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53BP1 is a multi-domain DNA damage response factor containing a 
chromatin-binding tudor domain, an oligomerization domain, tandem 
BRCA1 C-terminal (BRCT) domains, and an N-terminal domain with 28 
SQ/TQ potential phosphorylation sites for phosphatidylinositol 3-kinase-
related kinases [PIKKs, ATM/ATM and Rad3-related (ATR)/DNA-
dependent protein kinase catalytic subunit (DNA-PKcs)] (1–3). 53BP1 
contributes to DNA repair in several ways: it facilitates joining between 
intrachromosomal DSBs at a distance (synapsis) (4–7); it enables hetero-
chromatic DNA repair through relaxation of nucleosome compaction (2, 
3), and it protects DNA ends from resection and thereby favors repair of 
DSBs that occur in G1 by non-homologous end joining (NHEJ) (4, 5, 8). 
Consistent with its role in DNA end protection, 53BP1 is essential for 
CSR in B lymphocytes (9, 10). 

Structure-function studies indicate that, besides its recruitment to 
DNA ends, protection requires 53BP1 phosphorylation (4), but how this 
protective effect is mediated is unknown. To identify phosphorylation-
dependent interactors of 53BP1, we applied SILAC (Stable Isotope La-
beling by Amino acids in Cell culture). Trp53bp1−/− (Trp53bp1 encodes 
53BP1) B cells were infected with retroviruses encoding a C-terminal 
deleted version of 53BP1 (53BP1DB) or a phosphomutant in which all 28 
N-terminal potential PIKK phosphorylation sites were mutated to ala-
nine (53BP1DB28A) (4), in media containing isotopically heavy 
(53BP1DB) or light (53BP1DB28A) lysine and arginine (fig. S1, A to C) 
(11). 

Most proteins co-precipitating with 53BP1DB and 53BP1DB28A dis-
played a H/(H + L) ratio of ~0.5, which is characteristic of phospho-

independent association (average of 
0.57 ± 0.09, peptide count ≥ 4) (Fig. 1 
and table S1). Many of these proteins 
are non-specific contaminants, but 
others such as KRAB-associated pro-
tein 1 (KAP-1), dynein light chain 
LC8-type 1 (Dynll1), Nijmegen break-
age syndrome 1 (Nbs1), and H2AX, 
represent authentic phospho-
independent 53BP1 interacting pro-
teins (fig. S1D). Three proteins dis-
played an abundance ratio that was 
more than four standard deviations 
above the mean indicating that they 
interact specifically with phosphory-
lated 53BP1: Pax interaction with tran-
scription-activation domain protein-1 
(Paxip1, or PTIP; 0.95), PTIP associat-
ed protein 1 (Pa1; 0.97), and Rif1 
(0.96) (Fig. 1 and figs. S1D and S2). 
PTIP was known to interact with 
53BP1 in a phospho-dependent manner 
(12) whereas Pa1 and Rif1 were not. 

Rif1 was originally identified in 
budding yeast as a protein with a key 
role in telomere length maintenance 
(13). However, in mammalian cells, 
Rif1 is not essential for telomere ho-
meostasis, but has been assigned a 
number of different roles in maintain-
ing genome stability including partici-
pation in the DNA damage response 
(14–16), repair of S-phase DNA dam-
age (17, 18), and regulation of origin 
firing during DNA replication (19, 20). 
However, the mechanism by which 
Rif1 might contribute to DNA repair 

and maintaining genome stability is not known. 
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DNA double-strand breaks (DSBs) represent a threat to the genome because they 
can lead to loss of genetic information and chromosome rearrangements. The DNA 
repair protein p53 binding protein 1 (53BP1) protects the genome by limiting 
nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, 
but whether it does so directly is not known. Here we identify Rapl-interacting factor 
1 (Rif1) as an Ataxia-Telangiectasia Mutated (ATM) phosphorylation-dependent 
interactor of 53BP1, and show that absence of Rif1 results in 5′-3′ DNA end 
resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs 
DNA repair in the G1 and S phases of the cell cycle, interferes with class switch 
recombination (CSR) in B lymphocytes, and leads to accumulation of chromosome 
DSBs. 

To confirm that Rif1 interaction with 53BP1 is phosphorylation de-
pendent, we performed Western blot analysis of Flag-
immunoprecipitates from lysates of irradiated Trp53bp1−/− B cells in-
fected with retroviruses encoding 53BP1DB or 53BP1DB28A. Whereas 
Dynll1, a phospho-independent 53BP1 interactor (SILAC ratio: 0.55) 
(fig. S1D), co-immunoprecipitated with 53BP1DB and 53BP1DB28A to a 
similar extent (Fig. 2A), only 53BP1DB co-immunoprecipitated with 
Rif1. We conclude that the interaction between 53BP1 and Rif1 is de-
pendent on phosphorylation of 53BP1. 

