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Acetylation is a well-studied posttranslational modification that has
been associated with a broad spectrum of biological processes,
notably gene regulation. Many studies have contributed to our
knowledge of the enzymology underlying acetylation, including
efforts to understand the molecular mechanism of substrate recog-
nition by several acetyltransferases, but traditional experiments to
determine intrinsic features of substrate site specificity have proven
challenging. Here, we combine experimental methods with clustering
analysis of protein sequences to predict protein acetylation based on
the sequence characteristics of acetylated lysines within histones with
our unique prediction tool PredMod. We define a local amino acid
sequence composition that represents potential acetylation sites by
implementing a clustering analysis of histone and nonhistone se-
quences. We show that this sequence composition has predictive
power on 2 independent experimental datasets of acetylation marks.
Finally, we detect acetylation for selected putative substrates using
mass spectrometry, and report several nonhistone acetylated sub-
strates in budding yeast. Our approach, combined with more tradi-
tional experimental methods, may be useful for identifying acety-
lated substrates proteome-wide.

histone � nonhistone � prediction � acetylation � PredMod

More than 40 years ago, Allfrey et al. (1) reported a strong
correlation between increased levels of histone acetylation

and elevated levels of gene expression. Since then, the field of
chromatin biology has advanced considerably with remarkable
progress made into mechanistic insights of histone modifications
and their biological functions. Histones are abundant nuclear
proteins known to contain a wealth of posttranslational modi-
fications (PTMs) including, among others, acetylation, methyl-
ation, and phosphorylation. These PTMs may contribute to
‘‘epigenetic signatures’’ that play a role in diverse biological
processes. Of the known PTMs, acetylation has the capacity to
destabilize the chromatin polymer through charge neutralization
of the basic lysine residue potentially harboring structural con-
sequences for higher-order chromatin structures (cis effects)
(2–4). Furthermore, acetylation recruits specialized ‘‘effector’’
proteins that in turn affect chromatin structure (trans effects)
(3), as has been proposed in the histone code hypothesis (5).

Lysine acetylation in histones was the first PTM identified to
be regulated by a highly balanced enzyme system that contains
lysine acetyltransferases (KATs) and histone deacetylases
(HDACs), which are responsible for governing a steady-state
balance of acetylation (6, 7). Certain KATs have been shown to
also acetylate nonhistone transcription-related proteins, and
finally, acetylation has emerged to play a critical role in human
biology and disease. Promising advances have been made re-
cently in developing drug therapies that target HDACs for
certain cancers (8). A computational tool that is predictive of
acetylation events could contribute to a more complete under-
standing of what substrates are physiologically relevant, as more
insights are gained into acetylation-mediated pathways.

Conventional experiments [e.g., mutagenesis, antibodies, and
mass spectrometry (MS)] have typically been used to identify
acetylated lysines in substrate proteins. These methods are often
laborious, time intensive, and expensive. Therefore, a robust
computational prediction tool is desirable to reduce the number
of experiments needed to identify potential PTM sites in pro-
teins of interest. Past computational studies suggest that there
are canonical motifs in acetylated substrates proteome-wide (9).
Our approach sets out to test whether novel acetylation marks
can be predicted using a combined experimental and computa-
tional approach. Our analysis focuses on histones because these
are widely studied, heavily acetylated substrates. Briefly, we
train a ‘‘classifier’’ from histone sequences in an unbiased
manner, assign nonhistone sequences into the clusters defined in
the training phase, and finally generate predictions based on the
acetylation states of the histone lysines within the cluster as-
signed. We report the results of a computational approach,
combined with experimental validation, and present a unique
software tool, PredMod, which may assist in predicting candidate
acetylation sites proteome-wide.

