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Abstract

Mass spectrometry (MS) is rapidly becoming an essential tool for bi-
ologists and biochemists in their efforts to throw light on molecular
mechanisms within cellular systems. Used in unison with genome se-
quence data, MS has developed into the method of choice for identifying
proteins, elucidating their posttranslational modifications, and reading
out their functional interactions. Variations of the method have even
begun to enable accurate mass determination of intact protein com-
plexes, allowing for direct determination of subunit stoichiometry and
the interactions between the subunits. Advances in mass spectrometric
technologies have also led to great improvements in our ability to probe
and define many of the other key molecular players in cells, including
the all important lipid components. We provide here some perspec-
tives on the explosion of applications of MS to protein science, systems
biology, proteomics, lipidomics, and cell biology in general.
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Cellular systems are distinguished by their ex-
traordinarily complex hierarchy of structures,
organized in space and time through the inter-
actions and milieus set up by a very large ensem-
ble of distinct biomolecules. To gain a better
understanding of such systems, there is an ur-
gent demand for tools that are able to elucidate
all of these molecular players as well as their
detailed molecular organization at all hierarchi-
cal levels. Toward this goal, effective methods
have been developed to rapidly sequence en-
tire genomes as well as to define the mRNA
content of cells. More challenging has been the
development of equally effective tools for ana-
lyzing the other constituents of cellular systems
(including proteins and lipids) and for elucidat-
ing the dynamic functional interactions among
these biomolecules.

Conceptually, one of the simplest and most
powerful ways of identifying and characterizing
a biological molecule is to determine its accu-
rate molecular mass together with the masses
of its component building blocks after frag-
mentation (1). Historically, this simple mass
spectrometry (MS) approach proved remark-
ably elusive until robust methods were found
to transfer highly polar biopolymers like pep-
tides and proteins from the solution or solid
state into their intact, ionized counterparts in
the gas phase (2). Currently there are two dom-
inant means for doing this.

The first is electrospray ionization (ESI), in
which the molecular ions of interest are formed
directly from solution by applying a high
electric field to the tip of a capillary through
which the solution passes (3). Properties that
make this a method of choice for biological
applications include (a) the “softness” of the
phase conversion process, allowing very fragile
molecules to be ionized intact and in some cases
even noncovalent interactions to be preserved
for MS analysis; (b) ready coupling to liquid
chromatography (LC) such that the eluting
fractions can be directly sprayed into the
mass spectrometer, allowing for the analysis
of complex mixtures; and (c) the natural and
efficient production of multiply charged ions,
allowing for the measurement of high-mass

biopolymers using mass spectrometers with
modest mass/charge ranges (because mass
spectrometers measure mass/charge rather
than mass). In addition, multiple charges on a
molecule often facilitate improved fragmenta-
tion for structure elucidation and identification.

The second is matrix-assisted laser desorp-
tion/ionization (MALDI) in which the molecu-
lar ions of interest are formed by pulses of laser
light impacting on the sample isolated within an
excess of matrix molecules (most often a solid)
(4). Advantageous properties of MALDI in-
clude its extraordinary robustness; high speed;
and relative immunity to contaminants, bio-
chemical buffers, and common additives.

In concert with the introduction of these
enabling ionization techniques, a plethora of
increasingly powerful mass analyzers have been
developed that allow for the measurement of
the mass/charge of intact ionized biomolecules
with high accuracy (e.g., parts per million for
peptides) as well as of their fragmentation spec-
tra with high speed (as many as 5–10 spectra/s)
(5). The measurement of these fragmentation
spectra is termed tandem MS (or MS/MS) to
differentiate the analysis from the single-stage
MS of their intact precursor ions. The wide
range of instrumentation that has become avail-
able confronts even seasoned practitioners with
bewildering choices. Often, it is the specific
application that dictates the optimal choice. So,
for example, the LC-ESI-linear ion trap cou-
pled to an Orbitrap (6) has become a favored
instrument for many proteomics experiments,
and the nano-ESI-quadrupole-orthogonal
injection time-of-flight mass spectrometer (7)
has become a favored tool for investigating
noncovalent interactions. However, that said,
many other combinations can also yield superb
results, and MS instruments are constantly
being refined and new ones developed. In
practice, this choice is usually dictated by
what is readily available to the investigator.
However, if researchers wish to acquire mass
spectrometers for their own use, my advice is
to take well-defined test samples that represent
their most important biological applications to
the various manufacturers and determine for
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themselves the efficacy of the instruments for
their specific applications. In this way, in ad-
dition to the more usually quoted instrumental
parameters, such as mass accuracy, sensitivity,
data acquisition speed, and resolution, they can
readily determine other important instrumen-
tal properties, such as robustness and ease of
use of both the instrument and related software.

