Publications

  • Thumbnail graphic for paper

    Accessing Bioactive Natural Products from the Human Microbiome. 06-2018. Milshteyn A, Colosimo DA, Brady SF. Cell Host & Microbe
    Pubmed - PDF

    ABSTRACT:
    Natural products have long played a pivotal role in the development of therapeutics for a variety of diseases. Traditionally, soil and marine environments have provided a rich reservoir from which diverse chemical scaffolds could be discovered. Recently, the human microbiome has been recognized as a promising niche from which secondary metabolites with therapeutic potential have begun to be isolated. In this Review, we address how the expansive history of identifying bacterial natural products in other environments is informing the approaches being brought to bear on the study of the human microbiota. We also touch on how these tools can lead to insights about microbe-microbe and host-microbe interactions and help generate biological hypotheses that may lead to developments of new therapeutic modalities.
  • Thumbnail graphic for paper

    Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. 02-2018. Hover BM, Kim SH, Katz M, Charlop-Powers Z, Owen JG, Ternei MA, Maniko J, Estrela AB, Molina H, Park S, Perlin DS & Brady SF. Nature Microbiology.
    PubMed  - PDF

    ABSTRACT:
    Despite the wide availability of antibiotics, infectious diseases remain a leading cause of death worldwide(1). In the absence of new therapies, mortality rates due to untreatable infections are predicted to rise more than tenfold by 2050. Natural products (NPs) made by cultured bacteria have been a major source of clinically useful antibiotics. In spite of decades of productivity, the use of bacteria in the search for new antibiotics was largely abandoned due to high rediscovery rates(2,3). As only a fraction of bacterial diversity is regularly cultivated in the laboratory and just a fraction of the chemistries encoded by cultured bacteria are detected in fermentation experiments, most bacterial NPs remain hidden in the global microbiome. In an effort to access these hidden NPs, we have developed a culture-independent NP discovery platform that involves sequencing, bioinformatic analysis and heterologous expression of biosynthetic gene clusters captured on DNA extracted from environmental samples. Here, we describe the application of this platform to the discovery of the malacidins, a distinctive class of antibiotics that are commonly encoded in soil microbiomes but have never been reported in culture-based NP discovery efforts. The malacidins are active against multidrug-resistant pathogens, sterilize methicillin-resistant Staphylococcus aureus skin infections in an animal wound model and did not select for resistance under our laboratory conditions.
  • Thumbnail graphic for paper

    Human Microbiome Inspired Antibiotics with Improved beta-Lactam Synergy against MDR Staphylococcus aureus. 01-2018. Chu J, Vila-Farres X, Inoyama D, Gallardo-Macias R, Jankowski M, Satish S, Freundlich JS, Brady SF. ACS Infectious Diseases.
    Pubmed - PDF

    ABSTRACT:
    The flippase MurJ is responsible for transporting the cell wall intermediate lipid II from the cytoplasm to the outside of the cell. While essential for the survival of bacteria, it remains an underexploited target for antibacterial therapy. The humimycin antibiotics are lipid II flippase (MurJ) inhibitors that were synthesized on the basis of bioinformatic predictions derived from secondary metabolite gene clusters found in the human microbiome. Here, we describe an SAR campaign around humimycin A that produced humimycin 17S. Compared to humimycin A, 17S is a more potent beta lactam potentiator, has a broader spectrum of activity, which now includes both methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecalis (VRE), and did not lead to any detectable resistance when used in combination with a beta-lactam. Combinations of beta-lactam and humimycin 17S provide a potentially useful long-term MRSA regimen.
  • Thumbnail graphic for paper

    Identification of the Colicin V Bacteriocin Gene Cluster by Functional Screening of a Human Microbiome Metagenomic Library . 01-2018. Cohen LJ, Han S, Huang YH, Brady SF. ACS Infectious Diseases.
    Pubmed - PDF

    ABSTRACT:
    The forces that shape human microbial ecology are complex. It is likely that human microbiota, similarly to other microbiomes, use antibiotics as one way to establish an ecological niche. In this study, we use functional metagenomics to identify human microbial gene clusters that encode for antibiotic functions. Screening of a metagenomic library prepared from a healthy patient stool sample led to the identification of a family of clones with inserts that are 99% identical to a region of a virulence plasmid found in avian pathogenic Escherichia coli. Characterization of the metagenomic DNA sequence identified a colicin V biosynthetic cluster as being responsible for the observed antibiotic effect of the metagenomic clone against E. coli. This study presents a scalable method to recover antibiotic gene clusters from humans using functional metagenomics and highlights a strategy to study bacteriocins in the human microbiome which can provide a resource for therapeutic discovery.
  • Thumbnail graphic for paper

    An Optimized Synthetic-Bioinformatic Natural Product Antibiotic Sterilizes Multidrug-Resistant &ITAcinetobacter baumannii&IT-Infected Wounds . 01-2018. Vila-Farres X, Chu J, Ternei MA, Lemetre C, Park S, Perlin DS, Brady SF. Msphere.
    Pubmed - PDF

    ABSTRACT:
    The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) Acinetobacter baumannii clinical isolates, as well as other Gram-negative bacterial pathogens. In a rat cutaneous wound model, it completely sterilized MDR A. baumannii wound infections with no sign of rebound. Mechanistic studies point to a membrane-associated mode of action that results in leakage of intracellular contents.

    IMPORTANCE Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant ( MDR) Acinetobacter baumannii is of particular concern. The sharp increase in cases of MDR A. baumannii infections in recent years prompted the CDC and WHO to list this pathogen as a "serious threat" and "critical pathogen,"respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR A. baumannii strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR A. baumannii infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.

  • Thumbnail graphic for paper

    Commensal bacteria make GPCR ligands that mimic human signalling molecules. 09-2017. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF. Nature.
    Pubmed - PDF

    ABSTRACT:
    Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).
  • Thumbnail graphic for paper

    Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale . 08-2017. Lemetre C, Maniko J, Charlop-Powers Z, Sparrow B, Lowe AJ, Brady SF. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES.
    PubMed  - PDF

    ABSTRACT:
    Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent. Using environmental variables collected at each soil site, we looked for environmental factors that correlated with either high overall domain richness or changes in the domain composition. Among the environmental variables we measured, changes in biosynthetic domain composition correlate most closely with changes in latitude and to a lesser extent changes in pH. Although it is unclear at this time the exact mix of factors that may drive the relationship between biosynthetic domain composition and latitude, from a practical perspective the identification of a latitudinal basis for differences in soil metagenome biosynthetic domain compositions should help guide future natural product discovery efforts.
  • Thumbnail graphic for paper

    Antimicrobials Inspired by Nonribosomal Peptide Synthetase Gene Clusters. 02-2017. Vila-Farres X, Chu J, Inoyama D, Ternei MA, Lemetre C, Cohen LJ, Cho W, Reddy BVB, Zebroski HA, Freundlich JS, Perlin DS, Brady SF. Journal of the American Chemical Society.Pubmed PDF

    ABSTRACT:
    Bacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters. These structures are then chemically synthesized to give synthetic-bioinformatic natural products (syn-BNPs). Using this approach, we screened synBNPs inspired by nonribosomal peptide synthetases against microbial pathogens, and discovered an antibiotic for which no resistance could be identified and an antifungal agent with activity against diverse fungal pathogens.
  • Thumbnail graphic for paper

    Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. 01-2017. Riquelme C, Dapkevicius M, Miller AZ, Charlop-Powers Z, Brady SF, Mason C, Cheeptham N. Applied Microbiology and Biotechnology.
    Pubmed - PDF