Results
Training Set and Key Assumptions. We used histones as a training
set because of the wealth of information known about their PTM
patterns and well-developed purification and analytical detec-
tion methods, and focused on the major human core histones
bearing a total of 56 lysines (H2A: 13; H2B: 19; H3: 13; H4: 11)
(Fig. 1A). To date, MS and antibody data suggest that there are
23 ‘‘validated’’ acetylated lysines and 33 lysines that have not yet
been observed as acetylated in human histones based on liter-
ature [supporting information (SI) Table S1]. We sought to
uncover additional acetylation sites within the ‘‘not observed’’
class of lysines in a systematic, rigorous manner via our compu-
tational method. We selected parameters that could influence
our ability to predict acetylation sites on histones by making a
series of assumptions. First, we focused our attention on short
stretches of amino acids N- and C-terminal of all 56 lysines.
Because structural studies of published KAT domains coupled
with peptide substrates typically do not exceed 14–20 aa in length
(10, 11), a sliding window of a maximum number of 12 residues
flanking each lysine was chosen (Fig. 1B). Residues most prox-
imal to the lysine were given the highest weight (Fig. 1B),
assuming that these residues are most important for enzyme
recognition, as several studies have shown (10, 11). Second, we
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varied standard BLAST sequence alignment parameters, includ-
ing gap penalty, extension, insertion, and deletion scores (Fig.
1C). For lysines in the extreme N- and C-terminal region, such
as H3K4 or H2AK129, we normalized the raw alignment score
based on the length of the sequence. Additionally, both orien-
tations of the protein sequence (N-terminal to C-terminal or vice
versa) were weighted equally. For sequences with lysines that are
located in close proximity to each other, such as H3K36 and
H3K37, we restricted our alignment matrix so that these se-
quences did not receive an alignment score. This restriction
prevented our training set to be overrepresented with sequences
from overlapping fragments of the same protein. Finally, we
compensated for structural accessibility by penalizing buried
lysines and improving the score of accessible lysines (12). This,
however, did not influence our ability to predict acetylation sites
on histones, and therefore was not included in our further
computations.

We performed a hierarchical clustering of core histone lysines
based on the sequences surrounding each of these given lysines.
All 56 histone core sequences were aligned to one another,
creating a matrix of pairwise alignment scores, generating a
hierarchical tree of histone sequences (Fig. 1D). We next clas-
sified each lysine into 1 of 2 categories based on its acetylation
status reported in literature: ‘‘validated’’ (23 lysines) or ‘‘not
observed’’ (33 lysines) (Table S1). Finally, we visually catego-
rized each of the 56 lysines by color coding our tree based on the
acetylation status of each lysine (Fig. 1E).

To assess how robust our clustering was and how well it could
actually predict lysine acetylation, we took all 56 lysines and
performed a leave-one-out cross-validation (LOV) (13) by iter-
atively excluding one lysine from our training set. Next, we
reconstructed the hierarchical tree with the remaining 55 lysines
and incorporated the excluded single lysine observation as test
data. For each set and combination of predefined parameters

(stated above) and in a single run, we performed a LOV analysis
to examine the predictive power on all 56 lysines to discover
which set of parameters best optimized classification power. If 2
lysines were in overlapping fragments of the same protein, we
excluded both of these lysines from our training set when either
lysine was a test case. We took each test lysine (total of 56) and
traversed through our training tree to find which subgroup of
sequences our target sequence formed the tightest cluster with.

A receiving operating curve (ROC) analysis was performed on
our test dataset (Fig. S1), where the statistics measure used was
the area under curve (AUC). An AUC of 1 represents a perfect
prediction, and an AUC of 0.5 random predictions. Each point
on a single curve of the ROC plot was calculated by measuring
the false positive versus true positive rate of the performance on
all 56 lysines for a given parameter(s) under a cutoff alignment
score. If the test lysine clustered within a group of validated
acetylated lysines (Fig. 2A, red) above the cutoff score, the lysine
was predicted to be acetylated. Conversely, if the test lysine
clustered within a group of not-observed lysines (Fig. 2 A, green)
above the alignment score, the lysine was predicted as not
acetylated. The default status of the lysine when it did not fall
into the above criteria was not acetylated. The best ROC plot
achieved an AUC of 0.80, and the parameters in this case
included 6 weighted residues to both the left and right of the
tested lysine (Fig. S1). A threshold for prediction was also
determined based on this plot. To test the significance of this
score, we applied the previous procedure to 1,000 random
permutations of the labels of the observed and not-observed
lysines. The median AUC in these permutations was 0.64, and
the maximum score was 0.79; thus, our AUC was statistically
significant (P � 0.001).

