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s the sole site of nucleocytoplasmic transport, the
nuclear pore complex (NPC) has a vital cellular
role. Nonetheless, much remains to be learned about

many fundamental aspects of NPC function. To further
understand the structure and function of the mammalian
NPC, we have completed a proteomic analysis to identify
and classify all of its protein components. We used mass
spectrometry to identify all proteins present in a biochemically
purified NPC fraction. Based on previous characterization,
sequence homology, and subcellular localization, 29 of

A

 

these proteins were classified as nucleoporins, and a further
18 were classified as NPC-associated proteins. Among the 29
nucleoporins were six previously undiscovered nucleoporins
and a novel family of WD repeat nucleoporins. One of
these WD repeat nucleoporins is ALADIN, the gene mutated
in triple-A (or Allgrove) syndrome. Our analysis defines the
proteome of the mammalian NPC for the first time and
paves the way for a more detailed characterization of NPC
structure and function.

 

Introduction

 

Nucleocytoplasmic transport is mediated by nuclear pore

 

complexes (NPCs)* (Allen et al., 2000) which span the nuclear
envelope (NE) lumen, inserting into pores formed by the
fusion of inner and outer nuclear membranes. NPCs are
large multiprotein complexes with octagonal symmetry
about their axis and imperfect mirror symmetry about a
plane parallel with the NE. They provide a diffusion channel
for small molecules and also mediate the active transport of
large substrates. As the sole sites of nucleocytoplasmic trans-
port, NPCs play a role in numerous pathways, including cell
cycle progression, control of gene expression, and oncogenesis
(Lain et al., 1999; Jeffries and Capobianco, 2000; Takizawa
and Morgan, 2000). In addition, NPCs have other func-
tions in nuclear organization (Smith and de Lange, 1999;
Galy et al., 2000; Belgareh et al., 2001; Ishii et al., 2002).

A proteomic analysis revealed that the yeast NPC is com-
posed of 29 nucleoporins (Rout et al., 2000). To date, 24
nucleoporins have been identified in mammals, with up to 25
remaining to be discovered (Vasu and Forbes, 2001). A
subset of known nucleoporins contain functionally significant
phenylalanine-glycine (FG) repeat domains, which bind di-
rectly to receptors that transport substrates through the NPC
(Ryan and Wente, 2000). Although several models have been
proposed (Rout et al., 2000; Macara, 2001; Ribbeck and
Görlich, 2001), the mechanism by which these FG repeat
domains mediate active transport is poorly understood.

Structural comparisons indicate that the vertebrate NPC
is larger than its yeast counterpart (1450 

 

� 

 

800 Å compared
with 960 

 

�

 

 350 Å) (Akey and Radermacher, 1993; Yang et
al., 1998). Mass measurements also suggest that the verte-
brate NPC, with an estimated maximum mass of 125 MDa,
is significantly larger than the 55–72 MDa yeast NPC
(Reichelt et al., 1990; Rout and Blobel, 1993; Yang et al.,
1998). However, the combined mass of all yeast nucleoporins
is calculated to be only 44 MDa, suggesting that experimen-
tally determined measurements are upper estimates, with
NPC-associated proteins and transport complexes contrib-
uting significantly to the measured mass (Rout et al., 2000).
Given the structural differences between vertebrate and yeast
NPCs, a comparison of their proteomes could be of particular
value in understanding both conserved and species-specific
functions of the NPC.
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We used mass spectrometry (MS) to characterize a highly
purified nucleoporin fraction from rat liver nuclei. Surpris-
ingly, we found that the mammalian NPC is composed of
essentially the same number of nucleoporins as its yeast
counterpart. Among the nucleoporins we identified are six
novel nucleoporins and a new subfamily of nucleoporins
characterized by the presence of WD repeats. Comparison of
yeast and mammalian nucleoporins suggests that basic NPC
functions are conserved, but that both organisms have also
evolved specialized functions.

 

Results

 

Enrichment of nucleoporins from rat liver nuclei

 

To determine the composition of the mammalian NPC, we
developed a fractionation procedure to highly enrich nucle-
oporins from rat liver nuclei. This procedure is a modifica-
tion of one previously described (Dwyer and Blobel, 1976)
and entails the sequential solubilization of nuclear substruc-
tures. Until the final step, NPCs remain associated with the
lamina and can be separated from solubilized proteins by
centrifugation through a sucrose cushion. We have used
EM, SDS-PAGE, and immunoblotting to confirm that
NPCs remain intact and nucleoporins are not lost during
fractionation.

The first step is a digestion with DNase and RNase in
the presence of low concentrations of divalent cations.
This solubilizes most intranuclear material, although some
electron-dense aggregates remain associated with the inner
nuclear membrane of the pelleted NEs (Fig. 1 A, arrows).
A subsequent extraction with heparin clearly solubilizes
these chromatin remnants (Fig. 1, compare A with B). In
agreement with the EM data, SDS-PAGE analysis reveals
that histones are partially solubilized by DNase/RNase and
even more dramatically solubilized by heparin (Fig. 1 E).
After the removal of chromatin, the nuclear membranes
and their associated proteins are extracted by incubation in
Triton X-100 and SDS, leaving NPCs embedded in the
lamina. By negative staining (Fig. 1 C) it can be seen that
the NPCs retain their characteristic eightfold symmetry
and have a central transporter, indicating that they are
largely intact. The final step is an incubation with the zwit-
terionic detergent Empigen BB, which selectively solubi-
lizes the NPC as monomeric nucleoporins. The intact lam-
ina (Fig. 1 D) is cleared from this solution of highly
enriched nucleoporins by high-speed centrifugation. When
no longer connected to the NPC, the lamina filaments ap-
pear to retract, resulting in gaps in the lamina network
(Fig. 1 D). By SDS-PAGE it can be seen that the major
proteins remaining in the Empigen BB pellet are the
lamins (Fig. 1 E).

Using a panel of anti-nucleoporin antibodies (mAb414
is shown as a representative example), we found that all
tested nucleoporins fractionate in the Empigen BB super-
natant (Fig. 1 F). Importantly, these include nucleoporins
from distinct domains of the NPC, including the pore
membrane (POM121, gp210), the central transporter
(Nup62), and peripheral cytoplasmic (Nup214, Nup358)
and nucleoplasmic (Nup153, Tpr) structures. The pres-
ence of nucleoporins from these diverse NPC structures

further demonstrates that our purified NPCs are intact,
strongly arguing that nucleoporins are not quantitatively
lost during fractionation.

