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The potential for obtaining a true mass spectrometric protein identification result depends on the choice
of algorithm as well as on experimental factors that influence the information content in the mass
spectrometric data. Current methods can never prove definitively that a result is true, but an appropriate
choice of algorithm can provide a measure of the statistical risk that a result is false, i.e., the statistical
significance. We recently demonstrated an algorithm, Probity, which assigns the statistical significance
to each result. For any choice of algorithm, the difficulty of obtaining statistically significant results
depends on the number of protein sequences in the sequence collection searched. By simulations of
random protein identifications and using the Probity algorithm, we here demonstrate explicitly how
the statistical significance depends on the number of sequences searched. We also provide an example
on how the practitioner’s choice of taxonomic constraints influences the statistical significance.
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Proteome analysis projects emerge in the wake of completed
genome projects.1-4 Proteome analysis reveals what genes are
expressed in the cells, and more detailed experiments can
provide information on differential expression, subcellular
localization, protein interaction,5-10 and post-translational
modifications.11-15 The state-of-the art approach for the iden-
tification of the genes expressed (so-called protein identifica-
tion) utilizes mass spectrometry (MS) of proteolytically digested
proteins in combination with the searching of a collection of
protein sequences derived from genomic information. The
plentitude of genomes sequenced allows laboratories to analyze
many different proteomes. We here demonstrate how the
difficulty of obtaining a statistically significant identification
result depends on the number of protein sequences searched,
and hence, we also elucidate that proteome analysis procedures
should be optimized for each respective organism studied.

Mass spectrometric protein identification relies on the
procedure of comparing experimental mass data, acquired from
a sample containing proteolytic peptides, with theoretical mass
information obtained from a collection of protein sequences.16-20

Different algorithms are available for the process of finding the
protein sequence that yields the best match with experimental
mass data.21,22 The potential for obtaining a true identification
result depends on the choice of algorithm as well as on
experimental factors that influence the information content in
the mass spectrometric data. Accurate information on the

statistical significance, i.e., the risk that a result is false, is critical
to any serious proteome analysis effort.23 We recently demon-
strated an algorithm, Probity, which assigns the statistical
significance to each result.24 We showed by simulations,
employing random data and searching of the S. cerevisiae
protein sequence collection, that Probity does not favor
particular protein sequences. We also demonstrated that the
distribution of scores assigned to the highest ranked proteins
for a set of random mass data is independent of what
experimentally related constraints are employed in the search-
ing (mass accuracy, number of missed cleavage sites). Although
experimental factors as well as any features of a sequence
collection can be appropriately accounted for in an algorithm,
the risk of obtaining a good match of a protein sequence by
chance with an experimental data set must always depend on
the number of sequences searched. The more sequences
searched the higher the risk of a good match by chance.

Knowing that Probity accounts for experimentally related
constraints, we here employed this algorithm to simulate the
explicit influence of the number of protein sequences searched
on the statistical significance of identification results. The
results also elucidate the importance of keeping searching of
a sequence collection focused to precisely the organism of
interest in each respective experiment.

Materials and Methods

The H. influenzae, S. cerevisiae, C. elegans, and H. sapiens
proteomes containing 1.7 × 103, 6.4 × 103, 1.9 × 104, and 5.3 ×
104 sequences, respectively, were employed for simulating
protein identification. Protein digestion was performed in silico
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assuming exposure to trypsin (cleaves with high specificity at
the carboxyl side of lysine and arginine residues). Peptides
within a mass region between 800 and 4500 Da were consid-
ered. Sets of randomly selected proteolytic peptide masses were
generated as described in refs 23-25. Each random data set
contained 20 peptide masses. A total of 900-2000 different
random protein identifications were performed employing the
Probity algorithm for each respective sequence collection
(organism) and using the following search constraints: ∆m )
0.03 Da (mass accuracy), u ) 1 (maximum number of missed
cleavage sites), and M < 100 kDa (protein mass).

Scripts written in Perl and programs written in C were
employed for the simulations, which were performed on a
personal computer (Dell Pentium IV, 2.66 GHz).

