
Probity: A Protein Identification Algorithm with Accurate

Assignment of the Statistical Significance of the Results

Jan Eriksson*,† and David Fenyo1 ‡,§

Department of Chemistry, Swedish University of Agricultural Sciences, Box 7015, S-750 07, Uppsala, Sweden,
Amersham Biosciences, 800 Centennial Avenue, Piscataway, New Jersey 08855, and The Rockefeller University,

1230 York Avenue, New York, New York 10021

Received July 4, 2003

An algorithm for protein identification based on mass spectrometric proteolytic peptide mapping and
genome database searching is presented. The algorithm ranks database proteins based on direct
calculation of the probability of random matching and assigns the statistical significance to each result.
We investigate the performance of the algorithm by simulation and show that the algorithm responds
to random data in the desired manner and that the statistical significance computed indicates the risk
that a particular identification result is false.
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Although the use of mass spectrometric protein identification
has matured rapidly and become increasingly useful to the life
sciences,1-6 the development of accurate and well-documented
methods for judging the quality of identification results and
for judging the performance of identification algorithms is
lagging behind. Here, we present Probity, a novel algorithm
that provides a solution to the problem of accurately evaluating
the quality of identification results. The algorithm ranks the
proteins in a database by employing a direct computation of
the risk that the matching between mass data and a protein in
a database is random. We demonstrate that the correct
assignment of the statistical risks that results are false can be
computed directly and accurately. We also present general
criteria for evaluating identification algorithms and demon-
strate by simulation that the Probity algorithm handles the
random matching in the desired way.

State-of-the-art proteome analysis often involves protein
separation by 2D-gel electrophoresis.7-10 The level of a protein
is typically determined from the intensity of the spot on the
gel. Each gel-spot of interest is excised and the protein is
subjected to in-gel digestion using an enzyme that has high
digestion specificity (e.g., trypsin). The resulting proteolytic
peptides are extracted and analyzed by mass spectrometry
(MS). One strategy for protein identification based on MS of a
protein digest assumes that a set of proteolytic peptide masses
provides a “fingerprint” of a particular protein. It is assumed
that the peptide mass fingerprint can be recognized when
searching a genome database.7,8,11-15 Identification algorithms
compute theoretical peptide masses assuming that each protein
in the database is digested by the same enzyme as was used in
the experiment. Subsequently, the algorithms calculate a score

based on the number of matches between measured and
calculated peptide masses. The score is used to rank the
database proteins. In some algorithms, the score is simply the
number of matches,7,16 whereas in other algorithms, the score
is the result of a computation based on the number of
matches.17,18 The protein (or proteins) with the best score is
(are) identified. A common way of obtaining a further con-
straining protein “fingerprint” is to perform tandem mass
spectrometry (MS/MS), whereby a single proteolytic peptide
ion species is isolated and fragmented in the mass spectr-
ometer.19-22 Mass analysis of the resulting peptide fragment
ions can yield highly constraining sequence information.

There is a risk of obtaining a false identification result,
because each mass determined by MS has an error, (∆m, and
can match several proteolytic peptides of various proteins in
the database. We refer to the matches with proteins that are
not present in the sample as random matches. An experiment
will yield a false result when the score due to random matching
is at least as good as the score of a real protein in the sample.
A result is significant only if the experimental score deviates
significantly from the scores that can be expected from false
results. Testing of the significance of a result can be performed
only if the score frequency function (distribution of scores) for
random results has been established for the particular data and
database search constraints of the experiment. We have previ-
ously demonstrated two methods to estimate frequency func-
tions for random protein identification: (1) simulation, which
includes repeated protein identification by searching a genome
database and using different sets of random proteolytic peptide
masses as data23 and (2) model computation, in which the
model always takes into account features of each individual
set of peptide masses, genome database, and database search
constraints.24 Recently, a different approach was presented that
estimates a frequency function based on statistics collected
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during the search assuming that most proteins in the database
to some degree randomly match an experimental set of
proteolytic peptide masses.22,25

Here, we present a simplified approach utilizing an analytical
formula for calculating the risk of random matching between
experimental masses and theoretical masses of an individual
database protein. The risk calculated is employed as a score
for ranking the individual database proteins. The statistical
significance of each result is subsequently calculated by ap-
propriately including the frequencies of the various sizes of the
proteins in the database. The accuracy of this approach is
validated by simulation.