Figure 1. Fractionation of rat liver nuclei. (A–D) EM analysis of the 
fractionation of rat liver nuclei. Bar, 100 nm. (A) Thin-section EM of 
pelleted nuclear envelopes following digestion with DNase/RNase. 
Arrowheads indicate electron-dense aggregates associated with the 
inner nuclear membrane. (B) Thin-section EM of nuclear envelopes 
after extraction with heparin. (C) Negative staining EM of the pellet 
after extraction with Triton X-100/SDS. (D) Negative staining EM of the 
pellet after extraction with Empigen BB. (E) Silver stained SDS-PAGE 
analysis of supernatant (S) and pellet (P) from each step of the 
fractionation. Molecular weight markers are shown on the left. 
Histones (H) and lamins (L) are denoted on the right. (F) Immunoblot 
analysis of the pellet and supernatant from each step of the fraction-
ation using mAb414 which recognizes the nucleoporins Nup358, 
Nup214, Nup153, and Nup62 (Davis and Blobel, 1986). Molecular 
weight markers are indicated on the left and nucleoporins are 
indicated on the right.
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Identification and classification of proteins in the 
Empigen BB supernatant

 

Owing to the complexity of the SDS-PAGE profile of the
Empigen BB supernatant, particularly in the 50–80-kD
range (Fig. 2), we further separated these proteins by C4 re-
verse phase chromatography prior to SDS-PAGE (Fig. 3).
We used a combination of single-step MS and tandem mass
spectrometry (MS/MS) to identify proteins and/or ESTs in
bands excised from both unseparated and C4-separated Em-
pigen BB supernatant. C4 reverse phase separation facili-

 

tated the identification of less abundant proteins, as up to
100

 

�

 

 more material could be analyzed. Reverse phase sepa-
ration also simplified identification by decreasing the num-
ber of proteins in individual SDS-PAGE bands. Parallel
analysis of bands from unseparated Empigen BB superna-
tant ensured that we identified proteins that could have been
lost during chromatography, particularly late-eluting pro-
teins that were recovered less efficiently from the C4 col-
umn. Proteins identified in unseparated Empigen BB super-
natant (Fig. 2) are shown in Table I. Additional proteins
identified only from the C4-separated fractions can be found
in Table SI (available at http:www.jcb.org/cgi/content/full/
jcb.200206106/DC1). A total of 94 proteins were identi-
fied. Based on information in the literature and public
databases, we initially classified 23 as nucleoporins, 18 as
NPC-associated, 42 as non-NPC proteins, and 11 as un-
characterized (Table II).

The 23 proteins classified as nucleoporins (Table II, col-
umn 1) were all identified in unseparated Empigen BB su-
pernatant and are, therefore, major components of the NPC
fraction. Only 

 

�

 

1/2 of these nucleoporins were identified in
rat databases, with the remaining proteins identified by
searching the more complete mouse and human databases.
This approach proved feasible because of the relatively high
sequence conservation between rat, mouse, and human pro-
teins and because of the large number of MS/MS measure-
ments performed on peptides from each sample. We identi-
fied all previously described vertebrate nucleoporins with the
exception of Gle1, whose association with the NPC may be
dynamic (Watkins et al., 1998).

Of the 18 proteins classified as NPC-associated proteins (Ta-
ble II, column 2), most were factors involved in nucleocyto-
plasmic transport, such as importin-

 

�

 

1, importin-

 

�

 

1, TAP,
hnRNPs, Ran, RanGAP1, RCC1, and Hsc70. Lamins A, B,
and C are components of the lamina which is intimately associ-
ated with the NPC and remains associated with it until the
final step of the fractionation. The function of the other NPC-
associated proteins in transport is not well understood, al-
though all have been shown to localize, at least in part, to the
NPC (Cai et al., 1997; Saitoh et al., 1997; Fontoura et al.,
1999; Hofmann et al., 2001; Vasu et al., 2001; Hang and
Dasso, 2002; Zhang et al., 2002). Proteins classified as non-
NPC proteins (Table II, column 3) are known to function and/

Figure 2. Identification of bands from 
unseparated Empigen BB supernatant. 10 U 
of Empigen BB supernatant were separated by 
SDS-PAGE and stained with Coomassie. 
Molecular weight markers are shown on the left 
and bands excised for mass spectrometric 
analysis are indicated on the right. Proteins 
identified in these bands are shown in Table I.

Figure 3. Chromatographic separation of the Empigen BB supernatant. �1,000 U of C4-separated Empigen BB supernatant fractions were 
separated by SDS-PAGE and stained with Coomassie. Molecular weight markers are shown on the left and bands excised for mass spectrometric 
analysis are indicated to the right of each band. Proteins identified in these bands are shown in Tables I and SI, available at http:www.jcb.org/
cgi/content/full/jcb.200206106/DC1 (histones are not shown on this gel).
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Table I. 

 

Identification of proteins from unseparated Empigen BB supernatant

 

No. Proteins identified Accession

 

a

 

kD

 

b

 

C4 band

 

1 Nup358/RanBP2 NP_006258 358 55
2 Tpr NP_003283 266 47
3 Tpr

Nup358

 

c

 

NP_003283
NP_006258

266
358

47
55

4 Tpr
Nup358

 

c

 

NP_003283
NP_006258

266
358

47
55

5 Nup214/CAN
Nup358

 

c

 

NP_005076
NP_006258

214
358

52
55

6 gp210
Nup205

P11654 (rat)
BAA13214

204
228

48
48

7 Nup188
Nup153

BAA11486
NP_005115

196

 

d

 

154
–

11
8 POM121

SMC1
A40670 (rat)
NP_006297

121
143

50
50

9 Nup155
Nup160/Nup120

CAA07553
BAA12110

155
159

 

d

 

73
–

10 Nup133 NP_060700 129 69
11 Matrin3 NP_061322 95 16
12 Nup96 NP_005378 96 57
13 Nup107 NP_065134 106 74
14 Nup98

PSF
NP_005378
NP_005057

90
76

12
6

15 Nup98 NP_005378 90 12
16 Importin-

 

�

 