These advances have made MS a method of
choice for a host of biological applications, in-
cluding, for example, rapidly identifying pro-
teins, determining details of their primary
structures, and elucidating their interactions. In
principle, there are two complementary lines
of attack for the MS analysis of proteins: the
bottom-up and top-down approaches (5, 8). In
the bottom-up approach, proteins of interest
are digested with an enzyme, such as trypsin,
and the resulting “tryptic peptides” are ana-
lyzed by MS and MS/MS. In the top-down ap-
proach, the intact proteins are directly analyzed
in the mass spectrometer without prior solu-
tion digestion. The advantages of the bottom-
up approach are that the relatively small tryp-
tic peptide ions are more uniform and easy to
handle biochemically than intact protein ions,
their masses are easier to determine with high
accuracy, and they can be more readily induced
to fragment. These advantages have made the
bottom-up approach the dominant method for
the majority of proteomic studies [see Cox &
Mann (9)], even though the coverage of the pro-
tein via analysis of tryptic peptides is usually in-
complete. The potential advantages of the top-
down approach are that it can provide complete
coverage of the protein as well as the positional
correlation of multiple dispersed modifications.
However, because of (a) the significant chal-
lenge in handling whole proteins (versus small
peptide pieces), (b) issues relating to the om-
nipresent heterogeneity of intact proteins, and
(c) the often complex nature of the analysis, such
top-down analyses are still largely confined to
low-throughput single-protein studies (10–12).
However, it is noteworthy that an interme-
diate “middle-down” approach for analyzing
proteolytic peptides larger than typical tryptic
peptides is beginning to prove useful, as, for

example, in the elucidation of the complex ar-
ray of modifications on histone tails (13).

In the articles that follow, the authors re-
view the application of cutting-edge biological
MS to the study of proteins and lipids, with the
ultimate goal of elucidating their detailed roles
in biological processes. Examples are provided
to illustrate how MS is enabling rapid develop-
ments in proteomics, lipidomics, and systems
biology. These applications range from those
that can be routinely achieved by the skilled in-
vestigator armed with appropriate instrumen-
tation to those that just approach the bare edge
of feasibility.

On the more routine side, it has become
straightforward to use MS to rapidly identify
proteins separated as bands on sodium do-
decyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE) gels. All that is needed is
the genome sequence of the organism under
study, so that proteolytic fragments generated
from the protein band of interest can be sub-
jected to both single-stage MS and MS/MS
and the resulting spectra rapidly compared with
those expected theoretically from the genome
sequence. Here, MS serves as a “generalized
Western blot” without the need to generate
antibodies, and in addition, MS does not suf-
fer from the cross-reactivity common in anti-
bodies. But, unlike the Western blot, which by
its nature is targeted, MS detects all the pro-
tein components present above the detection
limit of the mass spectrometer. Thus, MS often
detects a large number of protein components
(some present in only trace amounts) from what
may be appear to be a single band; the challenge
then is to figure out which of these are proteins
of interest.

Identifying proteins in gel bands by MS
also has been used to great effect for the def-
inition of components of protein complexes,
especially for stoichiometric complexes that
have been relatively cleanly isolated (see, e.g.,
References 14 and 15). An alternative strategy
for such cases involves shotgun MS sequencing
of the peptide mixture, generated by digesting
the entire complex without prior separation of
the proteins, and mapping these peptides onto
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the various proteins that are present using com-
puter algorithms (5). The most vexing problem
related to both of these strategies for deter-
mining the components of protein complexes
is the issue of discerning which of the identi-
fied proteins are specific to the complex versus
those that arise from nonspecific interactions
or background contamination. Because of the
sensitivity and high dynamic range of modern
MS, it is not unusual to identify several hun-
dred proteins when affinity isolating a complex
that may only have a few to a few tens of com-
ponents. Biologists confronted with such long
lists of proteins can easily be overwhelmed—
or at least be tempted to subjectively focus on
those that may seem to be most interesting—
so it is highly preferable to have an objective
means for deciding which are specific interac-
tors. Fortunately, this is often possible by the
strategic use of cells labeled with heavy ver-
sus light stable isotopes (16, 17). Such objec-
tive quantitative means for determining specific
from nonspecific interactions or for following
cellular changes as a function of time and cir-
cumstance have become essential mainstream
methods in MS-based proteomics [see Cox &
Mann (9)].

