
Chapter 6 
Integrative Structure Determination of Protein 
Assemblies by Satisfaction of Spatial Restraints 

Frank Alber, Brian T. Chait, Michael P. Rout, and Andrej Sali 

Abstract To understand the cell, we need to determine the structures of 
macromolecular assemblies, many of which consist of tens to hundreds of com
ponents. A great variety of experimental data can be used to characterize the 
assemblies at several levels of resolution, from atomic structures to component 
configurations. To maximize completeness, resolution, accuracy, precision and effi
ciency of the structure determination, a computational approach is needed that can 
use spatial information from a variety of experimental methods. We propose such 
an approach, defined by its three main components: a hierarchical representation of 
the assembly, a scoring function consisting of spatial restraints derived from exper
imental data, and an optimization method that generates structures consistent with 
the data. We illustrate the approach by determining the configuration of the 456 
proteins in the nuclear pore complex from Baker's yeast. 

6.1 Introduction 

Assemblies as functional modules of the cell. Macromolecular assemblies con
sist of non-covalently interacting macromolecular components, such as proteins and 
nucleic acids. They vary widely in size and play crucial roles in most cellular pro
cesses (Alberts 1998). Many assemblies are composed of tens and even hundreds 
of individual components. For example, the nuclear pore complex (NPC) of "'-'456 
proteins regulates macromolecular transport across the nuclear envelope (NE); the 
ribosome consists of "'-'80 proteins and "'-' 15 RNA molecules and is responsible for 
protein biosynthesis. 

Need for assembly structures. A comprehensive characterization of the structures 
and dynamics of biological assemblies is essential for a mechanistic understanding 
of the cell (Alber et al. 2008; Robinson et al. 2007; Sali 2003; Sali et al. 2003; Sali 
and Kuriyan 1999). Even a coarse characterization of the configuration of macro
molecular components in a complex (Fig. 6.1) helps to elucidate the principles that 
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underlie cellular processes, in addition to providing a necessary starting point for a 
higher resolution description. 

Scope. Complete lists of macromolecular components of biological systems 
are becoming available (Aebersold and Mann 2003). However, the identifica
tion of complexes between these components is a non-trivial task. This difficulty 
arises partly from the multitude of component types and the varying lifespan of 
the complexes (Russell et al. 2004). The most comprehensive information about 
binary protein interactions is available for the Saccharomyces cerevisiae proteome, 
consisting of '"'-'6,200 proteins. This data has been generated by methods such as 
the yeast two-hybrid system (Ito et a1. 2000; Uetz et a1. 2000) and affinity purifi
cations coupled with mass-spectrometry (Collins et a1. 2007; Gavin et a1. 2006; 
Krogan et a1. 2006). The lower bound on binary protein interactions in yeast has 
been estimated to be '"'-'30,000 (Russell et al. 2004), corresponding to the average 
of '"'-'9 protein partners per protein, though not necessarily all at the same time. The 
number of higher order complexes in yeast is estimated to be '"'-'800, based on affin
ity purification experiments (Collins et al. 2007; Devos and Russell 2007; Gavin 
et a1. 2006; Krogan et al. 2006). The human proteome may have an order of mag
nitude more complexes than the yeast cell; and the number of different complexes 
across all relevant genomes may be several times larger still. Therefore, there may 
be thousands of biologically relevant macromolecular complexes in a few hundred 
key cellular processes whose stable structures and transient interactions are yet to 
be characterized (Abbott 2002; Alberts 1998). 

Difficulties. Compared to structure determination of the individual components, 
however, structural characterization of macromolecular assemblies is usually more 
difficult and represents a major challenge in structural biology (Alber et a1. 2008; 
Robinson et al. 2007; Sali et al. 2003; Sali and Kuriyan 1999). For example, X-ray 
crystallography is limited by the ability to grow suitable crystals and to build molec
ular models into large unit cells; nuclear magnetic resonance (NMR) spectroscopy is 
limited by size; electron microscopy (EM), affinity purification, yeast two-hybrid sys
tem, calorimetry, footprinting, chemical cross-linking, small angle X-ray scattering 
(SAXS), and fluorescence resonance energy transfer (FRET) spectroscopy are limited 
by low resolution of the corresponding structural information; and computational 
protein structure modeling and docking are limited by low accuracy. 