NP_002256 97 –
17 Nup93 NP_055484 93 64
18 Nup88/Nup84

RanGAP1
SUMO-1

NP_002523
NP_002874
NP_003343

84
64
11

58
65
65

19 LAP1C (long isoform)
LAP1C (short isoform)
hnRNP M
Lamin A

AAA69914 (rat)
AAA69915 (rat)

NP_005959
CAA27173

57
52
78
77

70
70
35
25

20 Hsc70
hnRNP M
TAP

NP_006588
NP_005959
NP_006353

71
78
70

51
35
40

21 Nup62
RanGAP1
FLJ12549

NP_057637
NP_002874
AAM76706

53
64
75

66
66
75

22 Nup58 (rat)
Lamin C
ALADIN/AAAS/Adracalin

AAC52789
CAA27174
NP_056480

59
65
60

71
27
–

23 Nup54 NP_059122 55 53
24 Nup50/NPAP60

LAP2
NP_009103

NP_037019 (rat)
50
50

23
59/67

25 UDP Glucosyl Transferase (UGT)

 

e

 

– – 46/77
26 Nup45 (rat)

UGT

 

e

 

AAC82318
–

52
–

72
46/77

27 UGT

 

e

 

– – 46/77
28 NLP1/hCG-1

p42
Actin

 

e

 

NP_031368
AAM76708

–

45
42
–

44
20
62

29 RAE1/Gle2
HSD3B1
HSD3B2

NP_003601
NP_000853
NP_000189

41
42
42

21
78
78

30 Histone macroH2A

 

e

 

– – –
31 Sec13-like (Sec13L) AAM76707 40 13
32 p37

Sec13-related (Sec13R)
AAM76705
NP_109598

37
36

29
30

33 MP-44 AAM76704 35 39
34 Histone H1

 

e

 

– – 1
35 Histone H1

 

e

 

– – 2
36 p30 AAM76703 30

 

d

 

–
37 Ran AAB24940 24 24
38 Ubc9 AAH00744 20 unpublished data
39 Histone H3

 

e

 

– – unpublished data
40 Histone H2B

 

e

 

– – unpublished data
41 Histone H2A

 

e

 

– – unpublished data
42 Histone H4

 

e

 

– – unpublished data

 

a

 

Unless otherwise stated, accession numbers are for human proteins.

 

b

 

Predicted from amino acid sequence.

 

c

 

Proteolysis product or alternative isoform.

 

d

 

Estimated molecular weight. Exact 5’ end of sequence unknown.

 

e

 

Exact isoform not determined although, in most cases, it appears that several distinct isoforms may be present in a single band.
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or localize at sites other than the NPC. Most non-NPC pro-
teins were minor components since they were identified only in
the C4-separated fractions. A number of these non-NPC pro-
teins have been reported to be nuclear matrix- or chromatin-
associated (Table II) and may, therefore, be connected directly
or indirectly to the NPC/lamina. Other proteins may be con-
taminants, such as abundant transport substrates caught during
translocation, or abundant liver or ER-associated enzymes. The
final subset of proteins included those whose function and/or
localization was unknown (Table II, column 4). These were
further divided into two subgroups: abundant proteins that
were identified in unseparated Empigen BB supernatant and
non-abundant proteins that were identified only in the C4-sep-
arated fractions. p42, p37, and p30 are preliminary names for
proteins identified for the first time in this study.

To determine if any nucleoporins remained insoluble after
the final fractionation step, we also identified proteins in the
Empigen BB pellet (Fig. S1, available at http:www.jcb.org/
cgi/content/full/jcb.200206106/DC1 and Table SII). Lam-
ins A, B, and C were the major components of the Empigen
BB pellet. Some nucleoporins (Nup214, gp210, Nup153,
and Nup98) were also present, though only Nup98 was a
major component. The uncharacterized proteins, p30 and
MP-44, were also identified in the Empigen BB supernatant
and pellet and will be discussed below.

 

Sequence analysis of uncharacterized proteins

 

Sequence analysis of the uncharacterized proteins revealed
that three of the abundant proteins (FLJ12549, Sec13L, and
MP-44) have homology to known nucleoporins. FLJ12549

 

Table II. 

 

Summary of identified proteins

Nucleoporins NPC-associated proteins Non-NPC proteins Uncharacterized proteins

 

Nup358 Importin-

 

�

 

1

 

Nuclear matrix/chromatin-associated proteins Abundant

 

Tpr Importin-

 

�

 

1 LAP1C FLJ12549
Nup214 TAP LAP2 Sec13L
gp210 hnRNP F MAN1 MP-44
Nup205 hnRNP H Matrin3 ALADIN/AAAS
Nup188 hnRNP M SMARCC1 p42
Nup153 Ran SMARCC2 p37
Nup160 RanGAP1 SMARCD2 p30
Nup155 RCC1 SMARCE1

 

Nonabundant

 

Nup133 Hsc70 DDX5 c1orf28
POM121 Lamin A HDAC1 CoAA
Nup107 Lamin B HDAC2 HP1-BP74
Nup98 Lamin C RbAp46 KIAA1551
Nup96 Sec13R RbAp48
Nup93 Actin MTA2
Nup88 Vimentin SMC1
Nup62 Ubc9 SMC3
Nup58 SENP2 RAD21
Nup54 TIF1

 

�

 

Nup50 RUVBL1
Nup45 RUVBL2
NLP1 Histone H1
RAE1 Histone H2A

Histone H2B
Histone H3
Histone H4

Histone macroH2A
Fibrillarin

SAF-B
DEK
PSF

 

Splicing factors

 

SAP145
TDP-43

SF3a
SART-1

 

Cytoskeletal proteins

 

�

 

-tubulin

 

�

 

-tubulin

 

Chaperones

 

Hsp27
DnaJ proteins

 

Enzymes

 

HSD3B1
HSD3B2

UGT enzymes
Catalase
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has low-sequence homology to the 

 

Schizosaccharomyces
pombe

 

 homologue of Nup85p (19% identity and 37% simi-
larity over its central 

 

�

 

400 amino acids). Although it dis-
plays no significant homology to 

 

Saccharomyces cerevisiae

 

Nup85p, this low level of conservation is frequently seen in
nucleoporins and may still indicate functional conservation.
The central 

 

�

 

