
189

Chapter 11

Mass Spectrometric Protein Identification Using the Global 
Proteome Machine

David Fenyö, Jan Eriksson, and Ronald Beavis 

Abstract

Protein identification by mass spectrometry is widely used in biological research. Here, we describe how 
the global proteome machine (GPM) can be used for protein identification and for validation of the 
results. We cover identification by searching protein sequence collections and spectral libraries as well as 
validation of the results using expectation values, rho-diagrams, and spectrum databases.
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Mass spectrometry-based protein identification has become an 
invaluable tool for elucidating protein function, and several meth-
ods have been developed for protein identification, including 
sequence collection searching with masses of peptides or their 
fragments, spectral library searching, and de novo sequencing 
(Fig. 1).

The first step in protein identification is to find peaks in the 
mass spectra that correspond to peptides and their fragments. It 
is important to find all the relevant peaks and at the same time 
minimizing the number of background peaks. This can be 
achieved by scanning the spectra for peaks of the expected width 
and selecting peaks above a signal to noise threshold (see Note 1), 
and then picking the monoisotopic peak for each isotope cluster 
(see Note 2). After picking the peaks, spectra with low information 
content that could not produce any meaningful results can be 
removed to increase the speed of subsequent analysis (1).

1.  Introduction
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The first method for protein identification developed was 
peptide mass fingerprinting, PMF (2), i.e., matching measured 
proteolytic peptide masses to the theoretical proteolytic peptide 
masses of proteins in a sequence collection and calculating a score 
based on the matching peptides (see Note 3 and Fig. 1a). A basis 
of peptide mass fingerprinting is that the mass measurement of a 
single proteolytic peptide matches the masses of only a few dif-
ferent proteolytic peptide sequences (3). For example, a mass 
around 2,000 Da measured with an accuracy of 1 ppm matches 
on the average 4 and 1.5 unmodified tryptic peptides in the 
entire proteome of human and yeast, respectively (Fig. 2). A sin-
gle peptide mass measurement is typically not matched uniquely 
with a single protein species and is therefore not sufficient to 
identify a protein (the probability for more than one protein 
identified = 1). But, a set of measured peptide masses from a sin-
gle digested protein is useful for identification, since the proba-
bility is <<1 of randomly matching these mass values to a protein 
sequence in the collection searched. In theory, not only single 
proteins but also a large portion of the proteins in a complex 
protein mixture can be identified by the PMF approach (4). 
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Fig. 1. Mass spectrometry based workflows for protein identification : (a) searching a protein sequence collection with 
peptide mass information; (b) searching a protein sequence collection with peptide fragment mass information;  
(c) searching a spectrum library with peptide fragment mass information; (d) de novo sequencing.
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However, in practice, mass spectrometers fail to detect simulta-
neously peptides originating from different sample proteins that 
differ significantly in abundance (5). Hence, a prerequisite for 
PMF-based protein identification is that the samples analyzed are 
reasonably pure and only contain a few different proteins (6).