Materials and Methods

The Saccharomyces cerevisiae genome containing 6403 ORFs
(NCBI, May 2000 release) was employed for studying the
algorithm performance. Protein digestion was performed in
silico assuming exposure to trypsin (cleaves with high specific-
ity at the carboxyl side of lysine and arginine residues). Peptides
within a mass region between 800 and 4500 Da were consid-
ered. The NCBI database was processed in order to obtain eight
database subsets that cover different mass regions of the
proteolytic peptides. Each database subset was sorted with
respect to mass in order to enhance the search speed.

For the validation of the Probity algorithm, random sets of
proteolytic peptide masses were used. These sets were gener-
ated by choosing each mass randomly from the theoretical
proteolytic peptides of different randomly chosen proteins in
the database. Each protein in the database was allowed to
contribute with at most one proteolytic peptide mass to an
individual random set.

Scripts written in Perl and programs coded in C were
employed for the computations, which were performed on a
Dell Optiplex GX1 (550 MHz Pentium III) personal computer.

Algorithm. Earlier, we presented a model that describes
accurately the process of random matching of measured and
theoretical peptide masses.24 We showed that the application
of this model can determine directly the significance of an
identification result when the proteins are ranked strictly by
the number of matches. Here, we show that the model com-
putation of the probabilities for random matching can be
employed directly in the ranking of the proteins in the
database.

The model of random matching employs detailed features
of the distribution of peptide masses. Proteolytic peptide
masses are distributed in discrete clusters or peaks due to the
almost integral values of the masses of the atoms (C, H, N, O,
S) from which the peptides are composed. We refer to these
clusters as peptide mass distribution peaks. For a mass ac-
curacy, ∆m, better than (0.25 Da, the random matching always
occurs within a single mass distribution peak.

The algorithm detects the number of matches, k, between
the experimental set of peptide masses and the theoretical
peptide masses of each protein in the database. Assuming a
data set with n masses, a massaccuracy of ∆m, and a maximum
number of missed cleavage sites u, the probability for an
individual protein having ku proteolytic peptides to yield k
matches by chance is given by eq 1

The probabilities p′i of eq 1 are given by eq 2

The index i denotes a mass region for which the heights and
widths of the mass distribution peaks are assumed to be
constant. Eight different mass regions are used here (q ) 8 in
eq 1) to cover the entire mass range (800-4500 Da). The
influence of q on the computational accuracy has been
examined in ref 24. The symbol ni denotes the number of
proteolytic peptide masses experimentally observed in mass
region i, mi+1 - mi denotes the number of mass distribution
peaks in region i, and fi denotes the fraction of the total number
of peptides that are estimated to belong to region i in the
database. We assume that the fraction fi of the proteolytic
peptides from an individual protein that on the average falls
into i can be estimated from the fraction of the total number
of proteins in the database yielding peptides within i. δ(i, ∆m,
u) denotes a function that depends on the shape of the peptide
mass distribution peak. A detailed description on how to
determine δ(i, ∆m, u) is given in ref 24. The probability that
an individual protein having ku proteolytic peptides will yield
at least k′ matches by chance is

Below, we refer to -log(â) as the score. An ensemble of different
random sets of peptide masses, where each set has the same
number of members and for which the same search constraints
∆m and u are employed, will yield a distribution of different
â-values for the proteins identified. Therefore, â can be
analyzed statistically. From this distribution it is possible to
estimate the probability of observing a value e â by chance.

Assuming that any of the proteins in the database could yield
e â and assuming that k is limited by n and ku, the probability,
S, of observing e â by chance is

with

where kmax is determined by âand ψku is the frequency of a
particular ku value in the database and p(k) is given by eq 1.
Hence, S is the value that indicates the statistical significance26

of the protein identification result when â is used to rank the
proteins in the database.

Results

Response to Random Data. Others and we have noted that
protein identification algorithms that rank strictly based on the
number of matches favor large proteins24 (Figure 1). Hence,
when the data quality is poor, false high-mass proteins are
typically identified. An algorithm should not favor any particu-
lar protein size. We investigated the potential favoring of
protein sizes by employing random sets of proteolytic peptide
masses, where each mass had been randomly chosen from the
theoretical proteolytic peptides of a randomly chosen protein
in the database. It has been shown previously that the value
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ku is an appropriate measure of protein size.24 If many sets of
random proteolytic peptide masses are employed for searching
a database with a particular algorithm, then it is possible to
obtain a distribution of the ku values of the proteins randomly
identified. The distribution of ku values of randomly identified
proteins, henceforth response distribution, indicates how the
algorithm responds to random (or poor quality) data. If no
particular protein size is favored, then the response distribution
is close to the distribution of the sizes of the proteins in the
database. Figure 1 displays clearly how ranking strictly by the
number of matches strongly favors the random identification
of large (high ku value) proteins. Figure 2 displays the superior
performance of the Probity algorithm, which yields response
distributions for all search constraints that closely resemble the
size (ku) distributions of the database proteins.