    ABSTRACT:
    Caves are regarded as extreme habitats with appropriate conditions for the development of Actinobacteria. In comparison with other habitats, caves have not yet been the target of intensive screening for bioactive secondary metabolites produced by actinomycetes. As a primary screening strategy, we conducted a metagenomic analysis of the diversity and richness of a key gene required for non-ribosomal peptide (NRP) biosynthesis, focusing on cave-derived sediments from two Canadian caves (a lava tube and a limestone cave) to help us predict whether different types of caves may harbor drug-producing actinobacteria. Using degenerate PCR primers targeting adenylation domains (AD), a conserved domain in the core gene in NRP biosynthesis, a number of amplicons were obtained that mapped back to biomedically relevant NRP gene cluster families. This result guided our culture-dependent sampling strategy of actinomycete isolation from the volcanic caves of Canada (British Columbia) and Portugal (Azores) and subsequent characterization of their antibacterial and enzymatic activities. Multiple enzymatic and antimicrobial activities were identified from bacterial of the Arthrobacter and Streptomyces genera demonstrating that actinomycetes from volcanic caves are promising sources of antibacterial, antibiofilm compounds and industrially relevant enzymes.
  • Thumbnail graphic for paper

    Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. 09-2017. Bitok JK, Lemetre C, Ternei MA, Brady SF. FEMS Microbial Lett.
    Pubmed - PDF

    ABSTRACT:
    The majority of environmental bacteria are not readily cultured in the lab, leaving the natural products they make inaccessible using culture-dependent discovery methods. Cloning and heterologous expression of DNA extracted from environmental samples (environmental DNA, eDNA) provides a means of circumventing this discovery bottleneck. To facilitate the identification of clones containing biosynthetic gene clusters, we developed a model heterologous expression reporter strain Streptomyces albus::bpsA ΔPPTase. This strain carries a 4΄-phosphopantetheinyl transferase (PPTase)-dependent blue pigment synthase A gene, bpsA, in a PPTase deletion background. eDNA clones that express a functional PPTase restore production of the blue pigment, indigoidine. As PPTase genes often occur in biosynthetic gene clusters (BGCs), indigoidine production can be used to identify eDNA clones containing BGCs. We screened a soil eDNA library hosted in S. albus::bpsA ΔPPTase and identified clones containing non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS) and mixed NRPS/PKS biosynthetic gene clusters. One NRPS gene cluster was shown to confer the production of myxochelin A to S. albus::bpsA ΔPPTase.
  • Thumbnail graphic for paper

    Antimicrobials Inspired by Nonribosomal Peptide Synthetase Gene Clusters. 02-2017. Vila-Farres X, Chu J, Inoyama D, Ternei MA, Lemetre C, Cohen LJ, Cho W, Reddy BV, Zebroski HA, Freundlich JS, Perlin DS, Brady SF, J. Am. Chem. Soc.
    Pubmed - PDF

    ABSTRACT:
    Bacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters. These structures are then chemically synthesized to give synthetic-bioinformatic natural products (syn-BNPs). Using this approach, we screened syn-BNPs inspired by nonribosomal peptide synthetases against microbial pathogens, and discovered an antibiotic for which no resistance could be identified and an antifungal agent with activity against diverse fungal pathogens.
  • Thumbnail graphic for paper

    Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. 2017. Riquelme C, Dapkevicius M, Miller AZ, Charlop-Powers Z, Brady SF, Mason C, Cheeptham N. Appl Microbiol Biotechnol.
    Pubmed - PDF

    ABSTRACT:
    Caves are regarded as extreme habitats with appropriate conditions for the development of Actinobacteria. In comparison with other habitats, caves have not yet been the target of intensive screening for bioactive secondary metabolites produced by actinomycetes. As a primary screening strategy, we conducted a metagenomic analysis of the diversity and richness of a key gene required for non-ribosomal peptide (NRP) biosynthesis, focusing on cave-derived sediments from two Canadian caves (a lava tube and a limestone cave) to help us predict whether different types of caves may harbor drug-producing actinobacteria. Using degenerate PCR primers targeting adenylation domains (AD), a conserved domain in the core gene in NRP biosynthesis, a number of amplicons were obtained that mapped back to biomedically relevant NRP gene cluster families. This result guided our culture-dependent sampling strategy of actinomycete isolation from the volcanic caves of Canada (British Columbia) and Portugal (Azores) and subsequent characterization of their antibacterial and enzymatic activities. Multiple enzymatic and antimicrobial activities were identified from bacterial of the Arthrobacter and Streptomyces genera demonstrating that actinomycetes from volcanic caves are promising sources of antibacterial, antibiofilm compounds and industrially relevant enzymes.
  • Thumbnail graphic for paper

    Comprehensive Analysis of a Novel Ketoreductase for Pentangular Polyphenol Biosynthesis.12-2016. Valentic TR, Jackson DR, Brady SF, Tsai SC. ACS Chemical Biology.
    Pubmed - PDF

    ABSTRACT:
    Arixanthomycins are pentangular polyphenols (PP) with potent antiproliferative activities that were discovered through the heterologous expression of environmental DNA-derived gene clusters. The biosynthesis of arixanthomycin and other PPs is unusual because it requires several novel type II polyketide synthase (PKS) enzymes for its complete maturation. Most type II PKSs contain a ketoreductase (KR) that mediates the C7-C12 first ring cyclization and C-9 reduction. In contrast, based on previous studies of product analysis and genome mining, the arixanthomycin (ARX) gene cluster harbors a C-11 reducing KR (ARX 27), a C9-C14 first-ring aromatase/cyclase (ARX 19), and an unprecedented C-17 and C-19 reducing KR (ARX 21). While bioinformatics is useful for predicting novel enzymes, the functions of ARX 19, ARX 21, and ARX 27 have yet to be confirmed. Further, the structural features that predispose the ARX biosynthetic enzymes to process atypical poly-β-ketone scaffolds remain unknown. We report the crystal structure of ARX 21, the first structure of an enzyme involved in PP biosynthesis and likely a C-17 and C-19 reducing-KR, which is structurally similar to C-15 reducing KRs. Structural comparison of ARX 21 and other C-9 reducing KRs revealed a difference in the enzyme active site that may enlighten the molecular basis of KR substrate specificity. In addition, we report the successful in vitro reconstitution of ARX 19. The structural characterization of ARX 21 in conjunction with the in vitro results of ARX 19 lays the groundwork toward a complete in vitro and structural characterization of type II PKS enzymes involved in PP biogenesis.
  • Thumbnail graphic for paper

    Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. 12-2016. Charlop-Powers Z, Pregitzer CC, Lemetre C, Ternei MA, Maniko J, Hover BM, Calle PY, McGuire KL, Garbarino J, Forgione HM, Charlop-Powers S, Brady SF PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES.
    Pubmed - PDF

    ABSTRACT:
    Numerous therapeutically relevant small molecules have been identified from the screening of natural products (NPs) produced by environmental bacteria. These discovery efforts have principally focused on culturing bacteria from natural environments rich in biodiversity. We sought to assess the biosynthetic capacity of urban soil environments using a phylogenetic analysis of conserved NP biosynthetic genes amplified directly from DNA isolated from New York City park soils. By sequencing genes involved in the biosynthesis of nonribosomal peptides and polyketides, we found that urban park soil microbiomes are both rich in biosynthetic diversity and distinct from nonurban samples in their biosynthetic gene composition. A comparison of sequences derived from New York City parks to genes involved in the biosynthesis of biomedically important NPs produced by bacteria originally collected from natural environments around the world suggests that bacteria producing these same families of clinically important antibiotics, antifungals, and anticancer agents are actually present in the soils of New York City. The identification of new bacterial NPs often centers on the systematic exploration of bacteria present in natural environments. Here, we find that the soil microbiomes found in large cities likely hold similar promise as rich unexplored sources of clinically relevant NPs.
  • Thumbnail graphic for paper

    Discovery of MRSA active antibiotics using primary sequence from the human microbiome. 12-2016. Chu J, Brady, SF. Nat. Chem. Biol.
    Pubmed - PDF

    ABSTRACT:
    Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.
  • Thumbnail graphic for paper

    Natural Product Discovery through Improved Functional Metagenomics in Streptomyces. 08-2016. Iqbal HA, Low-Beinart L, Obiajulu JU, Brady, SF. J. Am.Chem. Soc.
    Pubmed - PDF