Integrative approach. These shortcomings can be minimized by simultaneous 
consideration of all available information about a given assembly (Fig. 6.1) (Alber 
et al. 2007a; Alber et a1. 2004; Alber et al. 2008; Harris et a1. 1994; Malhotra and 
Harvey 1994; Robinson et al. 2007; Sali et a1. 2003). This information may vary 
greatly in terms of its accuracy and precision, and includes data from both experi
mental methods and theoretical considerations, such as those listed above. The inte
gration of structural information about an assembly from various sources can only 
be achieved by computational means. In this review, we focus on the computational 
aspects of this data integration. 

Review outline. We begin by listing the types of spatial information generated 
by experimental and computational methods that have allowed structural biology 
to shift its focus from individual proteins to large assemblies. Next, we offer a 
perspective on generating macromolecular assemblies that are consistent with all 
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information are calculated by optimizing a scoring function. The three components 
of this approach are (i) a representation of the modeled assembly, (ii) a scoring 
function consisting of the individual spatial restraints, and (iii) optimization of the 
scoring function to obtain all possible models that satisfy the input restraints. 

Representation. The modeled structure is represented by a hierarchy of parti
cles, defined by their positions and other properties (Fig. 6.2). For a protein assem
bly, the hierarchy can include atoms, atomic groups, amino acid residues, secondary 
structure segments, domains, proteins, protein sub-complexes, symmetry units, and 
the whole assembly. The coordinates and properties of particles at any level are 
calculated from those at the highest resolution level. Different parts of the assembly 
can be represented at different resolutions to reflect the input information about 
the structure (Fig. 6.2). Moreover, different representations can also apply to the 
same part of the system. For example, affinity purification may indicate proximity 
between two proteins and cross-linking may indicate which specific residues are 
involved in the interaction. 

Scoring Function. The most important aspect of structure characterization is 
to accurately capture all experimental, physical, and statistical information about 
the modeled structure. This objective is achieved by expressing our knowledge of 
any kind as a scoring function whose global optimum corresponds to the native 
assembly structure (Shen and Sali 2006). One such function is a joint probability 
density function (pdf) of the Cartesian coordinates of all assembly proteins, given 
the available information I about the system, p(Cil). C = (el' e2 , ... ,en) is the 
list of the Cartesian coordinates (el) of the n component proteins in the assembly. 
The joint pdf P gives the probability density that a component i of the native con
figuration is positioned very close to e;, given the information I we wish to consider 
in the calculation. In general, I may include any structural information from experi
ments, physical theories, and statistical preferences. For example, when information 
I reflects only the sequence and the laws of physics under the conditions of the 
canonical ensemble, the joint pdf corresponds to the Boltzmann distribution. If I also 
includes a crystallographic dataset sufficient to define the native structure precisely, 
the joint pdf is a Dirac delta function centered on the native atomic coordinates. 

The complete joint pdf is generally unknown, but can be approximated as a prod
uct of pdfs PI that describe individual assembly features (e.g., distances, angles, 
interactions or relative orientations of proteins): 

p(C II) = nPI(CiII) 
I 

The scoring function F(C) is then defined as the logarithm of the joint pdf: 

F(C) = -In nPI(CiII) = Lrl(C) 
I I 

For convenience, we refer to the logarithm of a feature pdf as a restraint rl and 
the scoring function is therefore a sum of the individual restraints. 

- ~ --- ------ ~ 
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Restraints. A restraint rf can in principle have any functional form. However, it 
is convenient if ideal solutions consistent with the data correspond to values of 0, 
while values larger than 0 correspond to a violated restraint; for example, a restraint 
is frequently a harmonic function of the restrained feature. 