A more robust method for complex protein mixtures is to 
search sequence collections using the observed mass of an intact 
individual peptide ion species together with the masses of the 
fragment ions observed upon inducing fragmentation of the pep-
tide in the mass spectrometer (Fig. 1b). This method requires 
only one or a few identified peptides to identify a gene. Peptides 
are fragmented by increasing their internal energy, usually through 
collisions. When their internal energy is increased, peptides frag-
ment along their backbone, and ions characteristic of the amino 
acid sequence and the activation method are produced. The masses 
of these ions are compared with the theoretical fragment masses of 
the peptides in the sequence collection that match the mass of the 
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Fig. 2. The information value of a mass measurement. The number of unmodified tryptic peptides as a function of peptide 
mass for different mass accuracies for (a) human and (c) yeast. The distribution of number of matching unmodified 
tryptic peptides at mass 2,000 Da and mass accuracy of 1 ppm for (b) human and (d) yeast.
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intact peptide, and a score is calculated based on the matching 
fragments (7, 8). This method is based on the method developed 
for identifying organic molecules from their fragment mass spec-
tra (9–11). The advantage of using a sequence collection is that it 
is not necessary to observe fragmentation next to every amino 
acid in the peptide; a few fragment ions are usually sufficient 
because the sequence collection can be used to fill in the missing 
information (see Note 4). The drawback is, however, that if the 
sequence is not in the sequence collection, it cannot be found 
using this method, but as more and more complete genome 
sequences are becoming available, this becomes less of an issue. 
The probability of fragmentation between a pair of adjacent 
amino acids is dependent on their chemical properties and to a 
lesser degree on the amino acids further away from the fragmen-
tation site; therefore, the intensity of fragment ions is highly 
sequence dependent. The information in the peak intensities can-
not fully be utilized when searching protein sequence collections 
because most implementations use the same intensity for all theo-
retical fragments owing to the difficulty in accurately predicting 
their relative intensities from the amino-acid sequence.

One way of utilizing the sequence-specific fragment ion 
intensities and thereby improving the sensitivity is to instead 
search spectrum libraries (Fig. 1c), i.e., large collections of exper-
imentally acquired fragment mass spectra that have been anno-
tated. This is currently the predominant method for identification 
of small organic molecules (12) and has during the last few years 
been applied to peptide identification (13, 14). In this method, 
the intensity information is fully utilized (see Note 5) because 
the matching is between two experimentally acquired fragment 
mass spectra, and therefore, this is the most sensitive of the iden-
tification methods. The challenge is, however, to collect large 
high-quality sets of spectra that have sufficient coverage of the 
proteome.

In cases, when the genome has not been sequenced and there 
are no spectrum libraries available, the only possibility is to use de 
novo sequencing (Fig. 1d), i.e., use only the information in the frag-
ment mass spectra and the mass of the intact peptide to obtain the 
peptide sequences (15–18). This requires much higher quality data 
because the entire space of all possible sequences is the search space 
(see Note 6). To search the entire space of potential sequences is 
impractical even for short peptides, but several algorithms have been 
developed that attempt at searching the relevant part of the search 
space in a reasonable time frame (15–18).

In all mass spectrometry-based identification methods, a score 
is calculated to quantify the match between the observed mass 
spectrum and the collection of possible sequences. These scores 
are highly dependent on the details of the algorithm used, and 
they are not always easy to interpret because the interpretation of 



193Mass Spectrometric Protein Identification Using the Global Proteome Machine

the score depends on properties of the data and the search results. 
Therefore, it is desirable to convert the score to a measure that is 
easy to interpret, such as the probability that the result is random 
and false. For this conversion, the distribution of random and false 
scores is needed (Fig. 3). Estimates of this distribution can be gen-
erated using either simulations (19, 20), collecting statistics dur-
ing the search (21–23), or direct calculations (24).

Here, we describe how the different components of the global 
proteome machine (GPM) can be used for protein and peptide 
identification and validation.

X! Tandem (25–27) is a search engine for identifying proteins by 
searching sequence collections. X! Tandem scores the match 
between an observed tandem mass spectrum and a peptide 
sequence, by calculating a score that is based on the intensities of 
the fragment ions and the number of matching b- and y-ions (see 
Note 7). This score is converted to an expectation value using the 
distribution of the scores of randomly matching peptides (Fig. 3). 
Before the search, the user needs to specify a set of parameters 
including which sequence collection to search, the mass accuracy 
of peptides and their fragments, and modifications of the peptide 
sequence (see Note 8). The search is done iteratively; only pro-
teins that have at least one peptide identified in an iteration are 
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Fig. 3. Expectation values. The score can be transformed to an expectation value, i.e., the number of peptides that through 
random matching generate the score, if the distribution of random scores is known. This random distribution can be 
obtained for expectation values >1 by collecting statistics during the search because most peptides in a sequence col-
lection match a given mass spectrum purely through random matching. Estimating expectation values <1 can be done 
by fitting the tail of the distribution to a Gumbel distribution and extrapolating.
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searched in subsequent iterations (25). This iterative search can 
be used to speed up and increase the sensitivity of the identifica-
tion of modifications, nonspecific enzymatic cleavage, and point 
mutations by restricting the search to unmodified tryptic peptides 
in the first iteration, and then widening the search in subsequent 
iterations. Another way to speed up the searches and make them 
more sensitive is to restrict the search to proteotypic peptides 
using X! P3 (27), which searches only peptides that have been 
previously identified and deposited in the GPM DataBase 
(GPMDB) (28).