ATM phosphorylates 53BP1 in response to irradiation-induced 
DSBs (1, 3). To determine whether ATM induces irradiation-dependent 
association between Rif1 and 53BP1, we compared irradiated and non-
irradiated B cells in co-immunoprecipitation experiments. Although 
small amounts of Rif1 were detected in 53BP1DB immunoprecipitates 
from unirradiated cells, this was increased by a factor higher than 3 after 
irradiation, and the increase was abrogated by treatment with the ATM 
inhibitor KU55933 (Fig. 2B). We conclude that Rif1 preferentially inter-
acts with phosphorylated 53BP1 in a DNA damage- and ATM-
dependent manner. 

Rif1 is recruited to DNA damage foci by 53BP1 (15). To determine 
whether 53BP1 phosphorylation is required for Rif1 focus formation, we 
tested Rif1 foci in irradiated Trp53bp1−/− immortalized mouse embryon-
ic fibroblasts (iMEFs), which were stably transduced with either 
53BP1DB or 53BP1DB28A. Rif1 foci were readily detected and co-
localized with 53BP1DB (Fig. 2C). In contrast, although 53BP1DB28A 
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formed normal appearing foci, there were only rare Rif1 foci that did not 
co-localize with 53BP1DB28A (Fig. 2C). Furthermore, Rif1 recruitment to 
ionizing radiation-induced foci (IRIF) and co-localization with 53BP1 
was abrogated in ATM-deficient but not DNA-PKcs-deficient iMEFs 
(fig. S3) (15). We conclude that Rif1 recruitment to DNA damage re-
sponse foci is dependent on ATM-mediated 53BP1 phosphorylation. 

53BP1 phosphorylation is essential for CSR (4). To examine the role 
of Rif1 in joining DSBs during CSR, we conditionally ablated Rif1 in B 
cells using CD19Cre, which is expressed specifically in B cells 
(Rif1F/FCd19Cre/+ mice) (fig. S4, A to C). To induce CSR, B cells were 
activated with lipopolysaccharide (LPS) and interleukin (IL)-4 in vitro, 
and switching to IgG1 or IgG3 was measured by flow cytometry. CSR to 
IgG1 and IgG3 was markedly reduced in Rif1F/FCd19Cre/+ B cells, but 
less so than Trp53bp1−/− controls (Fig. 3, A and B, and fig. S5). Switch 
junctions from Rif1F/FCd19Cre/+ B cells were comparable to Trp53bp1−/− 
and wild type controls (7) (fig. S6), which indicates that, similar to 
53BP1 deficiency, absence of Rif1 does not alter the nature of produc-
tive CSR joining events. A similar CSR defect was also obtained by 
conditionally deleting Rif1 with 4-hydroxy-tamoxifen (4HT) in 
Rif1F/FROSA26Cre-ERT2/+ B cells (fig. S7). Finally, shRNA-mediated par-
tial down-regulation of CtBP-interacting protein (CtIP), which interacts 
with Rif1 (fig. S8C), and has been implicated in processing of DNA 
ends (21, 22), resulted in a very small but reproducible increase in CSR 
(fig. S8, A and B). Thus, Rif1 is essential for normal CSR, and CtIP may 
not be the only factor that contributes to end processing in Rif1-deficient 
B cells. 

CSR requires cell division, activation-induced cytidine deaminase 
(AID) expression and Igh germline transcription (23). There are conflict-
ing reports that Rif1 is required for proliferation in MEFs, but not DT40 
B cells (17, 18). We found that cell division profiles of Rif1F/FCd19Cre/+ 
and 4HT-treated Rif1F/FROSA26Cre-ERT2/+ B cells were indistinguishable 
from controls (Fig. 3, A and B; and fig. S7, A, C, E, and G), indicating 
that Rif1 is dispensable for B cell proliferation in vitro. Finally, AID 
mRNA and protein expression, and Igh germline transcription were un-
affected by Rif1 deletion (fig. S4, B and D). 

We next examined the role of Rif1 in cell cycle progression in pri-
mary B cells. We found no major differences in the percentage of cells 
in G0/G1 and S-phases (Fig. 3C). However, the number of cells in G2/M 
was increased approximately twofold in the absence of Rif1 (2.64, 2.56 
and 1.91 fold at 48, 72, and 96 hours respectively) (Fig. 3C). Similar 
results were also obtained using Rif1F/FROSA26Cre-ERT2/+ B cells treated 
with 4HT (fig. S7, H and I). Furthermore, irradiation increases the ac-
cumulation of Rif1F/FCd19Cre/+ B cells in G2/M (Fig. 3D). In addition, 
Trp53bp1−/− iMEFs expressing 53BP1DB28A, which did not recruit Rif1 
to IRIF (Fig. 2C), exhibited delayed progression through S-phase follow-
ing DNA damage with accumulation of cells in G2 after irradiation (fig. 
S9). 