    ABSTRACT:
    Because the majority of environmental bacteria are not easily culturable, access to many bacterially encoded secondary metabolites will be dependent on the development of improved functional metagenomic screening methods. In this study, we examined a collection of diverse Streptomyces species for the best innate ability to heterologously express biosynthetic gene clusters. We then optimized methods for constructing high quality metagenomic cosmid libraries in the best Streptomyces host. An initial screen of a 1.5 million-membered metagenomic library constructed in Streptomyces albus, the species that exhibited the highest propensity for heterologous expression of gene clusters, led to the identification of the novel natural product metatricycloene (1). Metatricycloene is a tricyclic polyene encoded by a reductive, iterative polyketide-like gene cluster. Related gene clusters found in sequenced genomes appear to encode a largely unexplored collection of structurally diverse, polyene-based metabolites.
  • Thumbnail graphic for paper

    Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast. 09-2016. Kang HS, Charlop-Powers Z, Brady, SF. ACS Synthetic Biology.
    Pubmed - PDF

    ABSTRACT:
    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.
  • Thumbnail graphic for paper

    Culture-independent discovery of natural products from soil metagenomes. 03-2016. Katz M, Hover BM, Brady SF. J Ind Microbiol Biotechnol.
    Pubmed - PDF

    ABSTRACT:
    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.
  • Minimum Information about a Biosynthetic Gene cluster. 09-2015. Medema MH, Brady SF. Nat. Chem. Bio.Thumbnail graphic for paper
    Pubmed - PDF

    ABSTRACT:
    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
  • Thumbnail graphic for paper

    Functional metagenomic discovery of bacterial effectors in the human microbiome and the discovery of commendamide, a GPCR G2A/132 agonist. 09-2015. Cohen L, Brady SF. PNAS.
    Pubmed - PDF

    ABSTRACT:
    The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-κB, a transcription factor known to play a central role in mediating responses to environmental stimuli. This screen led to the identification of 26 unique commensal bacteria effector genes (Cbegs) that are predicted to encode proteins with diverse catabolic, anabolic, and ligand-binding functions and most frequently interact with either glycans or lipids. Detailed analysis of one effector gene family (Cbeg12) recovered from all three patient libraries found that it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine (commendamide). This metabolite was also found in culture broth from the commensal bacterium Bacteroides vulgatus, which harbors a gene highly similar to Cbeg12. Commendamide resembles long-chain N-acyl-amides that function as mammalian signaling molecules through activation of G-protein-coupled receptors (GPCRs), which led us to the observation that commendamide activates the GPCR G2A/GPR132. G2A has been implicated in disease models of autoimmunity and atherosclerosis. This study shows the utility of functional metagenomics for identifying potential mechanisms used by commensal bacteria for host interactions and outlines a functional metagenomics-based pipeline for the systematic identification of diverse commensal bacteria effectors that impact host cellular functions.
  • Thumbnail graphic for paper

    Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. 07-2015. Montiel D, Brady SF. PNAS.
    Pubmed - PDF

    ABSTRACT:
    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.
  • Thumbnail graphic for paper

    Phylogeo: an R package for geographic analysis and visualization of microbiome data. 09-2015. Charlop-Powers Z, Brady SF. Bioinformatics.
    Pubmed - PDF

    ABSTRACT:
    We have created an R package named phylogeo that provides a set of geographic utilities for sequencing-based microbial ecology studies. Although the geographic location of samples is an important aspect of environmental microbiology, none of the major software packages used in processing microbiome data include utilities that allow users to map and explore the spatial dimension of their data. phylogeo solves this problem by providing a set of plotting and mapping functions that can be used to visualize the geographic distribution of samples, to look at the relatedness of microbiomes using ecological distance, and to map the geographic distribution of particular sequences. By extending the popular phyloseq package and using the same data structures and command formats, phylogeo allows users to easily map and explore the geographic dimensions of their data from the R programming language.
  • Thumbnail graphic for paper

    Targeted Metagenomics: Finding Rare Tryptophan Dimer Natural Products in the Environment. 04-2015. Chang FY, Ternei MA, Calle PY, Brady SF.  J. Am . Chem. Soc. 
    PubMed  - PDF

    ABSTRACT:
    Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs. As suggested by our phylogenetic analysis of CPAS genes, identified in our survey of crude eDNA extracts, reductasporine (2) contains an unprecedented TD core structure: a pyrrolinium indolocarbazole core that is likely key to its unusual bioactivity profile. This work demonstrates the potential for the discovery of structurally rare and biologically interesting natural products using targeted metagenomics, where environmental samples are prescreened to identify the most phylogenetically unique gene sequences and molecules associated with these genes are accessed through targeted metagenomic library construction and heterologous expression.
  • Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors. 04-2015. Owen JG, Charlop-Powers Z, Smith AG, Ternei MA, Calle PY, Reddy BVB, Montiel D, Brady SF. Proc Natl Acad Sci USA.
    PubMed - PDF

    ABSTRACT:
    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.
  • Thumbnail graphic for paper

    Global biogeographic sampling of bacterial secondary metabolism. 01-2015. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimarães DO, de Frias UA,Pupo MT, Seepe P, Feng Z, Brady SF. eLIFE.
    PubMed - PDF

    ABSTRACT:
    Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts.
  • Thumbnail graphic for paper

    Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangularpolyphenols as a case study. 12-2014. Kang HS, Brady SF.  J. Am. Chem. Soc.
    PubMed - PDF

    ABSTRACT:
    Sequence-guided mining of metagenomic libraries provides a means of recovering specific natural product gene clusters of interest from the environment. In this study, we use ketosynthase gene (KS) PCR amplicon sequences (sequence tags) to explore the structural and biosynthetic diversities of pentangular polyphenols (PP). In phylogenetic analyses, eDNA-derived sequence tags often fall between closely related clades that are associated with gene clusters known to encode distinct chemotypes. We show that these common "intermediate" sequence tags are useful for guiding the discovery of not only novel bioactive metabolites but also collections of closely related gene clusters that can provide new insights into the evolution of natural product structural diversity. Gene clusters corresponding to two eDNA-derived KSβ sequence tags that reside between well-defined KSβ clades associated with the biosynthesis of (C24)-pradimicin and (C26)-xantholipin type metabolites were recovered from archived soil eDNA libraries. Heterologous expression of these gene clusters in Streptomyces albus led to the isolation of three new PPs (compounds 1-3). Calixanthomycin A (1) shows potent antiproliferative activity against HCT-116 cells, whereas arenimycins C (2) and D (3) display potent antibacterial activity. By comparing genotypes and chemotypes across all known PP gene clusters, we define four PP subfamilies, and also observe that the horizontal transfer of PP tailoring genes has likely been restricted to gene clusters that encode closely related chemical structures, suggesting that only a fraction of the "natural product-like" chemical space that can theoretically be encoded by these secondary metabolite tailoring genes has likely been sampled naturally.
  • Thumbnail graphic for paper

    Mutations in the proteolipid subunits of the vacuolar H+-ATPase provide resistance to indolotryptoline natural products. 11-2014. Chang FY, Kawashima SA, Brady SF. Biochemistry.
    PubMed - PDF

    ABSTRACT:
    Indolotryptoline natural products represent a small family of structurally unique chromopyrrolic acid-derived antiproliferative agents. Like many prospective anticancer agents before them, the exploration of their potential clinical utility has been hindered by the limited information known about their mechanism of action. To study the mode of action of two closely related indolotryptolines (BE-54017, cladoniamide A), we selected for drug resistant mutants using a multidrug resistance-suppressed (MDR-sup) Schizosaccharomyces pombe strain. As fission yeast maintains many of the basic cancer-relevant cellular processes present in human cells, it represents an appealing model to use in determining the potential molecular target of antiproliferative natural products through resistant mutant screening. Full genome sequencing of resistant mutants identified mutations in the c and c' subunits of the proteolipid substructure of the vacuolar H(+)-ATPase complex (V-ATPase). This collection of resistance-conferring mutations maps to a site that is distant from the nucleotide-binding sites of V-ATPase and distinct from sites found to confer resistance to known V-ATPase inhibitors. Acid vacuole staining, cross-resistance studies, and direct c/c' subunit mutagenesis all suggest that indolotryptolines are likely a structurally novel class of V-ATPase inhibitors. This work demonstrates the general utility of resistant mutant selection using MDR-sup S. pombe as a rapid and potentially systematic approach for studying the modes of action of cytotoxic natural products.
  • Thumbnail graphic for paper

    Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities. 09-2014. Milshteyn A, Schneider JS, Brady SF.  Chemistry & Biology.
    PubMed - PDF

    ABSTRACT:
    Microbial-derived natural products provide the foundation for most of the chemotherapeutic arsenal available to contemporary medicine. In the face of a dwindling pipeline of new lead structures identified by traditional culturing techniques and an increasing need for new therapeutics, surveys of microbial biosynthetic diversity across environmental metabiomes have revealed enormous reservoirs of as yet untapped natural products chemistry. In this review, we touch on the historical context of microbial natural product discovery and discuss innovations and technological advances that are facilitating culture-dependent and culture-independent access to new chemistry from environmental microbiomes with the goal of reinvigorating the small molecule therapeutics discovery pipeline. We highlight the successful strategies that have emerged and some of the challenges that must be overcome to enable the development of high-throughput methods for natural product discovery from complex microbial communities.
  • Thumbnail graphic for paper

    eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. 08-2014. Reddy BVB, Milshteyn A,  Charlop-Powers Z, Brady SF. Chemistry & Biology.
    PubMed - PDF

    ABSTRACT:
    Environmental Surveyor of Natural Product Diversity (eSNaPD) is a web-based bioinformatics and data aggregation platform that aids in the discovery of gene clusters encoding both novel natural products and new congeners of medicinally relevant natural products using (meta)genomic sequence data. Using PCR-generated sequence tags, the eSNaPD data-analysis pipeline profiles biosynthetic diversity hidden within (meta)genomes by comparing sequence tags to a reference data set of characterized gene clusters. Sample mapping, molecule discovery, library mapping, and new clade visualization modules facilitate the interrogation of large (meta)genomic sequence data sets for diverse downstream analyses, including, but not limited to, the identification of environments rich in untapped biosynthetic diversity, targeted molecule discovery efforts, and chemical ecology studies. eSNaPD is designed to generate a global atlas of biosynthetic diversity that can facilitate a systematic, sequence-based interrogation of nature's biosynthetic potential.
  • Thumbnail graphic for paper

    The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. 06-2014. Biggins JB, Kang HS, Ternei MA, DeShazer D, Brady SF. J. Am. Chem. Soc.
    PubMed - PDF

    ABSTRACT:
    Increasing evidence has shown that small-molecule chemistry in microbes (i.e., secondary metabolism) can modulate the microbe-host response in infection and pathogenicity. The bacterial disease melioidosis is conferred by the highly virulent, antibiotic-resistant pathogen Burkholderia pseudomallei (BP). Whereas some macromolecular structures have been shown to influence BP virulence (e.g., secretion systems, cellular capsule, pili), the role of the large cryptic secondary metabolome encoded within its genome has been largely unexplored for its importance to virulence. Herein we demonstrate that BP-encoded small-molecule biosynthesis is indispensible for in vivo BP pathogenicity. Promoter exchange experiments were used to induce high-level molecule production from two gene clusters (MPN and SYR) found to be essential for in vivo virulence. NMR structural characterization of these metabolites identified a new class of lipopeptide biosurfactants/biofilm modulators (the malleipeptins) and syrbactin-type proteasome inhibitors, both of which represent overlooked small-molecule virulence factors for BP. Disruption of Burkholderia virulence by inhibiting the biosynthesis of these small-molecule biosynthetic pathways may prove to be an effective strategy for developing novel melioidosis-specific therapeutics.
  • Thumbnail graphic for paper

    Metagenomic smal molecule discovery methods. 06-2014. Charlop-Powers Z, Milshteyn A, Brady SF. Current Opinions in Microbiology.
    PubMed - PDF

    ABSTRACT:
    Metagenomic approaches to natural product discovery provide the means to harvest bioactive small molecules synthesized by environmental bacteria without the requirement of first culturing these organisms. Advances in sequencing technologies and general metagenomic methods are beginning to provide the tools necessary to unlock the unexplored biosynthetic potential encoded by the genomes of uncultured environmental bacteria. Here, we highlight recent advances in sequence-based and functional-based metagenomic approaches that promise to facilitate antibiotic discovery from diverse environmental microbiomes.
  • Thumbnail graphic for paper

    Antibacterial enzymes from functional screening of metagenomic libraries hosted in Ralstonia metallidurans. 05-2014. Iqbal HA, Craig JW, Brady SF. FEMS Microbiol Lett.
    PubMed - PDF

    ABSTRACT:
    Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes, and metabolites that have a variety of potential clinical and industrial uses. Here, we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700 000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase, and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities.
  • Thumbnail graphic for paper

    Arixanthomycins A-C: phylogeny-guided discovery of biologically active eDNA-derived pentangular polyphenols. 04-2014. Kang HS, Brady SF. ACS Chem Biol.
    PubMed - PDF

    ABSTRACT:
    Soil microbiomes are a rich source of uncharacterized natural product biosynthetic gene clusters. Here we use short conserved biosynthetic gene sequences (natural product sequence tags) amplified from soil microbiomes as phylogenetic markers to correlate genotype to chemotype and target the discovery of novel bioactive pentangular polyphenols from the environment. The heterologous expression of an environmental DNA-derived gene cluster (the ARX cluster), whose ketosynthase beta (KSβ) sequence tag was phylogenetically distinct from any known KSβ sequence, led to the discovery of the arixanthomycins. Arixanthomycin A (1) exhibits potent antiproliferative activity against human cancer cell lines.
  • Thumbnail graphic for paper

    Characterization of an Environmental DNA-Derived Gene Cluster that Encodes the Bisindolylmaleimide Methylarcyriarubin. 04-2014. Chang FY, Brady SF. CHEMBIOCHEM.
    PubMed - PDF

    ABSTRACT:
    Bisindolylmaleimides represent a naturally occurring class of metabolites that are of interest because of their protein kinase inhibition activity. From a metagenomic library constructed with soil DNA, we identified the four gene mar cluster, a bisindolylmaleimide gene cluster that encodes for methylarcyriarubin (1) production. Heterologous expression of the mar gene cluster in E. coli revealed that the Rieske dioxygenase MarC facilitates the oxidative decarboxylation of a chromopyrrolic acid (CPA) intermediate to yield the bisindolylmaleimide core. The characterization of the mar cluster defines a new role for CPA in the biosynthesis of structurally diverse bacterial tryptophan dimers.
  • Thumbnail graphic for paper

    Chemical-biogeographic survey of secondary metabolism in soil. 03-2014. Charlop-Powers Z, Owen JG, Reddy BV, Ternei MA, Brady SF. Proc Natl Acad Sci USA.
    PubMed - PDF

    • PNAS Commentory PDF
    ABSTRACT:
    In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.
  • Thumbnail graphic for paper

    Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. 10-2013. Chang FY, Ternei MA, Calle PY, Brady SF. J Am Chem Soc.
    PubMed - PDF

