Dynorphin A (1–8) Analog, E-2078, Is Stable in Human and Rhesus Monkey Blood

JIM YU, EDUARDO R. BUTELMAN, JAMES H. WOODS, BRIAN T. CHAIT and MARY JEANNE KREEK

The Laboratory of the Biology of Addictive Diseases (J.Y., M.J.K.), and the Laboratory of Mass Spectrometry and Gaseous Ion Chemistry (B.T.C.), the Rockefeller University, New York; New York and the Department of Pharmacology (E.R.B., J.H.W.), the University of Michigan, Ann Arbor, Michigan 48109

Accepted for publication November 19, 1996

ABSTRACT

E-2078 is a dynorphin A (1–8) analog, [N-methyl-Tyr¹, N-methyl-Arg⁷-d-Leu⁸] Dyn A (1–8) ethylamide. Its biochemical stability against enzymatic degradation in vitro in human and rhesus monkey blood, and in vivo in rhesus monkey blood was studied using matrix-assisted laser desorption/ionization mass spectrometry. In vitro studies were carried out in freshly drawn human and rhesus monkey blood, incubated at 37°C for various time periods. In vivo studies were conducted by E-2078 i.v. injection to rhesus monkeys, and blood samples were collected at various time points after the injection. It was found that E-2078 was stable against enzymatic degradation in vitro in freshly drawn human and rhesus monkey blood. Minor biotransformation products from E-2078, such as E (1–4), E (1–5) and E (3–6), were detected in vitro in some human and rhesus monkey blood, but they made up less than 5% of the total starting E-2078 peptide. No biotransformation products were detected in the blood samples from in vivo studies. The apparent half-life of elimination of E-2078 in vivo from the rhesus monkey blood was determined to be 44.0 min.

Materials and Methods

Subjects. Three healthy human male subjects, average age 28.7 yr (range 24–31), served as donors for the blood used in the in vitro studies. Five adult rhesus monkeys, Macaca mulatta, two females...
To 2.0 ml of sample plasma solution was added 100 μl of standard solutions. The solution containing plasma, the peptide, and the internal standard and TFA, was centrifuge-filtered with Centricon-S3 concentrators (Amicon Inc., Beverly, MA), with a molecular weight cut-off of 3000 Da. A total of 20 μl of the filtrate was mixed with 10 μl of acetonitrile for analysis by mass spectrometry.

E-2078 in vivo studies in rhesus monkeys. Monkeys received injections with diphenhydramine (1.2 mg/kg, intramuscularly) as a pretreatment to limit the possible consequences of histamine release after administration of relatively large amounts of E-2078. Thirty min later, they were anesthetized with ketamine (10 mg/kg, i.m.). The back of the lower leg area was carefully shaved to avoid any adventitious bleeding. An indwelling catheter (Angiocath, 22 gauge, 1 inch long, Becton Dickinson, Sandy, UT) was acutely placed in a superficial vein of each leg, secured and flushed with heparinized saline (20 U/ml), and connected to a multisample injection port. One milliliter of blood sample was obtained as control and placed in a 2-ml vacutainer preconditioned with EDTA on ice. All blood sampling was followed by port and catheter flushing with heparinized saline. The animal was then placed on a heating pad (37°C) on a surgery table.

During the sampling period, the animal received a dextrose/saline i.v. infusion (approximately 30 ml/kg/hr) from the catheter that had previously been used for the E-2078 injection. Supplemental ketamine (approximately 5 mg/kg) was administered at hourly intervals to maintain the animal in an anesthetized state throughout the sampling period.

The required amount of E-2078 was dissolved in saline (10 mg/kg in 20 mg/ml solution), and injected in one of the leg catheters (injection time was approximately 15 sec). At the end of injection, a timer was started, and the injection catheter was flushed with heparinized saline. Blood sampling was performed at the following time points from the contralateral catheter: 0, 5, 15, 30, 60, 90, 120 and 180 min. Samples were centrifuged (3400 × g at 0–5°C for 5 min). A 0.2-ml aliquot of plasma was placed in a cryovial containing 1.8 ml of 1% TFA and kept at –40°C until the time of analysis.

In vivo blood samples were treated following the same procedures described earlier for in vitro blood samples with the exception that 40 μl of 80 μM (1.54 μg/ml) of Dyn A (1–8) was used as the internal standard for 2.0 ml of plasma sample solution.

Mass spectrometry. The samples were analyzed with a custom matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-MS) constructed at the Rockefeller University (Beavis and Chait, 1989, 1990). The instrument incorporates an HY-400 Nd-YAG laser (Lumonics Inc., Kanata, Ontario, Canada) operated at a wavelength of 355 nm, a pulse duration of ca. 10 ns, and a pulse energy density of ca. 15 mJ/cm², at a 30 K ion acceleration potential; and a 2 m long linear time-of-flight mass analyzer. Ion detection and signal amplification are accomplished with a hybrid microchannel plate detector-discrete dynode electron multiplier assembly (detector potential being 3.6 KV).