Restrained features. The restrained features in principle include any structural 
aspect of an assembly, such as contacts, proximity, distances, angles, chirality, sur
face, volume, excluded volume, shape, symmetry, and localization of particles and 
sets of particles. 

Translating data into restraints. A key challenge is to accurately express the 
input data and their uncertainties in terms of the individual spatial restraints. An 
interpretation of the data in terms of a spatial restraint generally involves identifying 
the restrained components (i.e., structural interpretation) and the possible values of 
the restrained feature implied by the data. For instance, the shape, density and sym
metry of a complex or its subunits may be derived from X-ray crystallography and 
EM (Frank 2006); upper distance bounds on residues from different proteins may 
be obtained from NMR spectroscopy (Fiaux et al. 2002) and chemical cross-linking 
(Trester-Zedlitz et a1. 2003); protein-protein interactions may be discovered by the 
yeast two-hybrid system (Phizicky et a1. 2003) and calorimetry (Lakey and Raggett 
1998); two proteins can be assigned to be in proximity if they are part of an isolated 
sub-complex identified by affinity purification in combination with mass spectrom
etry (Bauer and Kuster 2003). Increasingly, important restraints will be derived from 
pairwise molecular docking (Mendez et a1. 2005), statistical preferences observed 
in the structurally defined protein-protein interactions (Davis and Sali 2005), and 
analysis of multiple sequence alignments (Valencia and Pazos 2002). 

Conditional restraints. If structural interpretation of the data is ambiguous (i.e., 
the data cannot be uniquely assigned to specific components), only "conditional 
restraints" can be defined. For example, when there is more than one copy of a 
protein per assembly, a yeast two-hybrid system indicates only which protein types 
but not which instances interact with each other. Such ambiguous information must 
be translated into a conditional restraint that considers all alternative structural inter
pretations of the data (Fig. 6.3). The selection of the best alternative interpretation 
is then achieved as part of the structure optimization process. 

Figure 6.3 shows a conditional restraint that encodes protein contacts consistent 
with an affinity purification experiment (Alber et al. 2007a; Alber et a1. 2008; Alber 
et a1. 2005) (Fig. 6.3). In this example, affinity purification identified 4 protein types 
(yellow, blue-, red, green), derived from an assembly containing a single copy of the 
yellow, blue, and red protein and two copies of the green protein. The sample affinity 
purification implies that at least 3 of the following 6 possible types of interaction 
must occur: blue-red, blue-yellow, blue-green, red-green, red-yellow, and yellow
green. In addition, (i) the three selected interactions must form a spanning tree 
of the composite graph (Fig. 6.3); (ii) each type of interaction can involve either 
copy of the green protein; and (iii) each protein can interact through any of its 
beads. These considerations can be encoded through a tree-like evaluation of the 
conditional restraint. At the top level, all possible bead-bead interactions between 
all protein copies are clustered by protein types. Each alternative bead interaction 
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~ select 

I select 
, interaction 

Fig. 6.3 Conditional restraint encoding protein contacts based on an affinity purification experi
ment that identified 4 protein types (yellow, blue, red, green), derived from an assembly containing 
a single copy of the yellow, blue, and red protein and two copies of the green protein (Alber et al. 
2007a; Alber et al. 2008; Alber et al . 2005). A single protein is represented by either one bead 
(blue and green proteins) or two beads (yellow and red proteins) (column on the right) ; alternative 
interactions between proteins are indicated by different edges. Protein contacts are selected in a 
decision tree-like evaluation process by operator functions 0 0 and Ob (left panel) (see text for 
a detailed description). Red vertical lines indicate restraints that encode a protein contact; thick 
vertical lines are a subset of restraints that are selected for contribution to the final value of the 
conditional restraint, whereas dotted vertical lines indicate restraints that are not selected. Also 
shown are spanning trees of a "composite graph". The composite graph is a fully connected graph 
that consists of nodes for all identified protein types (square nodes) and edges for all pairwise 
interactions between protein types (left to the Ob operator); edge weights correspond to the vio
lations of interaction restraints and quantify how consistent is the corresponding interaction with 
the current assembly structure. A "spanning tree" is a graph with the smallest possible number of 
edges that connect all nodes; a subset of 4 out of 16 spanning trees is indicated to the right of 
the Ob operator. The "minimal spanning tree" is the spanning tree with the minimal sum of edge 
weights (i.e. , restraints violations) 