    ABSTRACT:
    Here we investigate bacterial tryptophan dimer (TD) biosynthesis by probing environmental DNA (eDNA) libraries for chromopyrrolic acid (CPA) synthase genes. Functional and bioinformatics analyses of TD clusters indicate that CPA synthase gene sequences diverge in concert with the functional output of their respective clusters, making this gene a powerful tool for guiding the discovery of novel TDs from the environment. Twelve unprecedented TD biosynthetic gene clusters that can be arranged into five groups (A-E) based on their ability to generate distinct TD core substructures were recovered from eDNA libraries. Four of these groups contain clusters from both cultured and culture independent studies, while the remaining group consists entirely of eDNA-derived clusters. The complete synthetic refactoring of a representative gene cluster from the latter eDNA specific group led to the characterization of the erdasporines, cytotoxins with a novel carboxy-indolocarbazole TD substructure. Analysis of CPA synthase genes in crude eDNA suggests the presence of additional TD gene clusters in soil environments.
  • Thumbnail graphic for paper

    Arimetamycin A: Improving Clinically Relevant Families of Natural Products through Sequence-Guided Screening of Soil Metagenomes. 09-2013. Kang HS, Brady SF. Angew Chem Int Ed Engl.
    PubMed

    • Selected for Angew. Chem. Int. Ed. Engl back cover
    ABSTRACT:
    Sequence-tag-guided screening of soil environmental DNA libraries can be used to guide the discovery of new compounds with improved properties. In heterologous expression experiments the eDNA-derived arm cluster encodes arimetamycin A, an anthracycline that is more potent than clinically used natural anthracyclines and retains activity against multidrug-resistant (MDR) cancer cells.
  • Thumbnail graphic for paper

    Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. 07-2013. Owen JG, Reddy BV, Ternei MA, Charlop-Powers Z,Calle PY, Kim JH, Brady SF. Proc Natl Acad Sci U S A
    PubMed - PDF

    ABSTRACT:
    Complex microbial ecosystems contain large reservoirs of unexplored biosynthetic diversity. Here we provide an experimental framework and data analysis tool to facilitate the targeted discovery of natural-product biosynthetic gene clusters from the environment. Multiplex sequencing of barcoded PCR amplicons is followed by sequence similarity directed data parsing to identify sequences bearing close resemblance to biosynthetically or biomedically interesting gene clusters. Amplicons are then mapped onto arrayed metagenomic libraries to guide the recovery of targeted gene clusters. When applied to adenylation- and ketosynthase-domain amplicons derived from saturating soil DNA libraries, our analysis pipeline led to the recovery of biosynthetic clusters predicted to encode for previously uncharacterized glycopeptide- and lipopeptide-like antibiotics; thiocoraline-, azinomycin-, and bleomycin-like antitumor agents; and a rapamycin-like immunosuppressant. The utility of the approach is demonstrated by using recovered eDNA sequences to generate glycopeptide derivatives. The experiments described here constitute a systematic interrogation of a soil metagenome for gene clusters capable of encoding naturally occurring derivatives of biomedically relevant natural products. Our results show that previously undetected biosynthetic gene clusters with potential biomedical relevance are very common in the environment. This general process should permit the routine screening of environmental samples for gene clusters capable of encoding the systematic expansion of the structural diversity seen in biomedically relevant families of natural products.
  • Thumbnail graphic for paper

    Meeting Report: 1st International Functional Metagenomics Workshop, St. Jacobs, Ontario, Canada. 04-2013. Engel K, Ashby D, Brady SF, Cowan DA, Doemer J, Edwards EA, Fiebig K, Martens EC, McCormac D, Mead DA, Miyazaki K, Moreno-Hagelsieb G, O’Gara F, Reid A, Rose DR, Simonet P, Sjöling S, Smalla K, Streit WR, Tedman-Jones J, Valla S, Wellington EMH, Wu CC, Liles MR, Neufeld JD, Sessitsch A, Charles TC. SIGS
    PubMed

    ABSTRACT:
    This report summarizes the events of the 1st International Functional Metagenomics Workshop. The workshop was held on May 7 and 8, 2012, in St. Jacobs, Ontario, Canada and was focused on building an international functional metagenomics community, exploring strategic research areas, and identifying opportunities for future collaboration and funding. The workshop was initiated by researchers at the University of Waterloo with support from the Ontario Genomics Institute (OGI), Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Waterloo.
  • Thumbnail graphic for paper

    The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. 04-2013. Qaisar U, Luo L, Haley CL, Brady SF, Carty NL, Colmer-Hamood JA, Hamood AN. PLoS One
    PubMed

    ABSTRACT:
    The Pseudomonas aeruginosa fimbrial structures encoded by the cup gene clusters (cupB and cupC) contribute to its attachment to abiotic surfaces and biofilm formation. The P. aeruginosa pvcABCD gene cluster encodes enzymes that synthesize a novel isonitrile functionalized cumarin, paerucumarin. Paerucumarin has already been characterized chemically, but this is the first report elucidating its role in bacterial biology. We examined the relationship between the pvc operon and the cup gene clusters in the P. aeruginosa strain MPAO1. Mutations within the pvc genes compromised biofilm development and significantly reduced the expression of cupB1-6 and cupC1-3, as well as different genes of the cupB/cupC two-component regulatory systems, roc1/roc2. Adjacent to pvc is the transcriptional regulator ptxR. A ptxR mutation in MPAO1 significantly reduced the expression of the pvc genes, the cupB/cupC genes, and the roc1/roc2 genes. Overexpression of the intact chromosomally-encoded pvc operon by a ptxR plasmid significantly enhanced cupB2, cupC2, rocS1, and rocS2 expression and biofilm development. Exogenously added paerucumarin significantly increased the expression of cupB2, cupC2, rocS1 and rocS2 in the pvcA mutant. Our results suggest that pvc influences P. aeruginosa biofilm development through the cup gene clusters in a pathway that involves paerucumarin, PtxR, and different cup regulators.
  • Thumbnail graphic for paper

    Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. 02-2013. Chang FY, Brady SF. Proc Natl Acad Sci U S A
    PubMed

    • Highlighted in PNAS 
    ABSTRACT:
    Natural product discovery by random screening of broth extracts derived from cultured bacteria often suffers from high rates of redundant isolation, making it ever more challenging to identify novel biologically interesting natural products. Here we show that homology-based screening of soil metagenomes can be used to specifically target the discovery of new members of traditionally rare, biomedically relevant natural product families. Phylogenetic analysis of oxy-tryptophan dimerization gene homologs found within a large soil DNA library enabled the identification and recovery of a unique tryptophan dimerization biosynthetic gene cluster, which we have termed the bor cluster. When heterologously expressed in Streptomyces albus, this cluster produced an indolotryptoline antiproliferative agent with CaMKIIδ kinase inhibitory activity (borregomycin A), along with several dihydroxyindolocarbazole anticancer/antibiotics (borregomycins B-D). Similar homology-based screening of large environmental DNA libraries is likely to permit the directed discovery of new members within other previously rare families of bioactive natural products.
  • Thumbnail graphic for paper

    Thumbnail graphic for paperSelective Enrichment of Environmental DNA Libraries for Genes Encoding Nonribosomal Peptides and Polyketides by Phosphopantetheine Transferase-Dependent Complementation of Siderophore Biosynthesis. 1-2013. Charlop-Powers Z, Banik JJ, Owen JG, Craig JW, Brady SF. ACS Chem Biol
    PubMed

    ABSTRACT:
    The cloning of DNA directly from environmental samples provides a means to functionally access biosynthetic gene clusters present in the genomes of the large fraction of bacteria that remains recalcitrant to growth in the laboratory. Herein, we demonstrate a method by which complementation of phosphopantetheine transferase deletion mutants can be used to restore siderophore biosynthesis and to therefore selectively enrich eDNA libraries for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene sequences to unprecedented levels. The common use of NRPS/PKS-derived siderophores across bacterial taxa makes this method generalizable and should allow for the facile selective enrichment of NRPS/PKS-containing biosynthetic gene clusters from large environmental DNA libraries using a wide variety of phylogenetically diverse bacterial hosts.
  • Thumbnail graphic for paper

    Tetarimycin A, an MRSA active antibiotic identified through induced expression of environmental DNA gene clusters. 11-2012. Kallifidas D, Kang HS, Brady SF. J Am Chem Soc
    PubMed