For mass spectrometric measurement, the samples with acetonitrile [2:1 (v/v)] were mixed with matrix solution. A saturated matrix solution was prepared by dissolving excess amount (5 mg/ml) of α-cyano-4-hydroxycinnamic acid in acetonitrile and 0.1% aqueous TFA [1:2 (v/v)]. Plasma containing E-2078 biotransformation products was mixed with matrix solution in a ratio of 1:2 (v/v). A 0.5-μl aliquot of the resulting solution was applied to the mass spectrometer sample probe tip, and allowed to evaporate to dryness in the air. The sample probe was inserted into the mass spectrometer vacuum system where solvents in the sample were completely removed. After 5 min, a working pressure of approximately 10⁻⁷ torr was achieved. To obtain adequate statistics, i.e., to achieve a signal-to-noise ratio of the peak of interest of more than 10:1, the results from 100 laser shots were added to produce each mass spectrum. In this study, one spectrum was obtained for each sample from each subject.

A standard curve was constructed using E-2078 standard solutions. The standard solutions were made by serial dilution of E-2078 in 0.05% TFA aqueous solution. A constant amount of internal standard, Dyn A (1–8) (1 μl of 136 μg/ml, or 0.136 μg), was added to 100 μl of standard solutions. The E-2078 standard solutions containing Dyn A (1–8) were each mixed with acetonitrile (2:1, v/v), and the resulting solutions were separately mixed with 4HCCA matrix solution (1:2, v/v). Half-microliter aliquots of the resulting solutions were applied to the mass spectrometer sample probe tip for MALDI MS analysis. Mass spectrometric measurements were carried out in triplicate for each aliquot of the standard solutions. The ratio of the signal intensity from E-2078 to that from the internal standard, and the S.E. of the triplicate measurements were calculated.

In the Dyn A (1–8) in vitro biotransformation studies, the use of angiotensin III as the internal standard was to show the appearance and disappearance of Dyn A (1–8) and the processing products. In vivo pharmacokinetic analysis. The pharmacokinetics of the disappearance of E-2078 in vivo in rhesus monkey blood was analyzed with SAAM II (version 1.0.2, SAAM Institute, University of Washington, Seattle, WA), a program for kinetic analysis. The ki-
netic curves were plotted with both the experimental data and calculated data obtained with SAAM II using KaleidaGraph (Version 3.0.5, Abelbeck Software, Reading, PA) with nonlinear curve-fitting routine. The half-life of E-2078 was calculated by plotting the logarithm of the relative signal intensity vs. the time after injection.

Results

Dyn A (1–8), on in vitro incubation at 37°C in freshly drawn human and rhesus monkey blood, was rapidly processed to form two biotransformation products: Dyn A (2–8) and Dyn A (1–6) (fig. 1). Dyn A (1–8) and the biotransformation products were cleared from human blood at 90 min incubation, and cleared from the rhesus monkey blood at 30 min incubation. E-2078 was also incubated in freshly drawn human and rhesus monkey blood at 37°C for up to 24 hr. In stark contrast to the results observed with Dyn A (1–8), no major biotransformation products were detected. As shown in figure 2, at 24 hr incubation time point, intact E-2078 was still the major species present in the blood. Minor biotransformation products such as E (1–4), E (1–5) and E (3–6) were detected in blood of some human and rhesus monkey subjects at certain incubation time points (data not shown). Mass spectrometric analysis of the control blood for in vitro Dyn A (1–8) and E-2078 processing studies in human and rhesus monkey blood recorded a flat baseline, besides a few very small background peaks.

In vivo studies of E-2078 after i.v. injection to rhesus monkey indicated that E-2078 was stable against enzymatic cleavage in blood. No biotransformation products were detected in any of the samples collected at the various time points up to 180 min after the injection.

With the use of an internal standard, Dyn A (1–8), quantitative analysis of the peptide in the samples could be carried out by using the relative signal intensity of the signal from E-2078 against that from the internal standard. As shown in the calibration curve (fig. 3) within the concentration range between 22.22 pg and 555.55 pg of E-2078 applied to the sample probe tip, the relative signal intensity is linearly correlated to the amount of peptide applied.

The pharmacokinetics of disappearance of E-2078 in vivo in rhesus monkey blood was analyzed by using Dyn A (1–8) as the internal standard. The pharmacokinetic curves were plotted (fig. 4). The plots constructed based on experimental data and data obtained from kinetic calculation coincided with each other (fig. 4a). Assessment of the goodness-of-fit (Foster, 1995) indicated that the fit for the monoexponential model

$$y(t) = 6.41 \times \exp(-0.311 \times t) + 1.46 \times \exp(-0.0103 \times t)$$
was acceptable with a 5% significance level. By replotting logarithm of the relative signal intensity vs. the time after E-2078 injection, it can be seen in figure 4b that the pharmacokinetics exhibited a two-compartment model process, one compartment representing the blood, the other compartment representing the tissues (Wartak, 1983). The first linear section, from 0 to 10 min, represented a rapid distribution of the peptide out of the vascular system into various tissues after injection. The second linear section, from 15 to 180 min, represented the elimination of E-2078 from both the blood and the tissues, once the distribution had been completed and the plasma and tissue concentration were in equilibrium. The calculated apparent half-life was $t^{1/2}(\beta) = 44.0$ min; thus it would take approximately 4.4 hr (around six elimination half-lives) for E-2078 to be eliminated from the rhesus monkey (Wartak, 1983).