150 amino acids of MP-44 are 21% identical
(40% similar) to 

 

S. cerevisiae

 

 Nup53p. Although this homol-
ogy does not extend to the COOH-terminal amphipathic

 

�

 

-helix of Nup53p (Marelli et al., 1998, 2001), there are pre-
dicted amphipathic regions in MP-44 which may be func-
tionally homologous. Like Nup53p, MP-44 has a small
number of scattered FG repeats but not the large domains
seen in other nucleoporins. Sec13L is related to yeast Sec13p
(30% identity and 47% similarity) but is more homologous
to Seh1p (34% identity, 54% similarity). This unusually
high degree of sequence conservation in a nucleoporin is
largely due to the presence of six WD repeat motifs. The ho-
mology between Sec13L and Seh1p also extends to regions
outside these repeats, making Sec13L the most likely candi-
date for the human homologue of Seh1p. Sec13R is the hu-
man homologue of Sec13p in both sequence (50% identity,
66% similarity) and function (Shaywitz et al., 1995). The
remaining four abundant proteins (ALADIN, also called
Adracalin; p42; p37; and p30) are not homologous to any

known nucleoporin and have no characterized homologues
that could suggest a function. However, we did note that
ALADIN, p42, and p37 all contain WD repeats (4, 5, and
4, respectively). Of the nonabundant proteins, none have
homology to nucleoporins, although two have conserved se-
quence motifs. CoAA has two RNA recognition motif do-
mains and HP1-BP74 has a domain found in linker histones
H1 and H5 (Le Douarin et al., 1996; Iwasaki et al., 2001).

 

Subcellular localization of uncharacterized proteins

 

The uncharacterized proteins were further studied by exam-
ining the subcellular localization of transiently expressed
GFP-tagged fusion proteins. Six of the abundant novel pro-
teins (MP-44, Sec13L, FLJ12549, p37, p42, and ALADIN)
showed punctate nuclear rim localization typical of nucle-
oporins (Fig. 4, A–F, left). This was particularly apparent in
views of the nuclear surface (unpublished data). In each case
the GFP signal colocalized with that of anti-nucleoporin
antibody mAb414 (which recognizes Nup358, Nup214,
Nup153, and Nup62), further confirming the NPC localiza-
tion of these proteins (Fig. 4, A–F, middle and right). On the
basis of their subcellular localization and, in some cases, ho-
mology to known nucleoporins, we propose that the five un-
characterized proteins (MP-44, Sec13L, FLJ12549, p37, and
p42) be named Nup35, Seh1, Nup75, Nup37, and Nup43

Figure 4. Subcellular localization of uncharacterized proteins. GFP-tagged fusion proteins were transiently transfected into HeLa cells and 
their localization visualized by confocal microscopy 48 h posttransfection (green, left). Transfected cells were also labeled with mAb414 (red, 
middle). Merged images showing the extent of colocalization are shown in the right panel.
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(to avoid confusion with the unrelated yeast nucleoporin
Nup42p). The remaining abundant novel protein (p30) was
mostly nuclear with a significant enrichment at the nuclear
periphery and around the nucleolus (Fig. 4 G, left). How-
ever, the GFP signal at the nuclear periphery did not colocal-
ize with mAb414 (Fig. 4 G, middle and right) indicating that
p30 is not a nucleoporin. We speculate that this protein may
be involved in linking peripheral nuclear structures, such as
the nuclear lamina, with the nuclear interior. A more detailed
study of the localization of p30 will provide further insight
into the functions of this novel protein.

The nonabundant uncharacterized proteins (CoAA,
c1orf28, KIAA1551, and HP1-BP74) were all nuclear with
no obvious enrichment at the nuclear periphery (Fig. 4,
H–K, left). In double labeling experiments with mAb414 (Fig.
4, H–K, middle and right), we saw no overlap between these
proteins and the NPC. Therefore, these proteins are unlikely
to be nucleoporins. Because many nonabundant proteins in
the Empigen BB supernatant are nuclear matrix- or chroma-
tin-associated, CoAA, c1orf28, KIAA1551, and HP1-BP74
may be similarly localized.

 

Mass estimation of the NPC

 

We estimated the relative abundance of nucleoporins in the
Empigen BB supernatant by quantitation of SDS-PAGE
band intensities (see Materials and methods). From their rel-
ative abundance we estimated the copy number per NPC of

each nucleoporin, based on the assumption that nucleopor-
ins would be present at a copy number of 8 or multiples of
8, owing to the rotational symmetry of the NPC (Table III).
From the nucleoporin copy number, we estimated NPC
mass. This approach has certain limitations, such as non-
quantitative dye-binding, stain saturation, and incomplete
recovery of nucleoporins. Although these limitations were
controlled for using different staining methods and different
loading conditions, the results are an approximation. Over-
all, the estimated relative abundance of individual nucle-
oporins correlated well with that determined for their yeast
homologues (Table III; Rout et al., 2000) and resulted in an
NPC mass estimate of 

 

�

 

60 MDa. The mass of the verte-
brate NPC was previously estimated by STEM analysis of
manually isolated 

 

Xenopus

 

 oocyte nuclear envelopes (Reich-
elt et al., 1990). The mass of 125 MDa reported in this
study is a maximum since 

 

Xenopus

 

 oocyte nuclear envelopes
were isolated using mild conditions and probably retain
many transport factors and cargo. By comparison, the yeast
NPC has an estimated mass of 55–72 MDa (Rout and Blo-
bel, 1993; Yang et al., 1998) but a calculated mass of only
44 MDa (Rout et al., 2000). In vertebrates, the closely ap-
posed lamina could also contribute to experimental mass
measurements, as would posttranslational modification of
nucleoporins by glycosylation and/or phosphorylation. Tis-
sue and species differences may also contribute to differences
between the estimated masses of the rat liver and 

 

Xenopus

 

Table III. 