Accumulation of cells in G2/M may reflect the persistence of unre-
paired DNA damage in a fraction of Rif1-deficient cells. To investigate 
this possibility, we analyzed metaphase spreads from B cells dividing in 
response to LPS and IL-4 in vitro. These cells express AID, which pro-
duces DSBs in Igh, and less frequently at off-target sites throughout the 
genome, in the G1 phase of the cell cycle (24–26). Chromosomal aberra-
tions were increased in Rif1F/FCd19Cre/+ B cells compared to controls 
(Fig. 3E), with many localized to the Igh locus (Fig. 3E). Consistent with 
the observation that Igh is targeted by AID in the G1 phase of the cell 
cycle, all of the Igh breaks were chromosome breaks (Fig. 3, E and F). 
Interestingly, the frequency of c-myc/Igh translocations is moderately 
increased in Rif1F/FCd19Cre/+ B cells, however, the breakpoint distribu-
tion was similar to Cd19Cre/+ control (1.5 × 10−6 versus 1.0 × 10−6 in 
control, P = 0.039) (Fig. 3G and fig. S10). We conclude that in the ab-
sence of Rif1, DSBs fail to be resolved efficiently in the G1, S, or G2 
phases leading to increased levels of genomic instability including 

chromosome breaks at Igh and translocations in dividing B cells. 
In the absence of 53BP1, DSBs produced by AID at the Igh locus 

accumulate the single-stranded DNA-binding replication protein A com-
plex (RPA) as a result of increased DNA end resection (24). To deter-
mine if Rif1 is required for DNA end protection by 53BP1, we 
performed RPA-ChIP-seq (chromatin immunoprecipitation followed by 
massive parallel sequencing) experiments on Rif1F/FCd19Cre/+ and con-
trol B cells. Ablation of Rif1 was indistinguishable from loss of 53BP1 
in that in its absence RPA decorates the Igh locus asymmetrically, in a 
manner consistent with 5′-3′ resection (Fig. 4A) (27). In addition, ab-
sence of Rif1 also results in RPA accumulation at non-Igh genes like 
Il4ra and Pim1 that are damaged by AID in G1 (Fig. 4B) (24, 25). 
Rad51 is the recombinase that mediates repair of DSBs by homologous 
recombination in S/G2/M (22). To confirm that Rif1 prevents resection 
that takes place in S-phase, we monitored Rad51 accumulation in acti-
vated B cells by ChIP-Seq. Loss of Rif1 was indistinguishable from loss 
of 53BP1 (27), in that it led to asymmetric Rad51 accumulation at sites 
of AID-inflicted DNA damage (Fig. 4, C and D). We conclude that in 
the absence of Rif1, AID-induced DSBs incurred in G1 persist and un-
dergo extensive 5′-3′ DNA end resection in S/G2/M, as measured by 
RPA and Rad51 accumulation. 

A role for Rif1 in maintenance of genome stability and protection of 
DNA ends against resection is consistent with its phosphorylation-
dependent recruitment to the N-terminal domain of 53BP1 (4). 53BP1 
facilitates DNA repair and prevents DNA end resection during CSR. In 
the absence of 53BP1, AID-induced DSBs are resolved inefficiently in 
G1 leading to chromosome breaks, Igh instability, and resolution by 
alternative-NHEJ or HR instead of classical-NHEJ (4, 8, 27). Our exper-
iments show that in the absence of Rif1, 53BP1 is insufficient to pro-
mote genomic stability, mediate efficient Igh repair, DNA end protection 
or CSR. Thus, these 53BP1 activities require Rif1 recruitment to the 
phosphorylated N terminus of 53BP1. Rif1 is likely to have additional 
functions beyond 53BP1, CSR and DNA end protection because where-
as Trp53bp1−/− mice are viable, Rif1 deletion is lethal (17). Indeed, Rif1 
is believed to play a role in the repair of S-phase DNA damage (17, 18), 
and in the regulation of replication timing (19, 20, 28). Analogously, 
additional CSR factor(s) may exist downstream of 53BP1, as class 
switching in Rif1-deficienct B cells is significantly higher than in 
Trp53bp1−/−. 