can be restrained by a restraint corresponding to a harmonic upper bound on the 
distance between the beads; these are termed "optional restraints", because only a 
subset is selected for contribution to the final value of the conditional restraint. Next, 
an operator function (Oa) selects only the least violated optional restraint from each 
interaction type, resulting in 5 restraints (thick red line) at the middle level of the tree 
(Fig. 6.3). Finally, a minimal spanning tree operator (Ob) finds the minimal spanning 
tree corresponding to the combination of 3 restraints that are most consistent with 
the affinity purification (thick red lines in Fig. 6.3). The whole restraint evaluation 
process is executed at each optimization step based on the current configuration, 
thus resulting in possibly different subsets of selected optional restraints at each 
optimization step. 



6 Integrative Structure Determination of Protein Assemblies 107 

Optimization methods. Structures can be generated by simultaneously mini
mizing the violations of all restraints, resulting in configurations that minimize the 
scoring function F. It is crucial to have access to mUltiple optimization methods to 
choose one that works best with a specific scoring function and representation. Opti
mization methods implemented in our program IMP currently include conjugate 
gradients, quasi-Newton minimization, and molecular dynamics, as well as more 
sophisticated schemes, such as self-guided Langevin dynamics, the replica exchange 
method, and exact inference (belief propagation) (K. Lasker, M. Topf, A. Sali and 
H. Wolfson, unpublished information); all of these methods can refine positions of 
the individual particles as well as treat subsets of particles as rigid bodies. 

Outcomes. There are three possible outcomes of the calculation. First, if only 
a single model satisfies all input information, there is probably sufficient data for 
prediction of the unique native state. Second, if different models are consistent with 
the input information, the data are insufficient to define the single native state or 
there are multiple native structures. If the number of distinct models is small , the 
structural differences between the models may suggest additional experiments to 
narrow down the possible solutions. Third, if no models satisfy all input information, 
the data or their interpretation in terms of the restraints are incorrect. 

Analysis. In general, a number of different configurations may be consistent with 
the input restraints. The aim is to obtain as many structures as possible that satisfy 
all input restraints. To comprehensively sample such structural solutions consistent 
with the data, independent optimizations of randomly generated initial configura
tions need to be performed until an "ensemble" of structures satisfying the input 
restraints is obtained. The ensemble can then be analyzed in terms of assembly 
features , such as the protein positions, contacts, and configuration. These features 
can generally vary among the individual models in the ensemble. To analyze this 
variability, a probability distribution of each feature can be calculated from the 
ensemble. Of particular interest are the features that are present in most configu
rations in the ensemble and have a single maximum in their probability distribution. 
The spread around the maximum describes how precisely the feature was deter
mined by the input restraints. When multiple maxima are present in the feature 
distribution at the precision of interest, the input restraints are insufficient to define 
the single native state of the corresponding feature (or there are multiple native 
states). 

