defection rate) 
than l have infecting hosts who are free of you. Hence, l want to make sure 
that as many hosts as possible are free of you. So l will try to make things 
hard for you by imposing a positive E2 in those hosts which l can manage 
to infect. 

The pursuit of this logic leads to an equilibrium (Pa = 0) which may be 
partially identified with MacArthur's broken-stick or ordered-random­
intervals model (1957). The competing parasites here may be identified with 
MacArthur's competing species, and the complete mutual exclusion of 
parasites here may be identified with MacArthur's assumption of no overlap 
in the use of resources. However, whereas MacArthur assumed that none of 
the resource (here the hosts) went unused, here an equilibrium fraction 
Po =!l1!l2/(!l1À2 + !l21.1 + !l1112) of hosts remains uninfected. 
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The equilibrium of this second case is locally stable since small perturba­
tions of positive values of E. stillleave E. positive; hence, the equilibrium will 
be reestablished. While a system evolves toward this evolutionary equilib­
rium, a 2 X 2 contingency table of observations of the state of infection of 
hosts reveals a negative association between the infecting parasites. 

In the third case, if Ek = 0, then iiY k * liiEj = a regardless of Ej. If Ej is 
negative, then species j will decrease Ek and case 1 takes over. If Ej is positive, 
then species j will increase Ek and case 2 takes over. If Ek = 0, the system is 
at equilibrium and there is no interaction whatsoever between species 1 
and 2; Pa = Y 1*Y2*. This lack of interaction corresponds to the interspecific 
relations assumed in an "exponential" model (Cohen 1968) which predicts 
the same relative abundances as MacArthur 's. But the exponential model 
assumes identical underlying abundance distribution functions for aIl 
species, while here Y.* = Âil (Â. + .!l.) , so the exponential model differs from 
this equilibrium of the Markov·chain model. This third equilibrium is un­
stable since, if small perturbations drive the Ei both positive or both nega· 
tive, a different equilibrium will become established. 

In the fourth and final case, if E1E2 < 0, the parasites will evolve so that 
E1E2 = 0, that is, to the axes within B. Unless the trajectory of the system 
passes through the origin (case 3), the values of Ei will cross the axes so that 
E1E2 > ° and the system will go to the equilibria of cases 1 or 2. 

The equilibria of cases 1, 2, and 3 should not be confused with the equi­
libria of the usual Lotka-Volterra equations with fixed parameters men­
tioned before (9). Because Â. > 0, at no equilibrium of (3) is a parasite 
extinct from the ensemble of hosts, though either parasite may be absent 
from a particular hosto 

Comparison of the equilibria attained in evolutionary time shows that the 
abundances of the parasites are largest in the first case of universal double 
infection where Y i* = 1, are less in the third case of no interaction where 
Yi = Â.I (Âi + .!li), and are least in the second case of complete competitive 
exclusion where Y i * are as in (23). Therefore, if simple abundance is the 
criterion of adaptive advantage, the parasite species should favor ensembles 
of hosts which permit negative values of E,:-hosts in which the presence of 
one parasite paves the way for the other. At the same time, if parasitic 
infection injures the host, the host should seek to effect the largest possible 
threshold (Tl, T 2 ) which restricts the region within B which the parasites 
can reach to that satisfying !li < Ti:::;:; Ei:::;:; Âi. If the host can evolve so that 
neither parasite conf ers any advantage on the other, that is, so that Ti = 0, 
then it is to the parasites' advantage to maintain the unstable equilibrium 
El = ° by diverging so far that the host cannot use its means of limiting Âj 
to produce a positive Ek. 

In summary, pairs of parasites being selected for abundance should seek 
to prevent their hosts from exploiting one as a defense against the other. 
If the host's defenses depend on characters of the parasite which are partly 
or wholly specifie to the species of parasite (as is widely the case with 
specific immunity), then it is to the advantage of each parasite to diverge 



558 THE AMERICAN NATURALIS'l' 

from the other. In turn, it is to the advantage of the host to develop defenses 
(such as those labeled "cross-specific immunity" or "heterologous immu­
nit y") which, when aroused by infection with one parasite, have some effect 
against the other and hence create the formaI equivalent of competition 
(Ei> 0) between the two. 

Experimental studies of malaria (Cox and VoIler 1966), schistosomiasis 
(Nelson et al. 1968; Amin, Nelson, and Saoud ]968; Amin and Nelson 1969; 
Amin, Saoud, and Nelson 1969), and trypanosomiasis (Ford 1970, p. 95) 
and epidemiological studies under way (Cohen, in press) and in prepara­
tion may demonstrate that, though the Lotka-Volterra equations are in­
adequate as an epidemic model of such diseases, these general conclusions 
are useful in understanding the interspecific interactions in sorne wide­
spread genera of parasites of men. 

6. CONCLUSION AND SUMMARY 

Information about the presence or absence of each of a number of species 
in ecological systems or patches of environment can be represented in a 
contingency table with as many dimensions as there are species, and avail­
able statistical methods can reveal interactions among the species (Goodman 
1964). The analysis through contingency tables of interspecific interactions 
in replicated systems has long been practiced in general ecology (Edmond­
son 1944; Bushnell 1966 [1 thank Thomas W. Schoener for these refer­
ences]). Parasitologists have used the distribution of different parasites in 
an ensemble of hosts to reveal interactions of the parasites since not later 
than 1916 (CroIl1966, p. 110-113). This paper offers a description of what 
may be implicit in this common analysis of interaction and explores sorne 
evolutionary consequences of that description. 

A standard model (1) for the analysis of interaction in 2 X 2 contingency 
tables has been related to a discrete-time (2) or continuous-time (3) Markov 
chain, which in turn has been related to a linearized equilibrial approxima­
tion (12) to the classical Lotka-Volterra model (8) for the competition of 
species. Identification of the variables representing abundance in the Lotka­
Volterra equations with the proportions in the Markov chains of ecological 
systems in which species were present, makes it possible to estima te, via the 
parameters of the Markov chain, aU the parameters of the linearized Lotka­
Volterra equations. 

Whether the parameters obtained in this way would also predict the 
course of interaction in a single system when a species' abundance was 
measured by its numbers or biomass remains an open empirical question. 

When the parameters in the Markov chain that measure interaction be­
tween species are made subject to changes by which each parasite seeks to 
maximize its own abundance, the system of hosts and parasites is found to 
move to one of three equilibrial states. In order of descending abundance 
for the parasites, the equilibria are: universal double infection of hosts 
(stable equilibrium), no interaction between paraflites (unstable equilib-
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rium), and complete competitive exclusion between parasites (stable equi­
librium). If the parasites are injurious to the host, it is thus to the ho st 's 
advantage to bring about competitive (or cross-immune) interactions be­
tween its parasites. 

One advantage of the identification between the Markov chain and the 
Lotka-Volterra equations is that it makes clear that dynamic information 
about rates of infection (immigration) and defection (emigration) is re­
quired to estimate the Lotka-Volterra parameters. An advantage of the 
Markov chain over the Lotka-Volterra equations is that, for the same 
number of parameters, the Markov chain gives information about the 
proportions of systems with each kind (mixed, single, or nulI) of infection, 
whereas the Lotka-Volterra equations give only information about the 
margins of the contingency table, which describe each species regardless of 
the other. 

In addition to providing a means of putting one interpretation of the 
Lotka-Volterra equations to empirical test, the methods used here illustrate 
more general techniques for the analysis of systems of dynamic equations in 
which the variables are difficult to measure with precision in a single case 
but can reliably be measured as alI-or-none attributes of numerous ecological 
systems. 
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