In summary our data are consistent with a model whereby ATM-
mediated phosphorylation of 53BP1 recruits Rif1 to sites of DNA dam-
age, where it facilitates DNA repair in part by protecting DNA ends 
from resection (Fig. 4E). In the absence of Rif1, DNA breaks incurred in 
G1 fail to be repaired by NHEJ and undergo extensive 5′-3′ end resec-
tion resulting in accumulation of chromosome breaks and genome insta-
bility. 
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Fig. 2. Rif1 interaction with 53BP1 is phospho-, damage- and 
ATM-dependent. (A) Western blot analysis of anti-Flag 
immuno-precipitates from irradiated Trp53bp1−/− B 
lymphocytes infected with empty vector (vec), 53BP1DB, or 
53BP1DB28A virus. Triangles indicate 3-fold dilution. Data are 
representative of two independent experiments. (B) Western 
blot analysis of anti-Flag immunoprecipitates from 
Trp53bp1−/− B cells infected with empty vector or 53BP1DB. 
Cells were either left untreated or irradiated (50 Gy, 45 min 
recovery) in the presence or absence of the ATM kinase 
inhibitor KU55933 (ATMi). Triangles indicate 3-fold dilution. 
Data are representative of two independent experiments. (C) 
Immunofluorescent staining for 53BP1 (Flag) and Rif1 in 
irradiated Trp53bp1−/− iMEFs reconstituted with 53BP1DB or 
53BP1DB28A retroviruses (4). Magnification, 100X; Scale bars, 
5 μm. Data are representative of two independent 
experiments. 

Fig. 1. Identification of phospho-dependent 53BP1 
interactors. Graph shows the H/(H + L) ratio distribution of 
proteins identified by SILAC. Error bars represent the 
standard deviation of the H/(H + L) mean value for all the 
peptides identified for each individual protein (only proteins 
with ≥4 peptides were included). ( )" / and “σ” are 
the mean (0.57) and SD (0.09) of the distribution, 
respectively. H: heavy; L: light. 
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Fig. 4. Rif1 prevents resection of DNA ends at sites of AID-
induced DNA damage. (A to D) RPA and Rad51 occupancy 
at the Igh locus (A and C) and at non-Igh AID targets genes 
(B and D) in B cells activated to undergo class switching. 
ChIP-seq libraries were resolved into upper (+) and lower (-) 
DNA strands to show RPA and Rad51 association with sense 
and antisense strands. Within a specified genomic window, 
graphs have the same scale and show tag density. Deep-
sequencing samples were normalized per library size, and 
TPM (Tags Per Million) values were calculated for each genic 
region as indicated in Materials and Methods and shown in 
parenthesis. Data are representative of two independent 
experiments for RPA ChIP-seq and one for Rad51. (E) Model 
of Rif1 recruitment and DNA end protection at DSBs. DNA 
damage activates ATM, which phosphorylates many targets, 
including 53BP1. This event recruits Rif1 to 53BP1 at the 
DSB, where it inhibits DNA resection. The extensive 
resection in the absence of Rif1 impairs CSR at the Igh 
locus. 

Fig. 3. Rif1 deficiency impairs class switch recombination, 
and causes Igh and genome instability in primary B cells. (A) 
(Left) CSR to IgG1 96 hours post-stimulation of B 
lymphocytes with LPS and IL-4. (Right) Summary dot plot for 
three independent experiments (n = 3 mice per genotype). 
Mean values are: 23.6% for Cd19Cre/+, 23.4% for 
Rif1F/+Cd19Cre/+, and 5.0% for Rif1F/FCd19Cre/+ (P < 0.008 with 
the paired student’s t test). (Bottom) B cell proliferation by 
carboxyfluorescein succinimidyl ester (CFSE) dilution. Data 
are representative of three independent experiments. (B) 
Same as in (A) but for CSR to IgG3 after stimulation with 
LPS alone. Mean values are: 3.2% for Cd19Cre/+, 3.4% for 
Rif1F/+Cd19Cre/+, and 0.5% for Rif1F/FCd19Cre/+ (P < 0.008). 
(C) (Left) Cell cycle analysis of primary B cells after 
stimulation with LPS and IL-4. (Right) Summary histograms 
for S-phase, G0/G1 and G2/M cells from two independent 
experiments (n = 4 mice per genotype). Error bars indicate 
SEM. * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** P < 0.001. 
(D) (Left) Cell cycle analysis of LPS- and IL-4-stimulated 
splenocytes at the indicated times post-irradiation (6 Gy). 
(Right) Summary graphs for S-phase, G0/G1 and G2/M cells 
from two independent experiments (n = 3 mice per 
genotype). Error bars indicate SD. (E) Analysis of genomic 
instability in metaphases from B cell cultures. Chtid: 
chromatid; Chre: chromosome. Data are representative of 
two independent experiments (n = 50 metaphases analyzed 
per genotype per experiment). (F) Examples of Igh-
associated aberrations in Rif1F/FCd19Cre/+ B cells. 
Chromosomes were hybridized with an Igh Cα probe (green; 
centromeric of Cγ1) and a telomere sequence-specific probe 
(red), and counterstained with DAPI (dark blue/black). 
Magnification, 63X; Scale bars, 1 μm. (G) Frequency of c-
myc/Igh translocations in activated B cells. Graph shows 
combined results from 3 mice per genotype. 
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