Predicting Accuracy. Assessing the accuracy of a structure is important and 
difficult. The accuracy of a model is defined as the difference between the model 
and the real native structure. Therefore, it is impossible to know with certainty the 
accuracy of the proposed structure, without knowing the real native structure. Never
theless, our confidence can be modulated by five considerations: (i) self-consistency 
of independent experimental data; (ii) structural similarity among all configurations 
in the ensemble that satisfy the input restraints; (iii) simulations where a native 
structure is assumed, corresponding restraints simulated from it, and the resulting 
calculated structure compared with the assumed native structure; (iv) confirmatory 
spatial data that were not used in the calculation of the structure (e.g. , criterion sim
ilar to the crystallographic free R-factor (Brunger 1993) can be used to assess both 
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the model accuracy and the harmony among the input restraints); and (v) patterns 
emerging from a mapping of independent and unused data on the structure that are 
unlikely to occur by chance (Alber et al. 2007a; Alber et al. 2007b). 

Advantages. The integrative approach to structure determination has several 
advantages: (i) It benefits from the synergy among the input data, minimizing the 
drawback of incomplete, inaccurate, and/or imprecise data sets (although each indi
vidual restraint may contain little structural information, the concurrent satisfaction 
of all restraints derived from independent experiments may drastically reduce the 
degeneracy of structural solutions); (ii) it can potentially produce all structures that 
are consistent with the data, not just one; (iii) the variation among the structures con
sistent with the data allows us to assess sufficiency of the data and the precision of 
the representative structure; (iv) it can make the process of structure determination 
more efficient by indicating what measurements would be most informative. 

6.4 Structural Characterization of the Nuclear Pore Complex 

Using the approach outlined above, we determined the native configuration of pro
teins in the yeast nuclear pore complex (NPC) (Alber et al. 2007a; Alber et al. 
2007b). NPCs are large ("'50MDa) proteinaceous assemblies spanning the nuclear 
envelope (NE), where they function as the sole mediators of bidirectional exchange 
between the nucleoplasmic and cytoplasmic compartments in all eukaryotes (Lim 
and Fahrenkrog 2006). EM images of the yeast NPC at "'200 A resolution revealed 
that the nuclear pore forms a channel by stacking two similar rings, each one con
sisting of 8 radially arranged "half-spoke" units (Yang et al. 1998). The yeast NPC 
is build from multiple copies of 30 different proteins, totaling approximately 456 
proteins (nups). 

Although low-resolution EM has provided valuable insights into the overall 
shape of the NPC, the spatial configuration of its component proteins and the 
detailed interaction network between them was unknown. A description of the 
NPC's structure was needed to understand its function and assembly, and to provide 
clues to its evolutionary origins. Due to its size and flexibility, detailed structural 
characterization of the complete NPC assembly has proven to be extraordinarily 
challenging. Further compounding the problem, atomic structures have only been 
solved for domains covering "'5% of the protein sequence (Devos et al. 2006). 

To determine the protein configuration of the NPC, we collected a large and 
diverse set of biophysical and biochemical data. The data was derived from 
six experimental sources (Fig. 6.4): (i) Quantitative immuno-blotting experiments 
determined the stoichiometry of all 30 nups in the NPC; (ii) hydrodynamics experi
ments provided information about the approximate excluded volume and the coarse 
shape of each nup; (iii) immuno-EM provided a coarse localization for each nup 
along two principal axes of the NPC; (iv) an exhaustive set of affinity purifica
tion experiments determined the composition of 77 NPC complexes; (v) overlay 
experiments determined 5 direct binary nup interactions; and (vi) symmetry con
siderations and the dimensions of the NE were extracted from cryo-EM. Moreover, 

. --- -.-.. 



D
at

a 
G

en
er

at
io

n 

~ 
D

at
a 

T
ra

ns
la

ti
on

 
In

to
 S

pa
ti

al
 

R
es

tr
ai

nt
s 

~ 
O

pt
im

iz
at

io
n 

~ 
E

ns
em

bl
e 

A
na

ly
si

s 

Q
uM

tIt
M

Iv
e 

A
fII

nI
tJ 

u
~
 

Im
m

u
n

o
b

lo
tt

ln
g

 
P

ur
IfI

ca
tIo

n 

3
0

 .
.
.
.
.
.
 

1 
S-

..
..

..
. 