    ABSTRACT:
    The propagation of DNA extracted directly from environmental samples in laboratory-grown bacteria provides a means to study natural products encoded in the genomes of uncultured bacteria. However, gene silencing often hampers the functional characterization of gene clusters captured on environmental DNA clones. Here we show that the overexpression of transcription factors found in sequenced environmental DNA-derived biosynthetic gene clusters, in conjunction with traditional culture-broth extract screening, can be used to identify new bioactive secondary metabolites from otherwise-silent gene clusters. Tetarimycin A, a tetracyclic methicillin-resistant Staphylococcus aureus (MRSA)-active antibiotic, was isolated from the culture-broth extract of Streptomyces albus cultures cotransformed with an environmentally derived type-II polyketide biosynthetic gene cluster and its pathway-specific Streptomyces antibiotic regulatory protein (SARP) cloned under the control of the constitutive ermE* promoter.
  • Thumbnail graphic for paper

    Reassembly of Functionally Intact Environmental DNA-Derived Biosynthetic Gene Clusters. 10-2012. Kallifidas D, Brady SF. Methods Enzymol
    PubMed

    ABSTRACT:
    Only a small fraction of the bacterial diversity present in natural microbial communities is regularly cultured in the laboratory. Those bacteria that remain recalcitrant to culturing cannot be examined for the production of bioactive secondary metabolites using standard pure-culture approaches. The screening of genomic DNA libraries containing DNA isolated directly from environmental samples (environmental DNA (eDNA)) provides an alternative approach for studying the biosynthetic capacities of these organisms. One drawback of this approach has been that most eDNA isolation procedures do not permit the cloning of DNA fragments of sufficient length to capture large natural product biosynthetic gene clusters in their entirety. Although the construction of eDNA libraries with inserts big enough to capture biosynthetic gene clusters larger than ∼40kb remains challenging, it is possible to access large gene clusters by reassembling them from sets of smaller overlapping fragments using transformation-associated recombination in Saccharomyces cerevisiae. Here, we outline a method for the reassembly of large biosynthetic gene clusters from captured sets of overlapping soil eDNA cosmid clones. Natural product biosynthetic gene clusters reassembled using this approach can then be used directly for functional heterologous expression studies.
  • Thumbnail graphic for paper

    Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. 08-2012. Biggins JB, Ternei MA, Brady SF. J Am Chem Soc
    PubMed - PDF

    ABSTRACT:
    Sequenced bacterial genomes are routinely found to contain gene clusters that are predicted to encode metabolites not seen in fermentation-based studies. Pseudomallei group Burkholderia are emerging pathogens whose genomes are particularly rich in cryptic natural product biosynthetic gene clusters. We systematically probed the influence of the cryptic secondary metabolome on the virulence of these bacteria and found that disruption of the MAL gene cluster, which is natively silent in laboratory fermentation experiments and conserved across this group of pathogens, attenuates virulence in animal models. Using a promoter exchange strategy to activate the MAL cluster, we identified malleilactone, a polyketide synthase-derived cytotoxic siderophore encoded by this gene cluster. Small molecules targeting malleilactone biosynthesis either alone or in conjunction with antibiotics could prove useful as therapeutics to combat melioidosis and glanders.
  • Thumbnail graphic for paper

    Biocatalysts and small molecule products from metagenomic studies. 04-2012. Iqbal HA, Feng Z, Brady SF. Curr Opin Chem Biol
    PubMed - PDF

    ABSTRACT:
    The vast majority of bacteria present in environmental samples have never been cultured and therefore have not been exploited for the ability to produce useful biocatalysts or collections of biocatalysts generating interesting small molecules. Metagenomic libraries constructed using DNA extracted directly from natural bacterial communities offer access to the genetic information present in the genomes of these as yet uncultured bacteria. This review highlights recent efforts to recover both discrete enzymes and small molecules from metagenomic libraries.
  • Thumbnail graphic for paper

    Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. 04-2012. Reddy BV, Kallifidas D, Kim JH, Charlop-Powers Z, Feng Z, Brady SF. Appl Environ Microbiol
    PubMed - PDF

    • Highlighted by AEM
    ABSTRACT:
    The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies.
  • Thumbnail graphic for paper

    Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. 02-2012. Feng Z, Chakraborty D, Dewell SB, Reddy BV, Brady SF. J Am Chem Soc
    PubMed - PDF

    ABSTRACT:
    In a recent study of polyketide biosynthetic gene clusters cloned directly from soil, we isolated two antibiotics, fasamycins A and B, which showed activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. To identify the target of the fasamycins, mutants with elevated fasamycin A minimum inhibitory concentrations were selected from a wild-type culture of E. faecalis OG1RF. Next-generation sequencing of these mutants, in conjunction with in vitro biochemical assays, showed that the fasamycins inhibit FabF of type II fatty acid biosynthesis (FASII). Candidate gene overexpression studies also showed that fasamycin resistance is conferred by fabF overexpression. On the basis of comparisons with known FASII inhibitors and in silico docking studies, the chloro-gem-dimethyl-anthracenone substructure seen in the fasamycins is predicted to represent a naturally occurring FabF-specific antibiotic pharmacophore. Optimization of this pharmacophore should yield FabF-specific antibiotics with increased potencies and differing spectra of activity. This study demonstrates that culture-independent antibiotic discovery methods have the potential to provide access to novel metabolites with modes of action that differ from those of antibiotics currently in clinical use.
  • Thumbnail graphic for paper

    Long-chain N-acyl amino acid synthases are linked to the putative PEP-CTERM/exosortase protein-sorting system in Gram-negative bacteria. 09-2011. Craig JW, Cherry MA, Brady SF. J Bacteriol
    PubMed - PDF

    ABSTRACT:
    Clones that encode the biosynthesis of long-chain N-acyl amino acids are frequently recovered from activity-based screens of soil metagenomic libraries. Members of a diverse set of enzymes referred to as N-acyl amino acid synthases are responsible for the production of all metagenome-derived N-acyl amino acids characterized to date. Based on the frequency at which N-acyl amino acid synthase genes have been identified from metagenomic samples, related genes are expected to be common throughout the global bacterial metagenome. Homologs of metagenome-derived N-acyl amino acid synthase genes are scarce, however, within the sequenced genomes of cultured bacterial species. Toward the goal of understanding the role(s) played by N-acyl amino acids in environmental bacteria, we looked for conserved genetic features that are positionally linked to metagenome-derived N-acyl amino acid synthase genes. This analysis revealed that N-acyl amino acid synthase genes are frequently found adjacent to genes predicted to encode PEP-CTERM motif-containing proteins and, in some cases, other conserved elements of the PEP-CTERM/exosortase system. Although relatively little is known about the PEP-CTERM/exosortase system, its core components are believed to represent the putative Gram-negative equivalent of the LPXTG/sortase protein-sorting system of Gram-positive bacteria. During the course of this investigation, we were able to provide evidence that an uncharacterized family of hypothetical acyltransferases, which had previously been linked to the PEP-CTERM/exosortase system by bioinformatics, is a new family of N-acyl amino acid synthases that is widely distributed among the PEP-CTERM/exosortase system-containing Proteobacteria.
  • Thumbnail graphic for paper

    Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. 08-2011. Feng Z, Kallifidas D, Brady SF. Proc Natl Acad Sci U S A
    PubMed - PDF

    ABSTRACT:
    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.
  • Thumbnail graphic for paper

    Discovery of a metagenome-derived enzyme that produces branched-chain acyl-(acyl-carrier-protein)s from branched-chain alpha-keto acids. 08-2011. Craig JW, Brady SF. Chembiochem
    PubMed - PDF

    ABSTRACT:
    N/A
  • Thumbnail graphic for paper

    Cloning and characterization of an environmental DNA-derived gene cluster that encodes the biosynthesis of the antitumor substance BE-54017. 06-2011. Chang FY, Brady SF. J Am Chem Soc
    PubMed - PDF