 

Relative abundance of mammalian nucleoporins

Nucleoporin Relative abundance

 

a

 

Yeast homologue(s) Relative abundance

 

a,b

 

Nup358 8 – –
Tpr 16 Mlp1p, Mlp2p ND
Nup214 8 Nup159p 8
gp210 16 – –
Nup205 16 Nup192p 16
Nup153 8 Nup1p

 

c

 

8
Nup188 8 Nup188p 16
POM121 8 – –
Nup155 32 Nup157p, Nup170p 32
Nup160 8 Nup120p 16
Nup133 16 Nup133p 16
Nup96 16 C-Nup145p 16
Nup107 32 Nup84p 16
Nup98 8 N-Nup145p, Nup116p, Nup100p 32
Nup93 32–48 Nic96p 32
Nup88 32 Nup82p 8–16
Nup62 16 Nsp1p 32
Nup75 (FLJ12549) 16 Nup85p 16
Nup58 48 Nup49p 16
ALADIN 8 – –
Nup54 32–48 Nup57p 16
Nup50 32 Nup2p

 

c

 

ND
Nup45 32 (Nup49p) (16)
NLP1 16 Nup42p 8
Nup43 (p42) 16 – –
RAE1 48 Gle2p 16–32
Seh1 (Sec13L) 16–32 Seh1p 16
Nup37 (p37) 16–32 – –
Sec13R 16–32 Sec13p ND
Nup35 (MP-44) 16–32 Nup53p, Nup59p 32

 

a

 

Copies per NPC.

 

b

 

Rout et al., 2000.

 

c

 

Direct sequence homology is not necessarily apparent. Rather, conserved domains, interactions, and localization imply functional similarities.
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oocyte NPCs. Overall, our analysis indicates that the mam-
malian NPC is composed of 

 

�

 

30 distinct nucleoporins that
are present in similar ratios to their yeast counterparts.

 

Discussion

 

Although the vertebrate NPC was first described several de-
cades ago and its structure has been relatively well character-
ized (Allen et al., 2000), its protein composition has not yet
been completely defined and a detailed understanding of

many of its cellular functions has proved elusive. Estimates
of the number of distinct NPC proteins have been as high as
100 but have recently fallen to a more conservative 40–50
(Vasu and Forbes, 2001). Our analysis of biochemically iso-
lated and enriched nucleoporins from rat liver nuclei shows
that the vertebrate NPC is comprised of 

 

�

 

30 distinct pro-
teins. Although we cannot exclude the possibility that some
nucleoporins were not retained or not identified in our anal-
ysis, we believe that this number is small. Our EM and im-
munoblot data, combined with the results of our MS analy-

 

Table IV. 

 

Summary of vertebrate nucleoporins

Motifs

 

b

 

Nup Nup subcomplexes Localization

 

a

 

FG WD Gly RBD ZF CC LZ AH EF Disease

 

Nup358 ? C Y Y Y Y
Tpr Nup98 N Y Y Oncogenic fusions

Nup214
Nup88
Nup62

C Y Y Y Y Y Oncogenic fusions

gp210 POM121 PM Y Y PBC autoantibodies
Nup205 Nup188/Nup93 ? Y
Nup153 Nup107 complex

 

c

 

N Y Y Y
Nup188 Nup205/Nup93 ?
POM121 gp210 PM Y Y
Nup155 ? C,N
Nup160 Nup107 complex

 

c

 

Nup98
Nup153

N

Nup133 Nup107 complex

 

c

 

Nup98
Nup153

C,N

Nup96 Nup107 complex

 

c

 

Nup98
Nup153

N

Nup107 Nup107 complex

 

c

 

Nup98
Nup153

C,N Y

Nup98 RAE1
Nup107 complex

 

c

 

Tpr

N Y Y Oncogenic fusions

Nup93 Nup62
Nup205/Nup188

N Y

Nup88 Nup214 C Y Upregulated in some tumors
Nup62 Nup62 complex

 

d

 

Nup214
C,N Y Y Y PBC autoantibodies

Nup75 ? ?
Nup58 Nup62 complex

 

d

 

C,N Y Y Y PBC autoantibodies
ALADIN ? ? Y AAAS
Nup54 Nup62 complex

 

d

 

C,N Y Y Y PBC autoantibodies
Nup50 Nup153 N Y Y
Nup45 Nup62 complex

 

d

 

C,N Y Y Y PBC autoantibodies
NLPI ? C Y Y
Nup43 ? ? Y Y
RAE1 Nup98 N Y
Seh1 ? ? Y
Nup37 Nup107 complex

 

c

 

Nup98
Nup153

? Y

Nup35 ? ? Y

Unless specifically discussed in the text, data are summarized from previously published reports (Allen et al., 2000; Ryan and Wente, 2000; Vasu and Forbes, 2001).

 

a

 

C, cytoplasmic face; N, nucleoplasmic face; PM, pore membrane.

 

b

 

FG, FG repeats; WD, WD repeats; Gly, glycosylated; RBD, Ran-binding domain; ZF, zinc fingers; CC, coiled coil; LZ, leucine zipper; AH, amphipathic he-
lix; EF, EF hand.

 

c

 

Nup107 complex: Nup160, Nup133, Nup107, Nup96, Nup37, Sec13.

 

d

 

Nup62 complex: Nup62, Nup58, Nup54, Nup45.
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sis, all indicate that the NPC remained intact during
fractionation and that nucleoporins were not lost prior to or
during the final extraction. We have maximized the number
of identified proteins by further fractionating the Empigen
BB supernatant to identify less abundant protein compo-
nents. Large-scale MS/MS analysis facilitated the identifica-
tion of proteins encoded by partial cDNA sequences or en-
coded by cDNAs from other species.

 

Nucleoporins and NPC-associated proteins

 

We identified the component proteins of a biochemically
purified nucleoporin fraction. Of the 94 proteins identified,
29 (

 

�

 

1/3) were classified as nucleoporins (Table IV). Six of
these nucleoporins have not been previously described. A
further 18 proteins were classified as NPC-associated based
on previous functional characterization. However, this dis-
tinction between nucleoporins and NPC-associated proteins
is not necessarily clear cut. Therefore, it may not be mean-
ingful to make such a clear distinction between NPC com-
ponents when trying to understand the structure and func-
tion of the NPC. Because an in-depth characterization of all
the novel proteins identified here was beyond the scope of
this study, we have classified novel proteins as nucleoporins
based on their apparently exclusive localization to the NPC.
Future work will reveal more on the functions of these pro-
teins and clarify their roles at the NPC.