Similarly, MS is now a preferred method
for elucidating protein posttranslational
modifications. Mass changes, characteristic
of modifications, can be rapidly pinpointed
to specific amino acids in the sequence using
relatively low amounts of protein. Such applica-
tions have been greatly facilitated by improved
MS instrumentation and fragmentation tech-
nology [using, e.g., so-called higher-energy
collisional dissociation (18) or electron transfer
dissociation (19) in addition to the more
standard lower-energy collisional dissociation]
as well as by the development of methods for
enriching specifically modified proteolytic pep-
tides, via either affinity isolation or chemical
derivatization (20). For example, immobilized
metal ion affinity chromatography (IMAC) has
been used to enrich and facilitate identification
of literally thousands of phosphorylation sites
within whole proteomes as a function of cell
state (18, 21–23; also see 9). At the same time,

it should be noted that it often remains entirely
nontrivial to comprehensively characterize the
phosphorylation state of even a single protein
of interest. This difficulty arises because these
studies are usually performed on proteolytic
fragments, using the bottom-up approach, and
for a number of reasons (IMAC isolation bias,
peptides too small, too large, too hydrophilic),
it can be very difficult to detect all of the peptide
fragment ions (or even assign the peptides un-
ambiguously to a particular splice variant). The
resulting gaps in the coverage of the protein are
further exacerbated when the amount of the
available protein is limited or the stoichiometry
of the phosphorylated forms of the protein is
low. In such cases, it may be necessary to resort
to the classical approach of subjecting the pro-
tein of interest to multiple digestions with pro-
teases having different specificities, provided
of course that sufficient protein is available.

An alternative line of attack that is just begin-
ning to gain traction relies on the top-down or
middle-down approaches (5, 8). Instead of ana-
lyzing small proteolytic fragments, one obtains
MS and MS/MS of the whole protein or large
peptide components of it. Under ideal condi-
tions, the problem then reduces to assembling
pairwise puzzle pieces (protein ion fragments)
that each add up to the mass of the protein
(or that of a relatively large component of the
protein) rather than trying to assemble a great
many small puzzle pieces, many of which may
be missing. Although considerable progress has
been made in this endeavor, the top and middle-
down approaches are still limited by difficulties
relating to the isolation and handling of small
amounts of protein as well as to introducing
them into the mass spectrometer and fragment-
ing them efficiently.

Improvements in the speed and dynamic
range of modern mass spectrometers now allow
for the acquisition of proteomic information at
all levels of organization, including organelles
and even whole cells and tissues (9). However,
the task of defining an organelle, for example,
is not simple; it requires a means for differ-
entiating bona fide components from contam-
inants and for ensuring that low-copy-number
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components are detected in the presence of
high-abundance components. Identifying the
authentic organellar components is often ac-
complished by the classical approach of follow-
ing the levels of individual protein as a function
of enrichment, now using quantitative MS as
the primary tool for this assay (24). Identifying
low-abundance components is accomplished by
ensuring that (a) there is present in the sample
large enough amounts of the proteins to be de-
tected and that (b) there is sufficient separation
of the low-abundance components so that their
signal is not drowned out by those of higher
abundance (25). Even given the high sensitivity
(∼femtomole) of modern MS instrumentation,
it can be taxing to ensure that sufficient material
is available for analysis—as, for example, when
isolating a particular synapse type from a partic-
ular cell type in mouse brain (26). The question
of ensuring sufficient separation of components
either prior to or during MS is a topic currently
under intense investigation (9). Here, it appears
that the key is to find a level of separation prior
to MS that is sufficient (without unduly increas-
ing inevitable material losses and the time for
analysis) and an appropriate level of single- and
multistage MS to finish the job. As the complex-
ity of the system increases further (e.g., whole-
cell, tissue, or plasma analyses), problems relat-
ing to dynamic range and interferences become
increasingly challenging (9).

As outlined above, rapid and accurate MS
identification of affinity isolated complexes has
greatly facilitated the definition of in vivo pro-
tein assemblies and protein interactions in gen-
eral. However, such affinity-based experiments
do not guarantee isolation of a single unique
complex—just composites of protein complexes
that interact with the bait protein (15). Thus,
a more direct means for accurately determin-
ing the total masses of isolated complexes is
highly desirable. One emerging technology for
this task is the so-called native MS, wherein ESI
is used to produce intact multiply charged pro-
tein complexes; this allows for the accurate mass
determination of these noncovalent complexes,
enabling the direct determination of subunit

stoichiometry within a protein complex. In ad-
dition, dissociation of these complexes either
prior to native MS or in the mass spectrome-
ter itself yields information regarding subunit
connectivity. Finally, it appears that native MS
can even be used to gain information on the
overall shape of complexes through measure-
ments of the time taken for ionized complexes
to drift through gas-filled tubes maintained at
appropriate pressures. In Barrera & Robinson
(27), the authors show how native MS, which
was originally demonstrated on water-soluble
complexes, can be extended to complexes whose
native environment is the lipid bilayer.