7
5

co
m

p
o

sl
t .
. 

3
0

S
-.

..
 lu

es
 

ab
u

n
d

an
ce

s 

* 
* 

* 
* 

\ 
P

ro
te

in
 

C
om

pl
ex

 
P

ro
te

in
 

P
ro

te
in

 

S
M

p
e 

S
M

p
e 

S
to

Ic
hi

om
et

ry
 

C
on

ne
ct

iv
it

y 

• 
In

 C
om

po
si

te
s 

• 
, 

•• 
~
 

•• • 

()
vo

eN
y 

A
u

8
y

 

7 
co

n
ta

ct
s * 

P
ro

te
in

 
C

o
n

tK
ts

 

E
le

ct
ro

n 
'-

n
o

-
1t

Io
In

fo
nn

M
Ic

I8
II

d 
E

le
ct

ro
n 

.....
.....

 
M

la
o

sc
o

p
y 

M
Ia

os
co

py
 

fn
Ic

tIo
IN

ItI
on

 

e
le

ct
 ..

..
. m

ic
ro

sc
op

y 
10

,6
15

 
3

0
 p

ro
te

in
 

m
ap

 
g

o
ld

 p
a

rt
ic

le
s 

g
q

u
 ..

. c
 ..

 

I 
\ 

* 
I 

\ 
N

uc
le

ar
 

N
uc

le
ar

 
P

ro
te

In
 

E
R

n
lo

p
e 

N
PC

 
E

R
n

lo
p

e 
I.

oc
II

II
ut

io
n 
~
 

S
ym

m
et

ry
 

E
xd

uc
Ie

cI
 

Lo
aI

II
z.

do
n 

P
ro

te
in

 
E

xc
lu

de
d 

V
ol

um
e 

V
o

I_
 

~
$
 

~f
II

II
t.

 
-

1
1

1
0

 
_

I
n

t
s
 

1r
es

tr
e1

nt
 

3O
pr

oI
IM

ns
 

4
5

6
 c

op
ie

s 
33

44
 re

st
ra

in
ts

 
2

0
Ir

es
tr

ai
n

ts
 

~
 

1
M

5
 

87
6 

b
N

d
s 

N
S

tn
In

ts
 

19
2 

N
S

tn
In

ts
 p

ro
te

in
 b

H
d

s 

-. 
'". 

''''
'0·

 
'.". 

.""
4'.

4."
'1..

~"·
:' 

. 
','

" 1
:Ji

;.';
,t 

. 
~.";' 

... ~~~~
. 

:,r. 
"
.

,"
 •

 
, 

.~
' 

~.
~
,
.

:;
. 

. ~~
:
~

~:£
':'

 
.... 

P
ro

te
in

 P
os

it
io

n 

o 
P

ro
te

in
 C

on
ta

ct
s 

m
 

u 
"
\
 

..
. 

.. 
, 

.1
11

 
:
:
 

Fr
om

 II
N

Ift
J 

IW
IC

Io
m

 c
on

fI
gu

l1
lt

lo
ns

 to
 o

pt
Im

la
ed

 
co

nf
Ig

In
tI

on
s.

 p
ro

d
u

ce
 ..

..
 

"e
ns

em
bl

e"
 o

f s
ol

ut
io

ns
 th

8
t s

at
is

fy
 th

e
 In

pu
t N

It
ra

In
ts

. 

P
ro

te
in

 C
on

fi
gu

ra
ti

on
 

D
er

Iv
e 

th
e 

st
ru

ct
ur

e 
fr

om
 t

h
e 

en
se

m
bl

e,
 

A
ss

es
s 

th
e

 s
tr

uc
tu

re
. 

F
ig

. 
6.

4 
D

et
er

m
in

in
g 

th
e 

ar
ch

it
ec

tu
re

 o
f 

th
e 

N
P

C
 b

y 
in

te
gr

at
in

g 
sp

at
ia

l 
re

st
ra

in
ts

 f
ro

m
 p

ro
te

om
ic

 d
at

a 
(A

lb
er

 e
t 

al
. 