It was surprising that only certain transport receptors, im-
portin-

 

�

 

, and TAP, were abundant in the Empigen BB su-
pernatant. Importin-

 

�

 

1 was also identified as a minor com-
ponent. Other transport receptors may be less tightly bound
to the NPC or may mediate the transport of less abundant
substrates. In addition, RanGAP1 remains associated with
the cytoplasmic fibrils and is expected to promote the disso-
ciation of export complexes in transit through the NPC
(Floer and Blobel, 1999). The presence of hnRNPs F, H,
and M in the Empigen BB supernatant may reflect the ex-
tent to which these hnRNPs form protein–protein contacts
with the NPC during mRNA export. As TAP is the receptor
responsible for the majority of mRNA export (Reed and
Hurt, 2002), it will be interesting to see if there is any link
between this receptor and hnRNPs F, H, and M. Ran,
RanGAP1, and RCC1 are all known to associate with the
NPC (Wilken et al., 1995; Wu et al., 1995; Yokoyama et
al., 1995; Matunis et al., 1996; Mahajan et al., 1997; Na-
kielny et al., 1999; Yaseen and Blobel, 1999; Fontoura et al.
2000). It is logical that proteins involved in nuclear trans-
port are localized, at least in part, to the NPC, as this is
where they function. In addition, the binding of RanGAP1
and RCC1 to opposite sides of the NPC maintains an asym-
metric distribution of RanGTP/RanGDP that specifies the
directionality of transport (Mattaj and Englmeier, 1998).

 

Comparison of yeast and vertebrate NPCs

 

Even though yeast and vertebrate NPCs share a conserved
basic framework, the vertebrate NPC is significantly larger
and has several additional domains (Akey and Radermacher,
1993; Yang et al., 1998). These include more intricate pe-
ripheral rings/filaments, a larger lumenal spoke complex do-
main, and a larger, hourglass-shaped central transporter.
Interestingly, many nucleoporins that localize to these addi-

tional structures have no yeast orthologue, for example
Nup358, gp210, and POM121 (Greber et al., 1990;
Hallberg et al., 1993; Wilken et al., 1995; Wu et al.,
1995). Other nucleoporins, including Nup214, Nup98, and
Nup62, undergo certain vertebrate-specific modifications
such as glycosylation (Davis and Blobel, 1987; Finlay et al.,
1987; Kraemer et al., 1994; Powers et al., 1995). Glycosyla-
tion has been shown to alter protein structure (Shogren et
al., 1989) and, although it would cause only a small increase
in mass, the effect of glycosylation on NPC size may be
disproportionate. Our estimates also suggest that Nup58,
Nup54, and Nup45 (putative components of the central
transporter; Guan et al., 1995) may be more abundant in
the vertebrate NPC than are their yeast homologues. These
factors may all potentially contribute to the greater dimen-
sions and complexity of the vertebrate NPC.

In addition to the aforementioned structural differences,
the vertebrate NPC also performs certain specialized func-
tions. The most obvious of these occurs during mitosis
when the vertebrate NE breaks down and the NPC disas-
sembles into subcomplexes. NE breakdown is thought to be
initiated by phosphorylation and several nucleoporins, in-
cluding Nup62, Nup98, Nup214, and gp210, are phos-
phorylated in a cell cycle–dependent manner (Macaulay et
al., 1995; Favreau et al., 1996; Miller et al., 1999). Because
yeast undergo a closed mitosis, mitotic phosphorylation as a
trigger for NE breakdown may be unnecessary. However, a
closed mitosis creates other problems, including a require-
ment for the spindle to somehow invade the nucleus. Two
yeast nucleoporins (Ndc1p and Cdc31p) are shared compo-
nents of both NPCs and the spindle pole body and may fa-
cilitate this process (Chial et al., 1998; Rout et al., 2000).
Mammals have no known homologue of Ndc1p and the
closest human homologue of Cdc31p, Centrin3, apparently
does not localize to the NPC (Middendorp et al., 1997).
Another vertebrate NPC specialization is the interaction
between NPCs and the lamina, an interaction mediated, at
least in part, by Nup153 (Smythe et al., 2000). Therefore,
it is not surprising that some Nup153 remains in the Empi-
gen BB pellet, and it may explain why a substantial amount
of Nup98 also does. Yeast, in contrast, has no homologous
nuclear lamina.

In several cases, yeast have two or more related nucleopor-
ins that correspond to a single mammalian nucleoporin.
Specifically, the yeast nucleoporins Nup157p/Nup170p,
Nup53p/Nup59p, and Nup100p/Nup116p/N-Nup145p
have homology to the mammalian nucleoporins Nup155,
Nup35, and Nup98, respectively. Although a search of hu-
man genome sequences reveals putative gene duplication
events for both Nup35 and Nup155, these duplications are
pseudogenes or partial transpositions and are, therefore, un-
likely to be functional. It is possible that one mammalian
nucleoporin can perform the functions of all its yeast ortho-
logues. Nup98, for example, contains domains specific to
both N-Nup145p, and Nup116p (Ryan and Wente, 2000).
Alternative splicing, an event very rare in yeast genes (Grave-
ley, 2001) but seen in some mammalian nucleoporins (Hu
and Gerace, 1998; Fontoura et al., 1999) may further in-
crease vertebrate nucleoporin diversity in a manner analo-
gous to the gene duplications seen in yeast.
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Evolutionary conservation of the NPC

 

Given their structural and functional differences, it is sur-
prising that vertebrate and yeast NPCs are composed of a
similar number of distinct proteins. As discussed above, ver-
tebrate-specific nucleoporins are probably the major factor
giving rise to species differences in NPC size and complex-
ity. However, two-thirds of the nucleoporins are conserved
between the two species and probably mediate conserved
functions. Although sequence homology between yeast and
mammalian nucleoporins is frequently low, their interac-
tions and localization suggests conservation of function. In
addition, some NPC-associated proteins are conserved from
yeast to humans. Sec13 is part of a nucleoporin subcomplex
in both yeast and mammals (Siniossoglou et al., 1996; Fon-
toura et al., 1999; Vasu et al., 2001). A SUMO-deconjugat-
ing enzyme also associates with NPCs in both species
(Schwienhorst et al., 2000; Hang and Dasso, 2002; Zhang
et al., 2002). In vertebrates, the SUMO E2 conjugating en-
zyme, Ubc9, and the E3 ligase, Nup358, also associate with
NPCs (Saitoh et al., 1997; Pichler et al., 2002) although it is
unknown if E2 or E3 enzymes associate with the yeast NPC.
However, it is interesting that at least some components of
the SUMO modification/demodification pathway associate
with NPCs in both higher and lower eukaryotes. This im-
plies that SUMO modification of proteins may play a con-
served role in nucleocytoplasmic transport.