    • Selected for JACS cover image and podcast discussion, Podcast #29

    ABSTRACT:
    Soil is predicted to contain thousands of unique bacterial species per gram. Soil DNA libraries represent large reservoirs of biosynthetic diversity from which diverse secondary metabolite gene clusters can be recovered and studied. The screening of an archived soil DNA library using primers designed to target oxytryptophan dimerization genes allowed us to identify and functionally characterize the first indolotryptoline biosynthetic gene cluster. The recovery and heterologous expression of an environmental DNA-derived gene cluster encoding the biosynthesis of the antitumor substance BE-54017 is reported here. Transposon mutagenesis identified two monooxygenases, AbeX1 and AbeX2, as being responsible for the transformation of an indolocarbazole precursor into the indolotryptoline core of BE-54017.
  • Thumbnail graphic for paper

    Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. 03-2011. Biggins JB, Gleber CD, Brady SF. Org Lett
    PubMed - PDF

    ABSTRACT:
    Natural product gene clusters are often tightly regulated, resulting in gene cluster silencing in laboratory fermentation studies. The systematic overexpression of transcription factors (TFs) associated with biosynthetic gene clusters found in the genome of Burkholderia thailandensis E264 identified a set of TFs that, when overexpressed, alter the secondary metabolome of this bacterium. The isolation and characterization of burkholdacs A and B, two new acyldepsitripeptide histone deacetylase inhibitors produced by B. thailandensis overexpressing the TF bhcM, is reported.
  • Thumbnail graphic for paper

    Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. 04-2012. Biggins JB, Liu X, Feng Z, Brady SF. J Am Chem Soc
    PubMed - PDF

    ABSTRACT:
    Bacterial genome sequencing projects routinely uncover gene clusters that are predicted to encode the biosynthesis of uncharacterized small molecules. A subset of these cryptic genetic elements appears as individual operons. Here we investigate potential single-operon biosynthetic systems found in the genome of the pathogenic bacterium Burkholderia pseudomallei . Placing these operons under the control of an inducible promoter led to the production of seven new metabolites. Among the molecules we identified are inhibitors of type-4 phosphodiesterases, suggesting that previously cryptic biosynthetic operons may encode metabolites that could contribute to microbial virulence by disrupting host signaling pathways.
  • Thumbnail graphic for paper

    The 2.7 A resolution structure of the glycopeptide sulfotransferase Teg14. 12-2010. Bick MJ, Banik JJ, Darst SA, Brady SF. Acta Crystallogr D Biol Crystallogr
    PubMed - PDF

    ABSTRACT:
    The TEG gene cluster was recently isolated from an environmental DNA library and is predicted to encode the biosynthesis of a polysulfated glycopeptide congener. Three closely related sulfotransferases found in the TEG gene cluster (Teg12, Teg13 and Teg14) have been shown to sulfate the teicoplanin aglycone at three unique sites. Crystal structures of the first sulfotransferase from the TEG cluster, Teg12, in complex with the teicoplanin aglycone and its desulfated cosubstrate PAP have recently been reported [Bick et al. (2010), Biochemistry, 49, 4159-4168]. Here, the 2.7 Å resolution crystal structure of the apo form of Teg14 is reported. Teg14 sulfates the hydroxyphenylglycine at position 4 in the teicoplanin aglycone. The Teg14 structure is discussed and is compared with those of other bacterial 3'-phosphoadenosine 5'-phosphosulfate-dependent sulfotransferases.
  • Thumbnail graphic for paper

    Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. 11-2010. Banik JJ, Craig JW, Calle PY, Brady SF. J Am Chem Soc
    PubMed - PDF

    ABSTRACT:
    A detailed bioinformatics analysis of six glycopeptide biosynthetic gene clusters isolated from soil environmental DNA (eDNA) megalibraries indicates that a subset of these gene clusters contains collections of tailoring enzymes that are predicted to result in the production of new glycopeptide congeners. In particular, sulfotransferases appear in eDNA-derived gene clusters at a much higher frequency than would be predicted from the characterization of glycopeptides from cultured Actinomycetes . Enzymes found on tailoring-enzyme-rich eDNA clones associated with these six gene clusters were used to produce a series of new sulfated glycopeptide derivatives in both in vitro and in vivo derivatization studies. The derivatization of known natural products with eDNA-derived tailoring enzymes is likely to be a broadly applicable strategy for generating libraries of new natural product variants.
  • Thumbnail graphic for paper

    Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. 10-2010. Banik JJ, Brady SF. Curr Opin Microbiol
    PubMed - PDF

    ABSTRACT:
    Bacteria grown in pure culture have been the starting point for the discovery of many of the antibacterials now in use. Metagenomics, which utilizes culture-independent methods to access the collective genomes of natural bacterial populations, provides a means of exploring the antimicrobials produced by the large collections of bacteria that are known to be present in the environment but remain recalcitrant to culturing. Both novel small molecule antibiotics and new antibacterially active proteins have been identified using metagenomic approaches. The recent application of metagenomics to the discovery of bioactive small molecules, small molecule biosynthetic gene clusters and antibacterially active enzymes is discussed here.
  • Thumbnail graphic for paper

    Fluostatins produced by the heterologous expression of a TAR reassembled environmental DNA derived type II PKS gene cluster. 08-2010. Feng Z, Kim JH, Brady SF. J Am Chem Soc
    PubMed - PDF

    ABSTRACT:
    Culture independent approaches for accessing small molecules produced by uncultured bacteria are often hampered by the inability to easily clone environmental DNA (eDNA) fragments large enough to capture intact biosynthetic gene clusters that can be used in heterologous expression studies. Here we show that homology screening of eDNA megalibraries for clones containing natural product biosynthetic genes, coupled with transformation-assisted recombination (TAR) in yeast, can be used to access large, functionally intact, natural product gene clusters from the environment. The eDNA derived gene cluster reported here was functionally reconstructed from two overlapping cosmid clones using TAR. The isolation and structure elucidation of three new fluostatins (F, G, and H) produced by this TAR reconstructed gene cluster is described.
  • Thumbnail graphic for paper

    Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. 06-2010. Kim JH, Feng Z, Bauer JD, Kallifidas D, Calle PY, Brady SF. Biopolymers
    PubMed - PDF

    ABSTRACT:
    A single gram of soil can contain thousands of unique bacterial species, of which only a small fraction is regularly cultured in the laboratory. Although the fermentation of cultured microorganisms has provided access to numerous bioactive secondary metabolites, with these same methods it is not possible to characterize the natural products encoded by the uncultured majority. The heterologous expression of biosynthetic gene clusters cloned from DNA extracted directly from environmental samples (eDNA) has the potential to provide access to the chemical diversity encoded in the genomes of uncultured bacteria. One of the challenges facing this approach has been that many natural product biosynthetic gene clusters are too large to be readily captured on a single fragment of cloned eDNA. The reassembly of large eDNA-derived natural product gene clusters from collections of smaller overlapping clones represents one potential solution to this problem. Unfortunately, traditional methods for the assembly of large DNA sequences from multiple overlapping clones can be technically challenging. Here we present a general experimental framework that permits the recovery of large natural product biosynthetic gene clusters on overlapping soil-derived eDNA cosmid clones and the reassembly of these large gene clusters using transformation-associated recombination (TAR) in Saccharomyces cerevisiae. The development of practical methods for the rapid assembly of biosynthetic gene clusters from collections of overlapping eDNA clones is an important step toward being able to functionally study larger natural product gene clusters from uncultured bacteria.
  • Thumbnail graphic for paper

    Utahmycins a and B, azaquinones produced by an environmental DNA clone. 05-2010. Bauer JD, King RW, Brady SF. J Nat Prod
    PubMed - PDF

    ABSTRACT:
    Two new azaquinones, utahmycins A (1) and B (2), were isolated from cultures of Streptomyces albus J1704 transformed with the environmental DNA-derived Erd gene cluster. The structures of 1 and 2 were elucidated by spectroscopic analyses. The structure of 1 was confirmed by single-crystal X-ray diffraction analysis. Both metabolites appear to arise from the addition of a nitrogen atom to erdacin biosynthetic intermediates. Utahmycin A (1) is the first example of a biologically derived 1,3-dimethyl-2-azaanthraquinone.
  • Thumbnail graphic for paper