Computational Prediction of Novel Human Histone Acetylation Marks
and in Vivo Validation by Mass Spectrometry. After hierarchical
clustering of all our lysine-embedded histone sequences, we next
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Fig. 1. Schematic of the overall computational and experimental approach. (A) Human core histone proteins (H2A: orange; H2B: red; H3: blue; H4: green)
containing 56 lysines (black) were taken as input data for computational training. (B) A sliding window of amino acids (black bars) flanking the input lysine (at
position 0) is used to train the model. Not all window lengths are shown. Weights (calculated as inversely proportional to distance [d]) are applied to amino acids
based on the distance from the input lysine to the amino acid in positions �12 to �12. (C) BLAST sequence alignments are performed between all 56 lysines and
surrounding sequences, and the highest scoring alignment is selected to begin the clustering analysis. Shown are sequences H4K5 and H3K36 (boxed in red)
spanning positions �6 to �6 and their highest scoring match (denoted by a checkmark). Note that H4K5 and H2AK5 do not have 6 residues flanking the lysine
N-terminally; scores are normalized based on length in these cases. (D) Lysines clustered together based on sequence alignment scores creating a fully predictive
hierarchical tree (4 sequences are shown here; all 56 sequences are shown in Fig. 2). (E) Sequences are color coded according to published data on their
modification state. Red: validated evidence of the lysine being acetylated; green: this lysine was not observed as being acetylated in literature. (F) After
establishing PredMod, predictions were made on lysines in human core histones. The algorithm was then validated using a set of human acetylated proteins
reported in literature, substrates detected using a pan-acetyl IP approach, and a yeast proteome-wide dataset. Finally, predictions were made on yeast
nonhistone sites and validated in vivo.
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sought to predict novel acetylation sites in the human core
histones. As our tree illustrates in Fig. 2, not-observed lysines
that clustered tightly with validated acetylated lysines (green
sequences in gray captions) were potential acetylation targets
because of their similar sequence constitution. Based on the
threshold, determined by the ROC plot, we selected these as
candidate sites. The previous method predicted 7 unique acet-
ylation sites in the human core histones; 4 in H2A (K9, K13,
K125, K127), 1 in H2B (K116), 1 in H4 (K44), and 1 in H3 (K37)
(Fig. 2). This large number of predictive sites was unexpected
because histones have been intensely investigated for PTMs in
recent years. To test whether these predicted lysines are acety-
lated in vivo, we used an MS-based approach to examine histone
peptides from human cell lines that were asynchronously grow-
ing and treated without any HDAC inhibitors (see SI Text). All
peptides containing the predicted lysines were identified, and

importantly, 4 of our 7 predicted acetyl-lysines were experimen-
tally validated: H2AK9, H2AK13, H2AK125, and H2AK127
(Figs. S2 and S3). Histones H3 and H2B from sodium butyrate-
treated human cells also showed H3K37 and H2BK116 acety-
lation, but because these marks were observed only under these
special conditions (see Discussion), we did not count them as
validated.

In summary, we correctly predicted 4 of the 7 acetyl-lysine
sites, suggesting that our algorithm is capable of identifying
acetylation sites in human histone proteins.

Nonhistone Sequence-Based Dataset Prediction and Validation. Be-
cause our computational analysis revealed a high level of se-
quence homogeneity among acetylated lysines within histone
proteins, leading to the successful prediction of unique modified
residues, we next wondered if our approach might also enable us
to predict nonhistone acetylation sites.