Similar to the yeast NPC, our analysis revealed no motor
proteins, ATPases or other evidence of mechanochemical ac-
tivity. The most highly conserved features are FG repeat do-
mains, present in 

 

�

 

1/3 of the vertebrate nucleoporins. This
implies that yeast and vertebrate NPCs function similarly
and is consistent with a central role for the FG repeat do-
mains. Like the yeast NPC, the vertebrate NPC has a sur-
prisingly simple protein composition for a structure of its
size and mass. Compared to the ribosome, which has a mass
of 

 

�

 

4 MDa and consists of 

 

�

 

80 distinct proteins (Wool et
al., 1995), the vertebrate NPC has a mass of at least 60 MDa
and yet consists of only 

 

�

 

30 distinct proteins. This surpris-
ingly simple protein composition is a result of the high copy
number of nucleoporins within the NPC (owing to the high
degree of symmetry of the NPC) and also the high molecu-
lar mass of many nucleoporins.

A novel subfamily of nucleoporins
It is intriguing to note that, of the six novel nucleoporins
identified in this study, four of these (Nup37, Nup43,
Seh1, and ALADIN) are members of the WD repeat fam-
ily of proteins. Together with RAE1 and Sec13, these pro-
teins define a novel WD subfamily of NPC proteins. WD
repeats are thought to mediate the assembly of large mul-
tiprotein complexes (Smith et al., 1999). In the NPC,
WD repeats may mediate the assembly of subdomains of
the NPC, or facilitate the interaction of transport com-
plexes or other, novel multiprotein complexes with the
NPC. It is likely that evolutionarily conserved WD nucle-
oporins, such as Seh1, Sec13, and RAE1, are involved in
conserved NPC functions. However, Nup37, Nup43, and
ALADIN have no identifiable yeast orthologues, suggest-
ing that these nucleoporins have functions specific to the
higher eukaryotic NPC.

Nup43 and Nup37 have no characterized orthologues in
other organisms and no significant sequence homology
outside the WD repeats. Nup37 was previously described
as cofractionating with a nucleoporin complex containing
Nup107, Nup96, and Sec13 (Fontoura et al., 1999), further
supporting its classification as a nucleoporin. A complex ho-
mologous to the Nup107 complex has been described in
yeast and also contains Sec13p and the Sec13p-homologue
Seh1p (Siniossoglou et al., 1996). We do not yet know
whether human Seh1 is also present in the Nup107 complex
or whether Nup37 is a functional orthologue of Seh1p.

ALADIN also has no sequence homology outside its WD
repeats and its role at the NPC is unknown. ALADIN’s
function may prove to be particularly interesting since muta-
tions in this protein are associated with triple-A syndrome
(AAAS) (Tullio-Pelet et al., 2000). Although AAAS displays
some heterogeneity, it is characterized by three major symp-
toms: adrenocorticotropic hormone–resistant adrenal insuf-
ficiency, achalasia (failure to relax) of the esophageal sphinc-
ter muscle and alacrima (deficient tear production) (Orrell
and Clark, 2002). Neurological defects are also usually
present although it is unclear whether these are primary or
secondary defects of AAAS. Several truncations, point muta-
tions and splice site mutations have been identified in AAAS
patients (Tullio-Pelet et al., 2000; Handschug et al., 2001;
Sandrini et al., 2001; Schmittmann-Ohters et al., 2001;
Goizet et al., 2002) and we are currently examining the ef-
fects of these mutations on the localization and function of
ALADIN. Further characterization of ALADIN could pro-
vide valuable insights into both NPC function and the
pathogenesis of AAAS.

Conclusions/perspectives
We have completed a proteomic study of the mammalian
NPC. We have found that the mammalian NPC is com-
posed of �30 distinct protein components and that many of
these components are conserved from yeast to mammals.
These findings indicate that the overall structure and func-
tion of the NPC is conserved. Nonetheless, there are also
nucleoporins unique to both yeast and mammals, suggesting
a degree of organism-specific specialization. We identified
six novel mammalian nucleoporins and defined a new sub-
family of nucleoporins characterized by the presence of WD
repeats, one of which is linked to the human disease known
as AAAS. A more detailed knowledge of the composition of
the mammalian NPC paves the way to a better understand-
ing of its assembly, interactions and functions.

Materials and methods
Preparation and chromatographic separation of an enriched 
nucleoporin fraction
Rat liver nuclei were prepared as previously described (Blobel and Potter,
1966) and stored at �80�C in 100-U (3 � 108 nuclei) aliquots. Nuclei were
thawed and pelleted at 800 g for 1 min. Pelleted nuclei were resuspended
with constant vortexing at a final concentration of 100 U/ml�1 by drop-wise
addition of buffer A (0.1 mM MgCl2, 1 mM DTT, 0.5 mM PMSF, 1 �g/ml�1

leupeptin/pepstatin/aprotinin) supplemented with 5 �g/ml�1 DNase I and 5
�g/ml�1 RNase A. After resuspension, nuclei were immediately diluted to 20
U/ml�1 by addition of buffer B (buffer A � 10% sucrose, 20 mM triethanola-
mine, pH 8.5) with constant vortexing. After digestion at room temperature
for 15 min, the suspension was underlayed with 4 ml ice-cold buffer C
(buffer A � 30% sucrose, 20 mM triethanolamine, pH 7.5) and centrifuged
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at 3,500 g for 10 min in a swinging bucket rotor (Sorvall SH-3000). The pel-
let was resuspended in ice-cold buffer D (buffer A � 10% sucrose, 20 mM
triethanolamine, pH 7.5) at a final concentration of 100 U/ml�1. The suspen-
sion was diluted to 67 U/ml�1 with buffer D � 0.3 mg/ml�1 heparin, and
then immediately underlayed and pelleted as above. The heparin pellet was
resuspended in ice-cold buffer D (100 U/ml�1), diluted to 67 U/ml�1 with
buffer D � 3% Triton X-100, 0.075% SDS, and then pelleted as above. The
resultant pellet (the NPC-lamina fraction) was resuspended in buffer D �
0.3% Empigen BB (final concentration of 100 U/ml�1). After incubation on
ice for 10 min, the insoluble lamina was separated from soluble nucleopor-
ins by centrifugation in a microfuge at 16,000 g for 15 min.

