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The study of the proteins expressed by an organism

(proteomics) is based on the idea that it is possible to 

effectively identify and track these proteins in time or

space.This idea has moved from the realm of pure specu-

lation to an achievable reality by the availability of high-

speed, low-cost methods of identifying and quantifying

proteins based on chromatography and mass spectrometry,

as well as complementary techniques for the analytical

display of mRNA populations using cDNA-array tech-

nology [1]. This review will deal with a selection of the

information-handling challenges associated with protein

identification experiments and the manipulation of these

results into a form that allows them to be assessed in

terms of biological problems.

The largest general problem associated with handling

proteomics’ information is that the basic experimental

protocols involve multiple steps of fluid handling, elec-

trophoresis, chromatography, mass spectrometry and

computer database searching. The data obtained from

each step must be linked to the data associated with the

subsequent procedures, allowing for the possibility that

some steps may or may not be performed. In addition,

there could be sequences of steps to be performed itera-

tively or alternatively. The data from each step can be

recorded electronically either automatically or by manual

intervention. The electronic data formats for each type of

instrumentation is different and it is usually in a form that

can only be read by one vendor’s software. Information

can be recorded in a wide variety of forms, but the cur-

rent goal is to store it in some form of laboratory infor-

mation management system via a combination of the

manually entered data and some meta-data obtained from

vendor-specific software that captures important features

of the original raw data.These systems are based on com-

mercial relational database platforms and they have been

successful at capturing experimental results in analytical

laboratories that require strict auditing of procedures and

results.

Data versus meta-data
Proteomics experimental information is derived from the

output of different types of analytical instrumentation

from multiple vendors. Even though there have been 

efforts made in the past to standardize the electronic data-

representation format across analytical instrumentation

platforms, these efforts have largely failed. The failure of

vendors to agree on any common formats has led to a

profusion of different types of electronic data binary files.

The information necessary to read and write these for-

mats is usually a proprietary secret of a particular vendor,

protected by applicable local and international laws and

regulations, although the vendor might supply a software

utility or component that allows some type of limited 

access to the data.

The difficulty of dealing with this profusion of binary

electronic formats has led to the design of proteomics 

information gathering systems that are based on meta-

data formats, rather than on the original raw data. These

meta-data are usually some form of ‘feature table’: a lim-

ited representation of the original data obtained by con-

verting the raw electronic binary data into a discrete set of

locator and intensity coordinates. These simple formats

use ASCII characters, with a series of numbers separated

by some combination of spaces, commas or tabs, using

combinations of line feeds and carriage returns as termi-

nators. These data formats have the advantage that they

can be read by third-party software as well as common

spreadsheet applications (e.g. Microsoft’s Excel). Viewed

from an informatics perspective, the creation of this

meta-data is a form of lossy compression [2].

The major drawback to these meta-data files is that

they have no agreed-upon format and they do not repre-

sent any type of standard. The original format is usually

based on a vendor’s text-export function, which is subse-

quently adapted by other vendors and users for their own

use. For example, the so-called ‘DTA’ meta-data format is

used to transfer tandem mass spectrometry data to most
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protein identification search engines. The original format

was generated by a Thermo-Finnigan utility, but it has

been altered to include at least six commonly used varia-

tions in internal formatting through the substitution of

different sets of symbols to represent column separators

and terminators. Surprisingly, none of the tandem mass

spectrometry meta-data file-types contain any informa-

tion that describes what is recorded or how the data was

obtained. They also cannot store information that is vital

to their interpretation, such as the mass of the fragment

ions, their charge or any indication as to how the

m/z-intensity pairs stored in the file were calculated.