An important consideration in the native MS
approach is the degree of fidelity with which
the complexes present in vivo, either in solu-
tion or within a lipid bilayer, are maintained
into the gas phase, where they are essentially
stripped naked of solvating species. There are
several steps in this transfer process that might
perturb this fidelity (28). The first involves clas-
sical isolation of the complex from the cellu-
lar system and is not peculiar to native MS.
The second involves transfer of the complex
to a volatile buffer solution that is appropriate
for ESI-based native MS (often ammonium ac-
etate), and because many interactions are very
sensitive to buffer conditions, perturbations can
certainly occur at this point. The third involves
transfer of the complexes from solution to de-
solvated complexes in the gas phase using ESI.
Perhaps surprisingly, there is now a substantial
body of evidence showing that with appropri-
ate care subunit stoichiometry measured in the
gas phase can faithfully reflect that observed in
solution (7, 27, 29). There is also a growing
body of evidence indicating that native interac-
tions and even detailed shape are to some extent
maintained into the gas phase, although con-
siderably more work is needed to determine
the generality of these findings. A related is-
sue is the relationship between the dissociation
rates of components of solvated versus desol-
vated complexes. This is still a subject of in-
tense debate and investigation, with findings
ranging from the expected stabilization of ionic
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interactions in the absence of water to the un-
expected stabilization of hydrophobic interac-
tions in the absence of water (30).

Up to this point, we have mainly considered
the utility of MS for analyzing the proteina-
ceous components of cellular systems. Fortu-
nately, the described advances in MS technol-
ogy have also led to great improvements in our
ability to probe and define many of the other
key molecular players in cells, including the
all important lipid components [see Harkewicz
& Dennis (31)]. The resulting revolution in
lipidomics has been somewhat quieter than
those for genomics and proteomics, perhaps be-
cause lipidic components are of lower molecular
mass and because there has been a reasonably
successful tradition of their analysis by classi-
cal MS methods, facilitated by their oftentimes
lower polarity as well as by effective chemistries
for neutralizing the polarity of the more polar
species. The more recent advances in MS tech-
nology are helping to throw a light on a host of
outstanding questions concerning lipidic com-
ponents of organisms, including, for example, a
more global appreciation for the subset of the
enormous possible number of these compounds
that are functionally used within a given or-
ganism and a deeper understanding of the role
of lipidic molecules in reprogramming cellu-
lar networks by modulating protein function.
The potential also exists for defining the de-
tailed lipidic milieu wherein ion channels and
other integral membrane protein systems re-
side, although this necessitates the development
of biochemical techniques that effectively iso-
late the proteinaceous systems together with
their local endogenous environment.

Even though biological MS technologies
have undergone remarkable advances over the
past two decades, further improvements and

innovations are urgently needed. These include
the following:

1. Improved sensitivity to allow for the anal-
ysis of a smaller number of cells or sam-
ples that are more focused on cellular
components with specialized function.
For example, if we wish to define all the
proteins at a particular locus on a chromo-
some for which the occupancy of any one
of these proteins may be ∼1 per cell, then
>109 cells would currently be needed
for a successful analysis. To decrease the
number of cells required for such an anal-
ysis, improvements are needed in sample
handling to minimize losses prior to sam-
ple introduction into the mass spectrom-
eter as well as more efficient utilization of
the sample within the mass spectrometer.

2. Improved methods for measuring low-
abundance components within complex
samples in the face of high-abundance
components, where the required dynamic
range may be >106.

3. Higher analysis speed to enable deeper
and more routine analyses of complex
samples.

4. More robust MS tools that can be
more easily used by biologists themselves.
Here, one envisages a great expansion of
MS as a rapid-feedback tool in much the
same way as is possible for SDS-PAGE
and Western blotting.

5. Improved techniques for preparing
samples that “freeze” in the desired
information from the cellular milieu for
subsequent MS readout. Such techniques
should greatly assist the acquisition of
both positional and temporal informa-
tion on the biomolecular structures of
interest.
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