20
07

a)
. 

Fi
rs

t, 
st

ru
ct

ur
al

 d
at

a 
(r

ed
) 

ar
e 

ge
ne

ra
te

d 
by

 v
ar

io
us

 e
xp

er
im

en
ts

 (
bl

ac
k)

. 
S

ec
on

d,
 t

he
 d

at
a 

an
d 

th
eo

re
ti

ca
l 

co
ns

id
er

at
io

ns
 a

re
 e

xp
re

ss
ed

 a
s 

sp
at

ia
l 

re
st

ra
in

ts
 (

bl
ue

).
 T

hi
rd

, 
an

 e
ns

em
bl

e 
o

f 
st

ru
ct

ur
al

 s
ol

ut
io

ns
 t

ha
t 

sa
tis

fy
 t

he
 d

at
a 

is
 o

bt
ai

ne
d 

by
 m

in
im

iz
in

g 
th

e 
vi

ol
at

io
ns

 o
f 

th
e 

sp
at

ia
l 

re
st

ra
in

ts
, s

ta
rt

in
g 

fr
om

 m
an

y 
di

ff
er

en
t 

ra
nd

om
 c

on
fi

gu
ra

ti
on

s.
 

Fo
ur

th
, t

he
 e

ns
em

bl
e 

is
 c

lu
st

er
ed

 i
nt

o 
se

ts
 o

f d
is

ti
nc

t s
ol

ut
io

ns
 a

s 
w

el
l 

as
 a

na
ly

ze
d 

in
 t

er
m

s 
o

f p
ro

te
in

 p
os

it
io

ns
, c

on
ta

ct
s,

 a
nd

 c
on

fi
gu

ra
ti

on
 

0
\ S'
 ~ ~
. 

en
 2 ("

) ~ o o ~. ::s
 

II>
 

a
. 

o ::s
 o .....
 ~ ~ 5
' >- CI

J 
CI

J o 3 0
- c:
: 

o CI
J - ~ 



110 F. Alber et al. 

bioinformatics analysis provided information about the position of transmembrane 
helices for the three integral membrane nups. This data was translated into spatial 
restraints on the NPC (Fig. 6.4). 

The relative positions and proximities of the NPC's constituent proteins were 
then produced by satisfying these spatial restraints, using the approach described 
above and illustrated in Fig. 6.5. The optimization relies on conjugate gradients and 
molecular dynamics with simulated annealing. It starts with a random configuration 
of proteins and then iteratively moves these proteins so as to minimize violations of 
the restraints (Fig. 6.5). To comprehensively sample all possible structural solutions 
that are consistent with the data, we obtained an "ensemble" of 1,000 independently 
calculated structures that satisfied the input restraints (Fig. 6.5c). After superposi
tion of these structures, the ensemble was converted into the probability of finding a 
given protein at any point in space (i.e., the localization probability). The resulting 
localization probabilities yielded single pronounced maxima for almost all proteins, 

(a) 
6 

o 
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Fig 6.S Calculation of the NPC bead structure by satisfaction of spatial restraints (Alber et al. 
2007a; Alber et al. 2008). (a), Representation of the optimization process as it progresses from an 
initial random configuration to an optimal solution. (b), The graph shows the relationship between 
the score (a measure of the consistency between the configuration and the input data) and the 
average contact similarity. The contact similarity quantifies how similar two configurations are 
in terms of the number and types of their protein contacts; two proteins are considered to be in 
contact when they are sufficiently close to one another given their size and shape. The average 
contact similarity at a given score is determined from the contact similarities between the lowest 
scoring configuration and a sample of 100 configurations with the given score. Error bars indicate 
standard deviation. Representative configurations at various stages of the optimization process 
from left (very large scores) to right (with a score of 0) are shown above the graph; a score of 
o indicates that all input restraints have been satisfied. As the score approaches zero, the contact 
similarity increases, showing that there is only a single cluster of closely related configurations 
that satisfy the input data. (c), Distribution of configuration scores demonstrates that our sampling 
procedure finds configurations consistent with the input data. These configurations satisfy all the 
input restraints within the experimental error 
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FG Nups 