Algorithm. Previously, we presented accurate descriptions
of the ranking method in the Probity algorithm.24 We demon-
strated that Probity responds to random data randomly and
that the score distribution for random data is independent of
the search constraints ∆m and u. We also showed that the
statistical significance of the score of an individual identification
result could be computed by taking into account features of
the collection of sequences searched. In this paper, we simplify
the formula for computing the significance of a result, and
thereby we can also demonstrate in a more straightforward way
how the significance depends on the number of sequences
searched. The probability that an individual protein sequence
having ku proteolytic peptides will yield at least k′ matches by
chance is

where p(k) is given by eq 2

where the index i denotes a proteolytic peptide mass region.
Eight different mass regions were used here (q ) 8 in eq 2) to
cover the mass range (800-4500 Da). Proteolytic peptide
masses are distributed in narrow regions around each nominal
mass value. The widths and heights of these distributions vary
with mass.25 In Probity, it is assumed that within each pro-
teolytic peptide mass region the heights and widths of the mass
distribution peaks are constant. The choice of the number of
mass regions, q, influences the accuracy of the computations,25

and here we use q ) 8. The symbol ni denotes the number of
experimental proteolytic peptide masses experimentally ob-
served in mass region i. The probabilities p′i of eq 2 are given
by

where mi+1 - mi denotes the number of mass distribution peaks
in region i and fi denotes the fraction of the total number of
peptides that are estimated to belong to region i in the
sequence collection. The fraction fi of the proteolytic peptides
from an individual protein that on average falls into i is
estimated from the fraction of the total number of proteins in
the sequence collection yielding peptides within i. δ(i, ∆m, u)
denotes a function that depends on the shape of the peptide
mass distribution peak. δ(i, ∆m, u) can be determined by
simulation.25

The statistical significance, S, can be expressed as a function
of â24

with

where kmax is determined by â, and ψku is the frequency of a
particular ku value in the collection of sequences used. The
probability, Pku, in eq 5 is determined by â in such a way that
the summation is continued until 1 - Pku becomes smaller than
â. If Pku were continuous functions they would assume the
value of 1 - â for all â. Since Pku (and p(k)) are discrete
functions there is always a deviation between Pku and 1 - â,
such that Pku > 1 - â. We here express this as

If we assume that aku ) a ) constant and express the sum
of all Ψku as N, we can express the significance as

where N means the total number of sequences searched.

Results

The relation between the statistical significance and the
number of sequences searched was obtained by simulating
many protein identifications using random data sets, the
Probity algorithm (eqs 1-5), and eight different sizes of the
sequence collections searched (four sequence collections were
obtained by randomly selecting sequences of H. influenzae, S.
cerevisiae, and C. elegans, referred to as: 1/16 H.i, 1/2 H.i., 1/2

S.c, and 1/2 C.e, where 1/16 and 1/2 denote the fractions selected
of the respective total number of sequences). Figure 1 displays
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Figure 1. Statistical significance displayed as a function of the
score, â, of the highest ranked protein sequence for the Probity
algorithm when searching various protein sequence collections.
The data points result from the use of eq 4, and the lines
represent least-squares fits to these data of the functions of eq
6, 1 - (1 - aâ)N, where N is the number of sequences in each
respective collection searched and a is the fitting parameter.
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the simulation results together with least-squares fits to the
functions expressed in eq 6 with a as the fitting parameter. The
resulting values of the parameter a were similar in all cases
and yielded a mean value of a of 0.270 with a standard
deviation of 0.011.

The relationship established between â and S has two
important consequences: (1) Equation 6 can be used instead
of eq 5, which improves the computational speed of the Probity
algorithm. (2) The difficulty of obtaining a significant result can
be estimated for any collection of sequences for which N is
known.

The consequence (2) can be viewed as a predictive power.
Figure 2 displays the predicted statistical significance of equally
well matching results when searching in sequence collections
with different numbers of sequences. â′ values that yielded the
respective significance values S′ ) 0.001 and S′ ) 0.01 in the S.
cerevisiae sequence collection were entered in eq 6 together
with the N values of the respective sequence collection. It is
seen Figure 2. that e.g data with a degree of matching that yield
a 0.1% significance level in S. cerevisiae would yield only about
1% significance in H. sapiens.

In Figure 3 we show the influence of the choice of taxonomic
precision when selecting the sequence collection to search. The
results displayed in Figure 3 were computed in the following
way: First, the â-value, â′, of S. cerevisiae data that yields 0.1%
significance when searching the S. cerevisiae sequence collec-
tion only was derived. The N-values of sequence collections
containing all current fully sequenced fungi genomes (4) and
all fully sequenced eukaryota genomes (19) respectively were
estimated from the number of ORFs displayed in the GOLD
database (genomes on line, http://wit.integratedgenomics.com/
GOLD/). â′ and the respective N values were entered into eq 6
and the significance values for the respective sequence collec-
tion was computed. It is seen in Figure 3 that changing from
S. cerevisiae and a significance level of 0.1% to all fungi results
in a 1% significance level and that changing to all eukaryota
yields a 5% significance level.