As a common example of how these feature tables are

used in practice, take the simple example of an experi-

ment in which 2D-gel electrophoresis is used to separate

and quantify proteins and a liquid-chromatograph cou-

pled to an ion trap tandem mass spectrometer is used to

identify the proteins found in gel plugs.The stained gel is

analyzed using ‘spot-picking’ software, which determines

the x–y coordinates of the center of the spot, its area and

the intensity of the staining.These values are placed into a

feature table file. The file is then loaded (either automati-

cally or manually) into a gel plug removal robot, which

removes the appropriate spot and loads the gel plug into 

a 96-well plate, where it is digested and the peptides 

extracted. The results of the robot’s fluid handling

processes are placed in a feature table, recording the suc-

cess or failure of the various operations.This feature table

is then loaded (either automatically or manually) into the

mass spectrometer’s software, which drives a high-perfor-

mance liquid chromatograph auto-sampler. The resulting

tandem mass spectra are each stored in individual feature

tables that record the parent ion mass and charge, as well

as the m/z and intensity of the fragment ions (up to 1000

individual feature table files per gel spot). A limited

amount of chromatographic information is encoded into

these files’ path names. Each one of these files is submit-

ted individually to a search engine that attempts to match

the file data to a peptide sequence and a further set of 

feature table files is returned that record a list of potential

matches and a set of arbitrary scores that can be used to

assess the quality of the resulting correlation between a

spectrum and a peptide sequence. A realistic estimate of

the number of individual feature tables generated in such

an experiment (per 96-well plate) is from 4000–60 000,

depending on the details of the table formats. It is worth

noting that most of these files represent contaminants and

noise, but they are generated and recorded in an effort to

obtain the highest sensitivity possible. The information

content of hundreds of megabytes of storage can frequently

be compressed into the name of a single, commonly

identified protein, such as ‘cytokeratin’ [3].

The creation, logging, management and translation of

these arbitrarily formatted, automatically generated feature-

table files has become the central role of the first genera-

tion of proteomics information-handling systems. The

much larger volume of vendor-specific binary data might

also be managed in some way.The only role of the original

data file(s) is often as a record of an instrument’s settings,

but it is retained in its entirety in the unlikely event that it

will be required in the future. It should be stressed that

these binary data are not used in any way for the final

interpretation of the results: the meta-data in the feature

tables are used exclusively for all analysis. Naïve users

often regard this meta-data as a set of trivial temporary

files, but they are truly the only record of what informa-

tion was actually used in the next step of the process. It

might also be impossible to recreate the meta-data at a

later date from the original data, because version changes
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Figure 1. The informatics structure of a simple proteomics experiment
involving multiple analytical techniques.

The ‘data > information > knowledge’ hierarchy of formal information design is useful in thinking about these
experiments. ‘Data’ is the raw binary information extracted from instrumentation, present in large amounts
but not very useful by itself. ‘Information’ is the processed meta-data obtained from manual or automated
feature extraction (examples of such features include peak spot coordinates) and sequence databases.
‘Knowledge’ is what we want from the experiment: sequence identifications and quantitative results.
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to the vendor-specific software that reads the binary data

could unpredictably affect their output when reading

obsolete binary file formats. Storing this information for

later retrieval and reuse is an important part of any

well-structured proteomics informatics system.

Small, medium or grande?
Proteomics experiments can be characterized by the

amount of experimental data generated during the exper-

iments and the resulting informatics models [4] (see

Fig. 1). Small-scale experiments produce relatively small

amounts of data, such as identifying a subset of the pro-

teins in a one- or two-dimensional gel [5]. The experi-

ments themselves are designed around some very specific

sets of hypotheses, which are tested in detail by the 

experimental results. Analysis involves a considerable

amount of intuitive iteration and re-testing by trained 

observers and thus the process cannot be easily or profitably

automated.Therefore, the importance of the information’s

structure is reduced: the observers will each have their

own methods of extracting information and knowledge

from the dataset.

Medium-scale proteomics uses many of the same

methods as small-scale experiments, except that the

dataset becomes sufficiently large that it is practically 

impossible for trained observers to evaluate it all [6]. The

goal of these experiments is still to extract the maximum

amount of knowledge from the dataset, but the volume of

information required becomes a real impediment to the

iterative, intuitive approach used in small-scale experi-

ments. Observers are used to screen the information to

determine whether it has been properly constructed from

the data.The informatics model used for this type of pro-

ject is necessarily relatively rigid, reducing the reporting

flexibility inherent in small-scale experiments. Data and

information storage become form-filling exercises, with

the goal being to populate a relational database that can

be used to examine the information on a broad scale.