Discussion

Matrix-assisted laser desorption/ionization mass spectrometry is an analytical technique developed in recent years. It permits sensitive, simultaneous as well as specific detection of the presence of multiple components in a sample. This technique can tolerate complex sample conditions such as biological matrices, requiring minimal sample pretreatment. In our laboratories, this technique has been successfully applied to several studies of biotransformation of neuropeptides including Dyn A peptides in a variety of biological matrices, such as blood, brain tissues and cerebrospinal fluid (Butelman et al., 1996; Chou et al., 1993, 1994a, 1994b; Yu et al., 1995, 1996a, 1996b, 1996c).

In this study, biotransformation of Dyn A (1–8) in human and rhesus monkey blood was found to exhibit the same patterns as that of the endogenous opioid peptide Dyn A (1–17) (Yu et al., 1995, 1996a, 1996b). Two major biotransformation pathways could be identified. Cleavage of N-terminal, tyrosine, to form Dyn A (2–8), and the cleavage between Arg(6) and Arg(7) linkage to form Dyn A (1–6). No cleavage from the C-terminal was detected. Biotransformation of Dyn A (1–8) in rhesus monkey blood occurred at a faster rate than in human blood, as seen in figure 1. This result corroborates our previous findings in studies of Dyn A (1–17) (Yu et al., 1995, 1996a, 1996b).

The modified Dyn A (1–8), E-2078, did not exhibit significant biotransformation either *in vitro* in freshly drawn human and rhesus monkey blood, or *in vivo* in rhesus monkey blood. Modification with a methyl group at Tyr1, N-methyl-Tyr1, effectively protected the cleavage at the N-terminal Tyr1 position. No biotransformation products from this processing were detected. Peptide linkage of Arg(6)-Arg(7) is usually the other site of cleavage of Dyn A peptides in a biological matrix. Modification with a methyl group at the N-Arg7 position effectively blocked this biotransformation.

Minor biotransformation products of E-2078, E(1–4), E(1–5) and E(3–6), were detected in *in vitro* in human and rhesus monkey blood. Based on the signal abundance of all the peptides, these biotransformation products made up less than 5% of the total starting E-2078 peptide. These biotransformation products were not constantly detectable at all time points. No biotransformation products were detected *in vivo* in rhesus monkey blood, possibly because the formation of processing products were in very small amount that they were absorbed onto the tissues or blood cells or rapidly eliminated from the system.

Peptide biotransformation may be tissue specific. Reported stability studies on E-2078 in comparison with Dyn A (1–17)
have shown that no E-2078 degradation product was detected after incubation with mouse serum (10%) for 2 hr, whereas Dyn A (1–17) was degraded completely in that time period (Nakazawa et al., 1990). However, E-2078 was biotransformed in mice brain homogenate (1%) with a half-life about 4 hr; Dyn A (1–17) biotransformation half-life was about 0.5 hr (Nakazawa et al., 1990). The cleavage sites of E-2078 in mouse brain homogenates were identified to be Gly(3)-Phe(4), Phe(4)-Leu(5), and Leu(5)-Arg(6) by high-performance liquid chromatography (Tachibana, 1996). In this study, no biotransformation products from Gly(3)-Phe(4) cleavage were detected.

In summary, Dyn A (1–8) analog, E-2078, was very stable in vitro in freshly drawn human and rhesus monkey blood and in vivo in rhesus monkey blood. Minor processing products from E-2078, such as E(1–4), E(1–5) and E(3–6), were detected in vitro in some human and rhesus monkey blood.

The apparent half-life of elimination of E-2078 in vivo from the rhesus monkey blood was about 44.0 min. Based on these studies, E-2078 is a suitable candidate for further neurobiological and pharmacological studies, also for possible development as a therapeutic agent for the management of pain, opioid addiction and cocaine addiction (Kreek, 1996; Spangler, 1993, 1996).

Acknowledgment

The authors thank the Eisai Co. Ltd. (Ibaraki, Japan), especially Dr. Y. Yamanishi, for their generous gift of E-2078 peptide. The authors thank Dr. Ann Ho for her valuable suggestions in the preparation of this manuscript.

References

Send reprint requests to: Dr. Jim Yu, The Rockefeller University, Box 171, 1230 York Avenue, New York, NY 10021.