For reverse-phase separation, the Empigen BB supernatant was TCA-
precipitated and resuspended in 70% A: 30% B (A: 60% formic acid; B:
60% formic acid, 33% acetonitrile) at �1,000 U/ml�1. After centrifugation
to remove debris, the supernatant was loaded onto a C4 column (Perkin
Elmer) equilibrated with 70% A: 30% B. SDS-PAGE analysis found no pro-
teins in the flowthrough. Bound proteins were eluted with a 4-h gradient
from 70% A: 30% B to 100% B, followed by 1.5 h at 100% B (flow rate of
0.25 ml/min�1). 45 � 1-ml fractions were collected every 4 min from 2 h
(35% A: 65% B). Fractions and flowthrough were diluted in distilled water
and precipitated with 20% TCA in the presence of 0.01% deoxycholate (fi-
nal dilution factor of 1:5) on ice for 1 h. The pellet was washed twice with
�20�C acetone, once overnight and once for 15 min. After air drying, the
pellet was dissolved in SDS sample buffer and analyzed by 4–20% Tris-
Glycine SDS-PAGE (Novex, Invitrogen). Because late-eluting proteins
tended to elute inefficiently over a wide range, later fractions were pooled
prior to SDS-PAGE.

EM
The DNase/RNase and heparin pellets were prepared for EM analysis as
previously described (Pain et al., 1990). The Triton X-100 and Empigen BB
pellets were resuspended in buffer D and sonicated briefly to produce frag-
ments that could be viewed as single layers. After sonication, the samples
were pelleted and washed once with distilled water before adhering to
glow-discharged Formvar carbon-coated copper grids and staining with
2% uranyl acetate.

Mass spectrometric protein identification
Individual bands were excised from an SDS-PAGE gel (Novex; Invitrogen)
and processed for analysis as described previously (Krutchinsky et al.,
2000). Proteins were identified using a combination of peptide mapping
(single-stage MS) and MS/MS. All mass spectra were obtained using in-
house assembled matrix-assisted laser desorption/ionization (MALDI)–qua-
drupole-quadrupole time of flight (QqTOF) (Krutchinsky et al., 2000) and
MALDI-ion trap (Krutchinsky et al., 2001) instruments.

Peptide mapping data obtained by MALDI-QqTOF-MS were compared
with theoretical maps computed from protein sequences present in the
NCBI nonredundant (NR) database, using the program ProFound (Zhang
and Chait, 2000). Protein identities were confirmed using MS/MS of se-
lected peptide ion peaks on the same instrument, using the program Pep-
Frag (Fenyö et al., 1998). To identify proteins whose sequences were not
present in the NR database, we used MS/MS data to search the NCBI ex-
pressed sequence tag database using PepFrag.

To maximize the number of identified proteins, we repeated the isola-
tion and identification of proteins using a newly constructed MALDI-ion
trap capable of high throughput MS/MS measurements (Krutchinsky et al.,
2001). MALDI-ion trap-MS/MS data were analyzed using Mascot (Per-
kins et al., 1999) and Sonar (http://canada.proteometrics.com/PROWL/
sonar.html) to search rat, mouse, and human NR, and expressed sequence
tag databases. Large numbers of peptides from each protein band were an-
alyzed by MS/MS to increase the probability of identifying rat proteins
from mouse and human databases.

Molecular biology
A partial sequence of p30 was obtained by sequencing IMAGE EST
3936128. Comparison with genomic sequences suggests that the first nucle-
otide of this EST is the third nucleotide of a putative start methionine. The
size of this predicted protein agrees with that determined experimentally by
SDS-PAGE. However, 5	-RACE to determine the complete 5	 sequence was
unsuccessful, probably owing to the high GC content. p37 was amplified di-
rectly from a fetal brain cDNA library (CLONTECH Laboratories, Inc.) using
primers deduced from EST sequences. The 3	 sequence of p43 was obtained
by sequencing IMAGE EST 3918958 and the 5	 sequence was deduced by
5	-RACE from a fetal brain cDNA library (Marathon-Ready; CLONTECH
Laboratories, Inc.). To assess subcellular localization, full-length cDNAs (or,
in the case of p30, all of the known cDNA sequence) were cloned into

pEGFP-C1 (CLONTECH Laboratories, Inc.) in frame with an NH2-terminal
EGFP tag and transfected into HeLa cells as described below.

Transfections
HeLa cells were maintained in DME supplemented with 10% fetal bovine
serum, 1% penicillin-streptomycin, and 10 mM Hepes (Invitrogen). For
transfection, cells were grown on coverslips to �50% confluency and
transfected with 1 �g DNA using lipofectAMINE-PLUS (Invitrogen) accord-
ing to the manufacturer’s protocol. 48 h posttransfection, cells were fixed in
2% formaldehyde in PBS (30 min at room temperature) then permeabi-
lized in acetone at �20�C for 2 min. NPCs were visualized with mAb414
followed by Alexa 594-conjugated anti–mouse (Molecular Probes). Confo-
cal images were collected using the Ultraview confocal microscope and
acquisition software (Perkin-Elmer) mounted on a Zeiss Axiovert and
equipped with a Coolpix CCD camera.

Estimation of the relative abundance of nucleoporins
2, 5, 10, and 20 U of Empigen BB supernatant were separated by 4–20%
Tris-Glycine SDS-PAGE (Novex; Invitrogen) and stained with zinc or Coo-
massie. Using NIH Image, we calculated the relative abundance of bands
within each load/staining condition. For each band an average relative
abundance was calculated using values from the different conditions. Cer-
tain values were excluded to ensure that loading and/or stain saturation
did not distort the value. The relative abundance was then corrected for
molecular weight.

Online supplemental material
Online supplemental materials are available at http:www.jcb.org/cgi/
content/full/jcb.200206106/DC1. Proteins identified only in the C4-sepa-
rated Empigen BB supernatant (Fig. 3) are shown in Table SI. Bands ex-
cised from the Empigen BB pellet are indicated in Fig. S1 and the proteins
identified are shown in Table SII.
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