H2BK125
H2AK129
H2BK43
H3K56
H3K79
H4K31
H3K122
H2AK75
H2AK36
H3K64
H2BK57
H4K59
H2AK95R
H2BK5
H2BK108
H2AK119
H2BK120
H3K18
H2AK13
H2BK16
H2AK125R
H3K37
H4K44
H4K8
H4K5
H2AK5
H2BK11R
H2BK27
H4K12
H2AK127R
H2BK30
H4K16
H2AK9
H2BK12R
H3K14
H3K36
H4K91
H2BK24

H2BK23
H3K9
H3K27
H2AK15
H2AK74
H2BK15
H2BK116
H2AK118
H2BK46
H3K4
H3K23
H2BK20
H2BK34
H4K77
H2BK85
H4K20
H4K79 

TKYTSSK
HHKAKGK
YSIYVYKVLKQVH
EIRRYQKSTELLI
EIAQDFK_TDLRFQ
DIQGITKPAIRRL
RVTIMPKD_IQ_LAR
AARDNKKTRIIPR
VHRLLRKGNYAER
TELLIRKLPFQRL
DTGISSKAMGIMN
ETRGVLKVFLENV

  PEPAKSAPAPK
LPGELAKHAVSEG
AVLLPKKTESHHK
GTKAVTKYTSSK
GGKAPRKQLATKA
GGKARAKAKSRSS
PKKGSKKAVTKAQ
__KGKAKHHSETK
ATGGVKKPHRYRP
ARRGGVKRISGLI
GRGKGGKGLGKGG
__SGRGKG_GKLG
__SGRGKQGGKAR
AKKSGKKPAPASK
AQKKDGKERKRSR
GGKGLGKGG KRH
__KG K
KDGKERKRSRKES
LGKGGAKRHRKVL
RGKQGGKARAKAK
VAKKSGKKPAPAS
RKSTGGKAPRKQL
PATGGVKKPHRYR
DVVYALKRQGRTL

VTKAQK DGKERD

TKQTARKSTGGKA
ATKAARKSAPATG
KARAKAKSRSSRA
NAARDNKKTRIIP
APKKGSKKAVTKA
AVSEGTK AVTKYT
QAVLLPKKTESHH
YVYKVLKQVHPDT
___ARTKQTARKS
RKQLATKA_ARKSA
SKKAVTKAQKKDG