X! Hunter (13) is a search engine for searching annotated spec-
trum libraries. X! Hunter uses the same scoring as X! Tandem, 
except for that it compares the observed mass spectrum to librar-
ies of spectra derived from experiments. Therefore, the peptide 
sequence-dependent intensity information can be fully utilized, 
and the sensitivity of the search is increased. It is, however, critical 
that the spectrum libraries are constructed carefully. The libraries 
for X! Hunter are constructed by taking the fragment mass spectra 
from GPMDB and grouping them so that one library spectrum is 
constructed for each peptide modification and charge state. The 
selection criteria are that (1) the spectrum matches to a peptide 
with an expectation value less than 0.001 and (2) at least 40% of 
the ion intensity in a spectrum is assignable as y- or b-ions or their 
corresponding neutral loss products. For the selected spectra, the 
m/z values of the matching peaks are substituted with the exact 
theoretical values. The ten spectra with lowest expectation value 
are selected for each peptide modification and charge state, and a 
composite spectrum is created and added to the library. These 
annotated spectrum libraries can also be extended to modification 
that do not affect the fragmentation pattern (e.g., some types of 
stable isotope labeling), by using the ion intensities of the frag-
mented unmodified peptide and reassigning the m/z values to 
correspond to the modified peptide.

The search results for all GPM search engines are displayed in a 
unified interface that allows the user to get an overview of the 
results as well as inspect the details of the results when needed. In 
the basic display, proteins for which there is evidence for their 
presence in the sample are listed. The strength of the evidence is 
quantified with an expectation value (see Note 9) (23), and the 
proteins are listed in the order of increasing expectation value, 
i.e., in the order of decreasing strength of the evidence. Other 
information that can be used to assess the identified proteins are 
also shown, including the sum of the intensity of the matching 
fragment ions for all peptides, the number of matching peptides, 
and the fraction of the protein sequence covered by the observed 
peptides. Details of the evidence for a protein can be displayed, 
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listing all matching peptides sequences, modifications and charge 
state together with the peptide expectation values, error in the 
mass measurement, and the sum of the intensity of the fragment 
ions matching to the peptide sequences. For an individual pep-
tide, the annotated fragment mass spectrum can be displayed 
showing the peak assignments. There are also alternative ways to 
display the list of identified protein, including their distribution 
among gene ontology categories, pathways, and protein interac-
tion networks. In these displays, a p-value is calculated to asses 
which gene ontology categories, pathways, or interactions are 
enriched or depleted in the dataset.

Comparison of identification results to the large set of search 
results collected in GPMDB is an effective way to validate the 
results. One way to use GPMDB is to visually compare the pep-
tides observed for a protein with observations in other experi-
ments in GPMDB (Fig. 4). Commonly, the same peptides are 
observed for a given protein in most proteomics experiments, 
and therefore, an observation of a peptide that has not been 
observed in other experiments should be investigated manually. 