Discussion

Similarities of Different Distributions. The function em-
ployed for S in eq 6 is a close relative of an exponential
distribution. It can be shown that

for small values of â and large values of N, and least-squares
fits to our data of Figure 1 yield the same values of the
parameter a for both functions of eq 7. The right side of eq 7
can be interpreted as a Weibull distribution with the shape
parameter equal to 1. The Weibull distribution is an extreme
value distribution, but with the observed variable limited by 0
and infinity. The nature of the ranking in Probity and in most
other protein identification algorithms is to pick out an extreme
value (smallest or largest). The good fitting capability of the
functions employed here in the eqs 6 and 7 is a natural
consequence of the ranking by an extreme value.

Effects of Sequence Similarities. The scaling of the difficulty
of obtaining statistically significant protein identification results
as displayed in the Figures 1-3 appears robust over a large
range of sizes of the sequence collections. The assumption
underlying the computations is that the sequences in a
collection are different. The effect on the statistical significance
of sequence similarities between different sequences in a

sequence collection is yet unknown. Using a simple routine
that considers sequences that share at least five tryptic peptides
as sequence similar revealed that the fraction of the sequences
considered as similar ranges broadly from 2% (H. influenzae)
to 12% (C. elegans). We speculate that the effect of sequence
similarity is that the effective size, N, of a sequence collection
should be somewhat reduced when predicting the significance
from the score (eq 6) and therefore significance values as
computed here using eq 6 could be somewhat conservative.

Taxonomic Precision. The loss of significance when search-
ing more sequences than necessary (Figure 3) must be inter-
preted with some caution. We believe that the result indicated
by Figure 3 is generally valid for eukaryotes. However, microbial
genomes can evolve rapidly as a result of environmentally
induced selective pressure. Microbial evolution can occur via
horizontal gene transfer.26,27 Therefore, new genes evolved can

Figure 2. Comparison of the statistical significance as obtained
from eq 6 for data of the same quality (same score) for different
organisms. The results for S. cerevisiae are displayed as refer-
ence points at the 0.1% significance level (lower part) and at the
1% significance level (upper part). The lines are guides for the
eye.

Figure 3. Significance as obtained from eq 6 of a protein
identification result of S. cerevisiae as a function of searching
with different taxonomic precision, i.e., searching a different
number of protein sequences. The result with the highest
taxonomic precision, i.e., S. cerevisiae, is displayed at the 0.1%
significance level. The line is a guide for the eye.

S ) 1 - (1 - aâ)N ≈ 1 - e-aNâ (7)
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display high similarity with genes of other microbial organisms.
Hence, for microbial proteome analysis it cannot be excluded
that searching with less taxonomic precision can indeed
improve the quality of identification results simply because a
gene expressed might actually not be found in the expected
sequence collection but in a sequence collection originating
from another organism.

Protein Identification in Higher Organisms. Our simula-
tions reveal explicitly the increased difficulty for statistically
significant protein identification when moving from model
organisms such as yeast to higher organisms such as human.
The practical consequences of the increased difficulty can be
understood by the following example: Assume that a laboratory
operates with a desired significance level, S′, for an organism
having N1 sequences. S′ can be viewed as the risk the laboratory
is willing to take that a result presented is false. The lower the
risk the higher the number of results discarded in a testing
procedure. The corresponding significance level, S, if the
laboratory keeps the same experimental procedures, but in-
stead studies an organism with N2 sequences (N2 > N1) can be
computed using eq 6 (Figure 2). If the laboratory still desires
the level S′ it is expected that the fraction of the results that
must be discarded will increase.

An increased number of different proteins in the cells
analyzed implies more challenging experimental work, e.g.,
concerning separation, in addition to the strictly theoretical
difficulties elucidated here. High throughput and quality as-
sessment are keys to the successful proteome analysis. A
statistically justified approach to discard poor quality results
is an important feature of an automated, high throughput
system. We believe that the experimental and theoretical
aspects of protein identification are intertwined. A more
detailed knowledge of the informatics aspect of protein iden-
tification should serve as a guide for the optimization of the
laboratory work in order to maximize the throughput of
significant results for the respective organism studied.

Conclusions

We have established a simple analytical formula that can
predict the statistical significance of a protein identification
result for any size of the sequence collection searched. We have
elucidated the increased difficulty of obtaining significant
results in higher organisms by comparing identification in
higher organisms with identification in model organisms and
also elucidated the loss of significance resulting from searching
with suboptimized taxonomic precision.
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