    Crystal structures of the glycopeptide sulfotransferase Teg12 in a complex with the teicoplanin aglycone. 05-2010. Bick MJ, Banik JJ, Darst SA, Brady SF. Biochemistry
    PubMed - PDF

    ABSTRACT:
    The TEG gene cluster, a glycopeptide biosynthetic gene cluster that is predicted to encode the biosynthesis of a polysulfated glycopeptide congener, was recently cloned from DNA extracted directly from desert soil. This predicted glycopeptide gene cluster contains three closely related sulfotransferases (Teg12, -13, and -14) that sulfate teicoplanin-like glycopeptides at three unique sites. Here we report a series of structures: an apo structure of Teg12, Teg12 bound to the desulfated cosubstrate 3'-phosphoadenosine 5'-phosphate, and Teg12 bound to the teicoplanin aglycone. Teg12 appears to undergo a series of significant conformational rearrangements during glycopeptide recruitment, binding, and catalysis. Loop regions that exhibit the most conformational flexibility show the least sequence conservation between TEG sulfotransferases. Site-directed mutagenesis guided by our structural studies confirmed the importance of key catalytic residues as well as the importance of residues found throughout the conformationally flexible loop regions.
  • Thumbnail graphic for paper

    Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. 02-2010. Craig JW, Chang FY, Kim JH, Obiajulu SC, Brady SF. Appl Environ Microbiol
    PubMed

    ABSTRACT:
    The small-molecule biosynthetic diversity encoded within the genomes of uncultured bacteria is an attractive target for the discovery of natural products using functional metagenomics. Phenotypes commonly associated with the production of small molecules, such as antibiosis, altered pigmentation, or altered colony morphology, are easily identified from screens of arrayed metagenomic library clones. However, functional metagenomic screening methods are limited by their intrinsic dependence on a heterologous expression host. Toward the goal of increasing the small-molecule biosynthetic diversity found in functional metagenomic studies, we report the phenotypic screening of broad-host-range environmental DNA libraries in six different proteobacteria: Agrobacterium tumefaciens, Burkholderia graminis, Caulobacter vibrioides, Escherichia coli, Pseudomonas putida, and Ralstonia metallidurans. Clone-specific small molecules found in culture broth extracts from pigmented and antibacterially active clones, as well as the genetic elements responsible for the biosynthesis of these metabolites, are described. The host strains used in this investigation provided access to unique sets of clones showing minimal overlap, thus demonstrating the potential advantage conferred on functional metagenomics through the use of multiple diverse host species.
  • Thumbnail graphic for paper

    Metagenomic approaches to natural products from free-living and symbiotic organisms. 10-2009. Brady SF, Simmons L, Kim JH, Schmidt EW. Nat Prod Rep
    PubMed - PDF

    ABSTRACT:
    N/A
  • Thumbnail graphic for paper

    An environmental DNA-derived type II polyketide biosynthetic pathway encodes the biosynthesis of the pentacyclic polyketide erdacin. 08-2009. King RW, Bauer JD, Brady SF. Angew Chem Int Ed Engl
    PubMed - PDF

    • Selected by the Editors of Angew. Chem., Int Ed. Engl. as a "Hot Paper"

      Featured on Germany National Public Radio 

    ABSTRACT:
    N/A
  • Thumbnail graphic for paper

    Natural products from environmental DNA hosted in Ralstonia metallidurans. 01-2009. Craig JW, Chang FY, Brady SF. ACS Chem Biol
    PubMed - PDF

    ABSTRACT:
    Metagenomic studies designed to access new small molecules from the heterologous expression of environmental DNA have focused on the use of two model systems, Escherichia coli and Streptomyces spp., as heterologous hosts. Accessing the biosynthetic potential of DNA extracted from the bacteria present in environmental samples will require the development of a more diverse collection of model bacterial hosts that can be used for screening environmental DNA libraries. In this study the bacterium Ralstonia metallidurans was explored as a heterologous host. Here we report the isolation and characterization of both novel and known metabolites from pigmented and antibacterially active clones found in R. metallidurans based environmental DNA libraries. The clones found in this study do not confer the production of clone-specific metabolites to E. coli, validating R. metallidurans as an orthogonal expression host that can be used to expand the number of metabolites found in future metagenomic discovery efforts.
  • Thumbnail graphic for paper

    Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. 11-2008. Banik JJ, Brady SF. Proc Natl Acad Sci U S A
    PubMed - PDF

    ABSTRACT:
    Glycopeptide antibiotics have long served as drugs of last resort for the treatment of antibiotic-resistant gram-positive bacterial infections. Resistance to the clinically relevant glycopeptides, vancomycin and teicoplanin, threatens to undermine the usefulness of this important class of antibiotics. DNA extracted from a geographically diverse collection of soil samples was screened by PCR for the presence of sequences related to OxyC, an oxidative coupling enzyme found in glycopeptide biosynthetic gene clusters. Every soil sample examined contained at least 1 unique OxyC gene sequence. In an attempt to access the biosynthetic gene clusters associated with these OxyC sequences, a 10,000,000-membered environmental DNA (eDNA) megalibrary was created from a single soil sample. Two unique glycopeptide gene clusters were recovered from this eDNA megalibrary. Using the teicoplanin aglycone and the 3 sulfotransferases found in one of these gene clusters, mono-, di-, and trisulfated glycopeptide congeners were produced. The high frequency with which OxyC genes were found in environmental samples indicates that soil eDNA libraries are likely to be a rewarding source of glycopeptide gene clusters. Enzymes found in these gene clusters should be useful for generating new glycopeptides analogs. Environmental DNA megalibraries, like the one constructed for this study, can provide access to many of the natural product biosynthetic gene clusters that are predicted to be present in soil microbiomes.
  • Thumbnail graphic for paper

    Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. 10-2008. Clarke-Pearson MF, Brady SF. J Bacteriol
    PubMed - PDF

    ABSTRACT:
    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin.
  • Thumbnail graphic for paper

    Cytoskyrins and cytosporones produced by Cytospora sp. CR200: taxonomy, fermentation and biological activities. 05-2008. Singh MP, Janso JE, Brady SF. Mar Drugs
    PubMed - PDF

    ABSTRACT:
    In screening endophytic fungi from Costa Rica for bioactivity, fungal culture CR200, isolated from a buttonwood tree, was found to contain compounds that initiate DNA damage in a test strain of E. coli (Biochemical Induction Assay, BIA) and inhibit growth of Gram-positive bacteria, including antibiotic-resistant strains. Two new bisanthraquinones (cytoskyrins A and B) and five new related octaketides (cytosporones A-E) were isolated from fermentation broths of this fungus. Cytoskyrin A exhibited potent in-vitro antibacterial (MICs against Gram-positive bacteria, 0.03-0.25 microg/mL) and DNA-damaging activities (10 ng/spot), whereas cytoskyrin B was inactive in these assays. Among the cytosporones, only D and E exhibited Gram-positive activity, but they were inactive in the BIA. Mechanistically, cytoskyrin A specifically inhibited DNA synthesis in E. coli imp at its MIC; however, it also moderately inhibited protein synthesis at 2x its MIC. Cytoskyrin A exhibited poor cytotoxicity against tumor cell lines (IC50>5 microg/mL) compared to known antitumor agents. The nuclear ribosomal internal transcribed spacer region of CR200 was found to share highest similarity (94-96%) with Cytospora spp. Micro- and macroscopic morphological observations of the conidia and conidiomata, respectively, also suggested this fungus to be a Cytospora sp.

 

Accessing Bioactive Natural Products from the Human Microbiome. 06-2018. Milshteyn A, Colosimo DA, Brady SF. Cell Host & Microbe Pubmed - PDFABSTRACT:Natural products have long played a pi