ENSP00000253462 DNA replication complex GINS protein PSF2

−153.6
−95.4
−93.3
−81.5
−77.5
−54.9
−51.2
−42.5
−41.4
−40.2
−38.7
−36.4
−35.2
−32.4
−31.4
−30.9
−30.8
−29.8
−27.2
−27.0

Coverage-log(e)

Fig. 4. Using proteotypic peptides for validation of identification results. The peptides identified for a protein can be com-
pared with observations in other experiments in GPMDB. Commonly, the same peptides are observed for a given protein 
in proteomics experiments, and therefore, an observation of a peptide that has not been observed in other experiments 
should be investigated manually. The peptides observed for PSF2, a protein associated with the replication fork, are 
shown with black borders and regions of the protein that are difficult to observe in proteomics experiments are shown 
without borders. In a majority of the 20 experiments shown, the same 5 peptides are observed.
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Another way of validating search results is to compare the 
sequence dependent ion intensity distribution of tandem mass 
spectra with spectra in GPMDB to evaluate if the fragmentation 
pattern is similar (Fig. 5). Several frequency measures from 
GPMDB for proteins and peptides are also reported together 
with the search results. For peptides, the number of times it has 
been observed in GPMDB and the fraction of the peptide iden-
tifications that are in a specific charge state (w) are used. For 
proteins, W, a measure of peptide coverage with respect to charge 
state is used. W is a list of ratios denoting what fraction of the 
peptides in a particular charge state for a given protein was seen 
in a single protein identification. Proteins expectation values are 
also compared with other identifications of the protein in 
GPMDB, and the rank is reported, allowing the user to judge 
how their result compares with other results. All these measures 
are shown to make the validation of the results easier by allowing 
detailed comparison with the large set of experimental results 
that are available in GPMDB.

The information in GPMDB can also be used to design 
experiments. It is advisable to start planning an experiment by 
inspecting the information associated with proteins of interest to 
find out what has been observed in other proteomics experi-
ments. For example, GPMDB supports the design of experiments 
targeted to investigate a group of proteins (multiple reaction 
monitoring (MRM)). Through the MRM module, the informa-
tion in GPMDB is used to aid in the selection of peptides and 
their fragment ions that produce a strong signal and are specific 
to the protein.

The quality of the overall match between the whole dataset 
and the sequence collection can be evaluated using r-diagrams 
and r-scores (29). A r-diagram is a comparison between the dis-
tribution of peptide expectation values for a dataset and the pre-
dicted distribution for random matching (see Note 10). For a 
dataset that only has random matches to a sequence collection, 
the data points in the r-diagram will fall on the diagonal, r = log(e), 
i.e., the expectation values for the peptides are distributed as 
expected from random matching (Fig. 6a). In contrast, for data-
sets that are of high quality, typically many peptides match well 
with the sequence collection, and the data points in the r-diagram 
deviate from the diagonal and are closer to log(e) = 0 (Fig. 6b). 
The r-score corresponding to a r-diagram is defined as the area 
between the data points and the diagonal [r = log(e)] normalized 
to a value between 0 and 100, where r-score of 0 corresponds to 
purely random matching and r-score of 100 corresponds to no 
random matching. The r-score, being a measure of the quality of 
a match between an entire dataset and a sequence collection, can 
be used for optimizing search parameters, for evaluating algo-
rithms, and for controlling the quality of datasets.
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Fig. 5. Using tandem mass spectra for validation of identification results. The intensity distribution of tandem mass spec-
tra is mainly dependent on the peptide sequence. Therefore, comparing a fragment mass spectrum with spectra in 
GPMDB can be used for validation of the results. (a, c) A stronger [log(e) = −12.8] and (b, d) a weaker [log(e) = −3.6] 
spectrum matching to the sequence CINVLSEVCGQDITTK are shown [(a, b) – all peaks (c, d) – peaks matching the 
sequence]. The stronger spectrum has many peaks matching the peptide sequence and little background, while the 
weaker spectrum has fewer matching peaks and more background peaks, but the intensity profile of the matching peaks 
is similar.
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 1. Peaks in mass spectra are detected by finding local maxima in 
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 2. Because peptides naturally contain heavy isotopes of atoms 
(e.g., 1.11% 13C and 0.366% 15N), they are observed as clus-
ters of peaks. The relative intensities of these isotope clusters 
are dependent on the mass of the peptide because the number 
of atoms increases with mass, and therefore, the probability of 
the peptide containing one or more heavy isotopes increases. 
The largest effect comes from 13C and a first order estimate of 
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Fig. 6. r-diagram. A r-diagram shows the quality of the match between a dataset and a proteome. (a) The data points 
are close to the line r = log(e) when the results are dominated by random matching between the data and the proteome. 
The three datasets shown were obtained by searching against a collection of reversed sequences. (b) Three datasets of 
different quality are shown (r-scores are 95, 87, 57, respectively). The highest quality dataset (filled circles) is closest to 
the line log(e) = 0 and the lowest quality dataset (open squares) is closest to the line r = log(e).
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  where Tm is the intensity of peak m in the distribution, m 
is the number of 13C, n the total number of carbon atoms 
in the peptide, and p is the probability for 13C (i.e., 
1.11%).