Score and Significance Relationship Determined by Simu-
lation. Simulation by repeated database searching with differ-
ent sets of random peptide masses yield a distribution of scores
for random identifications (frequency function).23 In general,
the protein identification algorithms yield a score distribution
for randomly identified proteins that is strongly dependent on
the peptide mass data and the search constraints.23 In contrast,
Probity yields score (eq 3) distributions that are highly similar
for different search constraints (Figures 3 and 4). This is due
to the precise description of the random matching process by
the algorithm, leading to an intrinsic scaling of the score
between different search constraints. Figure 4 displays the
significance derived from the various distributions displayed

in Figure 3 by constructing the cumulative relative score
frequency beginning with the best score.23 Hence, the diagram
of Figure 4 represents the relationship between the score and
the significance for Probity.

Score and Significance Relationship Determined by Com-
putation. A collection of different random sets of peptide
masses, where each set has the same number of members and
for which the same search constraints ∆m and u are employed,
will yield a distribution of different â-values for the protein
identified (Figure 3). Hence, the relative frequency of â with
repeated identifications under the same constraints but with
different random sets of peptide masses is the true indicator
of the statistical significance (Figure 4). To verify that our
algorithm correctly predicts the statistical significance of
identification results, we performed simulations of protein
identifications using different random sets of peptide masses.
It is seen in Figure 5 that the computed significance values and
the simulated relative frequencies for the corresponding indi-
vidual scores (â) agree very well.

Discussion

Computation versus Simulation. The good agreement be-
tween the significance values obtained by direct computation
(eq 4) and the significance values derived by simulation (Figure
5) indicates that the simple and straightforward computational
approach of the Probity algorithm is robust. It is evident that
our computational approach provides a link between the
random matching probability of an individual protein and the
global statistical significance taking into account characteristic
features of the database.

The score (eq 3) as well as the significance computed are
continuous variables (probabilities). Nondiscrete variables are
generally desirable in ranking processes. Sometimes an experi-
mentalist desires a discrete method in the sense that results
that do not display a better significance than a predefined level,
S′, are discarded. This significance testing approach is generally
possible when the frequency function (score distribution for
random results) for the particular experiment is known. Hence,
an alternative use of the Probity algorithm is to employ the
inverse of eq 4 (Figure 4) to derive the critical score, âC required
to obtain the significance, S′, desired by the experimentalist.

Inclusion of Additional Information. We are currently
refining some of the features of the Probity algorithm, including
investigating the possibilities of utilizing the characteristics of
the Probity algorithm to automate partially the process of

Figure 1. Size distribution of randomly identified proteins using
ranking strictly by the number of matches compared with the
size distribution of proteins in the database for various random
peptide mass data and different search constraints (20 peptides,
n, maximum number of missed cleavage sites, u, and mass
accuracy, ∆m).

Figure 2. Size distribution of randomly identified proteins using Probity compared with the size distribution of proteins in the database
for various random peptide mass data and different search constraints (number of peptides, n, maximum number of missed cleavage
sites, u, and mass accuracy, ∆m).
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choosing database search constraints. Other future improve-
ments will include deriving continuous functions that can
approximate the discrete functions employed here. This will
facilitate the inclusion of weight functions based on peak
intensity information and deviations between theoretical and
experimental mass values as well as MS/MS data taking into
account fragmentation systematic.

Automated Applications. Once our algorithm is interfaced
with a user environment, Probity can provide a highly useful
tool for the protein identification practitioner, by optimizing
the use of the experimental information. We believe that the
features of the Probity algorithm shown here could become
very useful to automated applications.27,28 The direct and
accurate computation of significance provided by Probity is a
desirable feature in automated systems, especially if the
information can be transferred in real-time to the mass

spectrometer acquiring the data. The Probity algorithm handles
random matching accurately and, therefore, has the potential
to improve accurate protein identification in complex protein
mixtures, where the mass information from each protein can
be viewed as a random background to the mass information
from each of the other proteins in the mixture.

Conclusions

The algorithm presented addresses the two central problems
in protein identification: (i) the optimal use of the experimental
information to allow for identification of low abundance
proteins, and (ii) the accurate assignment of the probability
that a result is a false positive. We have shown here that Probity
responds to random data in the random manner desired. We
have also shown that a necessary condition for accurately
computing the statistical risk (significance level) that a protein
identification result is false is to appropriately include in the
computations the frequencies of the various sizes of the
proteins in the database. Simulations employing random mass
data verified the accuracy of the computed significance level
associated with each result.
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