Outer Rings Linker Nups 

cytoplasm 

nucleoplasm 
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Fig. 6.6 Localization of major substructures and their component proteins in the NPC (Alber et al. 
2007b; Alber et al. 2008). The proteins are represented by their localization volumes (Alber et al. 
2007a) and have been colored according to their classification into five distinct substructures based 
on their location and functional properties: the outer rings in yellow, the inner rings in purpLe, the 
membrane rings in brown, the linker nups in bLue and pink, and the FG nups (for which only the 
structured domains are shown) in green. The pore membrane is shown in gray 

demonstrating that the input restraints define a single NPC architecture (Fig. 6.6). 
The average standard deviation for the separation between neighbouring protein 
centroids is 5 nm. Given that this level of precision is less than the diameter of many 
proteins, our map is sufficient to determine the relative position of proteins in the 
NPC. Although each individual restraint may contain little structural information, 
the concurrent satisfaction of all restraints derived from independent experiments 
drastically reduces the degeneracy of the structural solutions (Fig. 6.7). 

Our structure (Fig. 6.5) reveals that half of the NPC is made of a core scaffold, 
which is structurally analogous to vesicle coating complexes. This scaffold forms an 
interlaced network that coats the entire curved surface of the NE within which the 
NPC is embedded. The selective barrier for transport is formed by large numbers of 
proteins with disordered regions that line the inner face of the scaffold. The NPC 
consists of only a few structural modules. These modules resemble each other in 
terms of the configuration of their homologous constituents. The architecture of 
the NPC thus appears to be based on the hierarchical repetition of the modules 
that likely evolved through a series of gene duplications and divergences. Thus, the 
determination of the NPC configuration in combination with the fold prediction of 
its constituent proteins (Devos 2004, 2006) can provide clues to the ancient evolu
tionary origins of the NPC. 

In the future, we envision combining electron tomography, proteomics, cross
linking, cryo-EM of subcomplexes, and experimentally determined or modeled 
atomic structures of the individual subunits to obtain a pseudo-atomic model of 
the whole NPC assembly in action. 
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Protein positions ---r -~-----'r~~· ... 
+ + + 

NE Pore Volume Immuno-EM Ultracentrifugation Overlay Assays 
Nup Stoichiomety Affinity Purifications 
NPC Symmetry 

Fig. 6.7 Synergy between varied datasets results into increased precision of structure determi
nation (Alber et al. 2007a; Alber et al. 2008; Robinson et al. 2007). The proteins are increasingly 
localized by the addition of different types of synergistic experimental information. As an example, 
each panel illustrates the localization of 16 copies of Nupl92 in the ensemble of NPC structures 
generated, using the datasets indicated below. The smaller the volume (red), the better localized is 
the protein. The NPC structure is therefore essentially "molded" into shape by the large amount of 
experimental data 

6.S Conclusions 

There is a wide spectrum of experimental and computational methods for 
identification and structural characterization of macromolecular complexes. The 
data from these methods need to be combined through integrative computational 
approaches to achieve higher resolution, accuracy, precision, completeness, and effi
ciency than any of the individual methods. New methods must be capable of gener
ating possible alternative models consistent with information such as stoichiometry, 
interaction data, similarity to known structures, docking results, and low-resolution 
images. 

Structural biology is a great unifying discipline of biology. Thus, structural 
characterization of many protein complexes will bridge the gaps between genome 
sequencing, functional genomics, proteomics, and systems biology. The goal seems 
daunting, but the prize will be commensurate with the effort invested, given 
the importance of molecular machines and functional networks in biology and 
medicine. 
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