 3. The simplest method for peptide mass fingerprinting is to 
count the number of peptides in the mass spectrum that 
match to each protein in the sequence collection. This count 
can then be used as a score to rank the proteins. This simple 
scoring scheme works well when the data are of high-qual-
ity, but with low-quality data, typically, a large protein will 
get the highest score due to random matching. This is 
because the probability for random matching increases with 
the size of the protein simply because there are more pep-
tides to match. More sophisticated scoring methods have 
been developed as an attempt to compensate for this effect 
(24, 30–32).

 4. The sequence collections used for protein identification are based 
on the genes predicted from the genome sequence, and are 
therefore a very small subset of all possible sequences. For exam-
ple, there are ~2.5 ´ 1014 unique tryptic peptides of length 15 in 
the human proteome compared with 2015 = 3.3 ´ 1019 possible 
unmodified peptides of length 15. Because a vast majority of 
possible peptides are not used in an organism, the distance 
between real peptides in sequence space is typically large, and 
therefore, missing information can be filled in using the sequence 
collection.

 5. Typically, the normalized inner product of the two spectra is 
used to score how well their intensities match. If the spec-
tra are represented as vectors with the number of dimen-
sion equal to the number of matching peaks, n, and the 
length of the vector in each dimension equal to the inten-
sity of the corresponding ion, the dot product is given by, 
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   observed spectrum, and = ¼1 2( , , , )nL L LL  is the library spec-
trum. The range of the normalized dot product is from −1 to 
1. If the observed and library spectra are identical, the result-
ing dot product is 1, and any differences between them will 
result in lower values of the dot product.

 6. The search space for de novo sequencing of unmodified pep-
tides is 20N where N is the length of the peptide. If there are 
m types of potential modifications, then search space increases 
to (20+m)N.

 7. The score, called hyperscore, is based on the assumption of a 
hypergeometric distribution and is given by = · !· !H I b yS S n n ,  
where yn  is the number of matching y-ions, bn  the number 
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of matching b-ions, and IS  is the dot product between the 
observed spectrum and the spectrum predicted from the 
peptide sequence. The intensities for the spectrum predicted 
from the peptide sequence are usually set to 1 for each 
expected fragment mass and 0 for all other masses. However, 
X! Tandem also supports using intensities that are depen-
dent on the two amino acids on each side of the fragmented 
bond.

 8. A complete description of the input parameters for X! Tandem, 
X! P3, and X! Hunter can be found at http://thegpm.org/
TANDEM/api/.

 9. Protein expectation values can be estimated from the expec-
tation values of its matching peptides. If more than one 
peptide has been found for a protein, the expectation val-
ues for the peptides are combined with a simple Bayesian 
model for the probability of having two peptides from the 
same protein having the best score in different spectra: 
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