Large-scale proteomics projects use fully automated

systems to acquire and analyze the data for it to become

information [7]. Observer intervention is not required,

other than as a quality control measure. These projects

are constructed around abstract hypotheses and the 

extraction of knowledge is difficult: a huge amount of

data and a correspondingly large amount of information

is generated in the belief that it will give rise to emergent

patterns which will result in unanticipated benefits even

if the initial hypotheses were vaguely formulated. This

approach is central to the ‘systems biology’ approach [1].

The informatics model used must be completely 

rigid, following a set of external rules imposed by the

experimental design [8].

These three informatics models are in different states

of development. The small-scale models are well-tested

and easy to understand. They involve the type of ad hoc

information structure in common use in research labo-

ratories and depend on the in-depth review of the data

at all scales to come to conclusions. Both the medium-

and large-scale models are currently being tested and 

refined. Their value will depend on the standardization

of reporting and database formats, so that independent

evaluation of the results and conclusions of these studies

can be performed.

There is currently no standard set of database models

for proteomics experiments. As an example, Fig. 2 shows

a practical, generic database model for a protein identifi-

cation project. The systems in current use are either pro-

prietary or designed for special purpose applications. The

relational databases have been shaped by the format of the

meta-data presented to the designers.Therefore, the mod-

els take on the shape of the experimental data, rather than

focusing on the information that is truly desired by the

end-user of the database. Dozens of projects have been

started around inappropriate experimental metaphors that

reflect long-held desires of particular analysts, such as

presenting all of the experimental results through an 

interface that looks like a stained 2D-electrophoresis gel.

This type of metaphor-based interface design attempts to

encapsulate all of the normal functions of a laboratory 

information management system database into a very
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Figure 2. A generic database model for a proteomics project, displayed in
standard database notation.

This type of notation permits the compact representation of very complex webs of interrelations between
database relations (tables). Each of the boxes represents a relation that contains information about a
particular object. Each relation is linked to other relations: the numbers adjacent to the lines indicate how
many links can be made to a particular relation. For example, a single (1) ‘project’ relation can be linked
to 0 to n ‘experiment’ relations. Each single (1) ‘experiment’ relation can be linked to 0 to n ‘gel’ relations,
and each single (1) ‘gel relation’ can be linked to 0 to n ‘gel spot’ relations. In addition, a ‘gel’ relation is
linked to a ‘gel Method’ relation, which can be linked to 0 to n ‘gel’ relations (and so on). Establishing an
appropriate set of relations and linkages is the most important part of any informatics design that requires
the use of a relational database.
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limited graphical representation, making the final results

unnecessarily difficult to evaluate.The only real exception

to this trend is the Biomolecular Interaction Network

Database (BIND) project. It uses a publicly available data-

base model based on the US National Center for

Bioinformatics database standard, ASN.1 [8]. The BIND

data model has been used successfully to store and render

the information from at least one large-scale protein

identification project [7].

What does it mean to identify a protein?
The question of evaluating the validity of protein identifi-

cation results is still a matter for active research and it has

not been solved satisfactorily [9,10]. Several statistical 

approaches have been proposed [11–13]. These studies

have looked at the problem from different viewpoints, but

they have not provided conclusions that can be directly

applied to the common problem of estimating the confi-

dence of experimental protein identifications in a simple

and interpretable manner. The current software tools and

scoring algorithms leave interpreting the results up to the

user. Many practitioners have developed their own,

pseudo-statistical tests for validating results based on the

comparison of results from different scoring algorithms.

This type of approach should be used with great caution

without a detailed knowledge of the statistical distribu-

tions produced by the various scoring algorithms. A con-

sensus similar to that used for evaluating sequence similar-

ity scores must be reached for protein identification to

become a truly mature technique [14,15]. Currently, the

authors favor adopting the combination of relative proba-

bilities and expectation values for reporting sequence

identifications [16–20], because of their simple and intu-

itive interpretation. These standard statistical measures 

require an understanding of the underlying statistical dis-

tributions and an empirical method of estimating them,

but they have the advantage of being equally applicable to

identifications based on either single mass spectrometer

or tandem mass spectrometer measurements. These mea-

sures also have the advantage of being relatively indepen-

dent of the details of an underlying scoring system: they

are properties of the overall distribution of scores, rather

than the absolute values of the scores themselves.
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