ERKRSRKESYSIY
TYTEHAKRKTVTA
RLAHYNKRSTITS
GAKRHRKVLRDDI
THEAKRKTVTAMD

AVTKAQ KDGKER

H3K18

H2AK13
H2BK16

H2AK125

GGKAPRKQLATKA

GGKARAKAKSRSS
PKKGSKKAVTKAQ

__KGKAKHHSETK

H3K37  ATGGVKKPHRYRP
H4K44  ARRGGVKRISGLI
H4K8  GRGKGGKGLGKGG
H4K5 __SGRGKG_GKLG
H2AK5 __SGRGKQGGKAR

H4K12   GGKGLGKGGAKRH
H2AK127 __KGKAKHHSETK

H3K115 LCAIHAKRVTI

TVRGLLKNLEEDN

K
K

MP

AKH SEH
A

__

H4K16   LGKGGAKRHRKVL
H2AK9   RGKQGGKARAKAK

H2BK15  APKKGSKKAVTKA
H2BK116 AVSEGTKAVTKYT

Threshold 

Enlarged view of predicted lysines

Fig. 2. Computational prediction of human histone acetylation sites. Predictive tree of all 56 lysines from human core histone sequences using hierarchical
clustering (see SI Text for details). Histone lysines (in red or green) are color coded according to published data on their modification state as described in Fig.
1E. For each pair of sequences under a single node, amino acids are colored in light purple (identical residues) or dark blue (in accordance with the BLOSUM
matrix) (25). Underlined red lysines represent the residue that was used for training the algorithm. Dashed red vertical line represents the selected threshold used
to make predictions. Gray boxes represent a zoomed-in view of lysines that cluster together. An R next to the lysine indicates that a C- to N-terminal arrangement
was used in the alignment.
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In our first approach, we included a dataset that contained
both nuclear and cytosolic proteins from HeLa cells, which were
immunoprecipitated with a pan-acetyl antibody (Fig. S4A and
Table S2) and identified by MS (14). The precipitate contained
peptides with a total of 1,413 lysines, and 51 previously validated
acetylation sites. With PredMod, we were able to predict 34
(67%) of these sites correctly (Fig. S4A) when they were
surrounded by 6 residues to the left and right (AUC � 0.75,
sensitivity Sn � 0.66, specificity Sp � 0.94) (Fig. 3A, orange
curve). In total, 6% (85) of the total number of lysines were
predicted that were not validated as acetylated (Fp � 6%). Fp
is a maximum false positive rate; a true negative count cannot be
accurately determined because many of these lysines could
potentially be acetylated, but not detected under the experimen-
tal procedures used.

In our second dataset, we compiled a list of 32 proteins
containing 1,378 lysines with 73 of these reported in literature to
be acetylated in vivo and/or in vitro (Fig. S4B and Table S3).
With PredMod, we predicted 39 of 73 (53%) lysine marks
accurately with Fp � 6.5% (AUC � 0.74, Sn � 0.58, Sp � 0.93)
when these were surrounded by six residues to the left and right
(Fig. 3B, orange).

Both test datasets exhibited a decrease in performance when
larger numbers of residues N- and C-terminal to the target lysine
were used (Fig. 3, blue line), suggesting that KATs may recognize
a smaller and defined set of residues. Overall, findings from both
approaches revealed that our selected parameters for histones
were also valid for the prediction of acetylated nonhistone
substrates using an ROC analysis approach.

Analysis of Acetylation Motifs. We next sought to understand which
amino acids play a critical role in acetylation site selection, and
asked whether there were preferences for certain amino acids
near the target acetylated lysines in our datasets. Notably, when
we examined the surrounding residues (six residues to the left
and right) of a validated acetylated lysine versus a not-observed
one in human histone and nonhistone proteins we discovered an
enrichment for small residues (G/A in pink), lysines (K in green),
and phosphorylatable residues (S/T in blue) (Fig. 4). To test
whether the observed enrichment of G, K, S was statistically
significant, we determined the frequency of these residues
flanking a lysine in the entire human proteome. We noticed that
on average, these residues were of significantly higher frequency
in our datasets than in the human proteome. We used the
hypergeometric test to measure the statistical relevance of this
observation (Table S4). Our findings show that the most signif-
icant P values were found in the category of small residues (P �
0.01 in multiple flanking positions; Fig. 4, tick marks), suggesting
that small amino acids, perhaps due to their sterically unde-

manding side chains, could accommodate the flexibility of the
substrate, thus allowing protein docking and catalysis. This
observation was in agreement with a previous study (9), which
revealed that glycine preceding lysine was common among
acetylated lysines. In conclusion, we were able to identify a
significant enrichment of mainly small amino acids and lysines
surrounding validated acetylated lysines in comparison with
not-observed ones, suggesting that KAT enzymes have a general
need for specific residues for recognition and/or activity. These
observations are in agreement with studies of several KATs with
test substrates (10, 11).

S. cerevisiae Proteome-Wide Prediction and in Vivo Validation. The
previous predictions were performed with human proteins, and
we therefore wondered whether our algorithm would also be able
to predict acetylation sites in proteins from other organisms.
Because histone acetylation has been studied extensively in
budding yeast, we assessed the performance of our model on a
proteome-wide dataset that included acetylated peptides in S.
cerevisiae (15) (see SI Text). In addition, we experimentally
validated our predicted acetylation sites in candidate yeast
nonhistone proteins in vivo.

In our first approach, we examined in vitro a proteome-wide
dataset of acetylated peptides of S. cerevisiae that contained 356
peptides, including acetylated histone peptides (see SI Text).
This dataset allowed us to approximate the number of yeast
acetylation events on a global level (0.6%; see SI Text), and the
substrates themselves allowed us to further validate our predic-
tion algorithm. We filtered these protein-derived peptides ac-
cording to their cellular compartment (nuclear vs. cytoplasmic)
(16), and correctly predicted 43% of acetylation events on
nuclear proteins (79 lysines total; AUC � 0.71, Sn � 0.41, Sp �
0.92, Fp � 4%) and 30% on the cytoplasmic proteins (248 lysines
total; AUC � 0.70, Sn � 0.31, Sp � 0.90, Fp � 5%). We also
noted that nuclear yeast proteins showed a similar enrichment
for small residues surrounding the target lysine, as found in the
human substrates (Fig. S5).

In our second approach, we validated our predictions on 3
yeast candidate proteins that had previously not been published
to contain acetylated sites: Spt6 (17), Sir3 (18), and Eaf7 (19).
We expressed and purified our tap-tagged candidate proteins in
S. cerevisiae (Fig. 5A) and subsequently subjected them to MS.
With PredMod, we predicted 15 sites to be acetlyated of 416 total
lysines in our 3 candidate proteins combined. Four of these,
within our top 6 ranked predicted sites (Fig. 5B), were validated
as acetylated by MS and therefore predicted correctly (Fig. S6).
The total number of acetylated lysines in the yeast proteome is
�0.6%; therefore, our in vivo hit rate of �25% is of reasonable
accuracy.
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Fig. 3. Prediction performance on human nonhistone substrates. ROC curve for human pan-acetyl IP substrate test set (A) and literature-validated human
acetylated proteins (B). The y axis represents the true positive rate, and the x axis the false positive rate. Win � (x,y) denotes the length of residues spanning
the lysine; x: number of residues N-terminal to the lysine; y: number of residues C-terminal to the lysine. Diagonal line represents a random prediction.
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These findings show the power of PredMod for identifying
bona fide acetylation sites in nonhistone proteins, and further
display the strength of using histone sequences as a useful guide
for nonhistone acetylation prediction.

Discussion
Acetylation plays a crucial role in the function of multiple
cellular pathways (20). To better understand these processes, it

is first necessary to identify sites of acetylation within a protein
of interest. Our prediction program, PredMod, is a first and
promising step in finding novel acetylation sites, although we did
not achieve 100% prediction capacity. We envision several
possibilities as to why some predicted lysines have not yet been
detected experimentally. First, the MS approach has limited
detection and sensitivity capabilities and cannot recover peptides
that are acetylated at only low levels. Second, lysines could be
modified only in distinct environmental conditions, cell cycle
stages, and cell types, and are therefore undetectable in the cell
extracts we used. Additional histone acetylation sites were
detected by MS/MS when HeLa cells were pretreated with
HDAC inhibitors, and we retrained our algorithm with this data.
Preliminary findings from this analysis show that the predictive
power of our overall approach is not altered significantly, thereby
increasing further confidence in the power of our approach
(Table S5). Third, acetylation might be inhibited by adjacent
PTMs (negative crosstalk), and therefore the responsible KAT
might be prevented from binding to or accessing its target site.
Finally, acetylation is a dynamic, transient modification, and MS
results may therefore depend on a time-specific acetylation state
whose kinetic properties have not been adequately captured by
our experimental parameters. Of interest is the class of lysines in
histones that was not predicted by our algorithm, yet detected by
MS, and which might indicate a different class of KATs that need
special sequence surroundings (see SI Text).

Our findings suggest that the sequence environment in both
histone and nonhistone proteins contributes to the likelihood of
acetylation. Consistent across both human and yeast acetyl
datasets, we noticed an enrichment of small residues, particularly
glycine, and charged amino acids flanking validated acetylated
lysines (Fig. 4 and Fig. S5). It is possible that we are perhaps
achieving a higher accuracy for nuclear proteins because the
KAT substrates (histones) we used for training PredMod mostly
reside in the nucleus. Our findings also suggest that nuclear
versus cytoplasmic KATs could possess unique substrate recog-
nition profiles, as illustrated by the differences in preferred
flanking residues C-terminal to the lysine (Fig. S5 B and C).

As more substrates in the acetyl-proteome are discovered (20),
it is likely that the predictive power of our approach will be
strengthened, leading to more accurate confidence in the pre-
dicted site. The power of our approach is underscored by the fact
that we are predicting significantly higher than random on
nonhistones given our set of limited training data. Our training
dataset is 10–100� in magnitude lower than other PTM datasets
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green: basic; red: hydrophobic; pink: small; blue: S/T; black: all other residues.
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including acetylation (9, 21, 22), yet our approximate sensitivity
measure of 60% is comparable and often higher than other
prediction algorithms that achieve as low as 16%�18% sensi-
tivity (9). It would be interesting to see whether similar ap-
proaches could be applied to the prediction of other widespread
histone modifications, such as lysine methylation.

Overall, our findings suggest that KATs target specific sequence
patterns, and that the predictive knowledge about histone acetyla-
tion provides a useful platform for studying both histone and
nonhistone lysine acetylation. Our model and findings represent a
step toward gaining a framework for predicting lysine acetylation
sites in both human and yeast proteomes. It will be of interest in
future studies to see whether our algorithm is also capable of
predicting lysine acetylation sites in many other organisms.

Materials and Methods
Cell Lines. Mammalian cell lines were grown in Iscove’s DMEM supplemented
with 10% FCS and penicillin/streptomycin at 37 °C and 5% CO2.

Histone Isolation. Nuclei were isolated and histones acid-extracted from asyn-
chronously growing, untreated cells as previously described (23). See SI Text
for further details.

MS Analysis of Histones. Experimental details are described in SI Text.

MS Analysis of Yeast Nonhistone Acetylation Sites. Tagged cells of our non-
histone proteins were lysed under cryogenic conditions. Tandem TAP-tag
purification was performed on candidate yeast proteins as described (24), and
eluates run on SDS-PAGE gels and stained with Coomassie. Protein bands were
in-gel digested with trypsin or chymotrypsin, and peptides extracted. Details
of these methods are provided in SI Text.

Datasets. Training set: 56 human and S. cerevisiae core histone lysine se-
quences were collected from the Swiss-Prot database (http://ca.expasy.org/

sprot/). Test set: source of nuclear protein and pan-acetyl antibody datasets
are described in Results. For information on the budding yeast proteome-wide
dataset, see SI Text.

Hierarchical Clustering Analysis. We performed hierarchical clustering on the
sequences surrounding each of the 56 histone lysines. All 56 sequences were
alignedtooneanother, creatingamatrixofpairwisealignmentscores;ourmetric
was based on these pairwise scores. Sequence alignment scores were computed
by performing BLAST local alignments using the NCBI BLAST 2.0 server. A stan-
dard BLOSUM62 evolutionary substitution matrix was applied (25).

Statistical Analysis. ROC calculations are described in the main text. Hypergeo-
metric probability calculation: Pr � (K

m)(n � K
N � m)(N

n) (N, all lysines in human proteome;
K, number of times the particular residue is seen flanking in each position in
human proteome; n, total number of lysines in each independent validation
dataset; m, number of times the particular residue is seen flanking in each
position in validation dataset). Sensitivity (Sn) was calculated as the total number
of correctly identified acetylation sites from the positive dataset divided by the
total positive dataset. Specificity (Sp) was calculated as the total number of
negative sites that were not predicted to be acetylated divided by the total
negative dataset size. For additional information, please see SI Text.

Sequence Logos. Sequence logos for displaying the flanking residue distribu-
tion of all lysines in our training and test datasets were created according to
ref. 26.

Software URL. Our acetylation prediction software, PredMod, can be found at
www.cs.cornell.edu/w8/�amrita/predmod.html (see SI Text).
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