An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in *C. elegans*

Chiou-Fen Chuang,1,3 Miri K. VanHoven,1 Richard D. Fetter,1 Vyta K. Verselis,2 and Cornelia I. Bargmann1,*

1 Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
2 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
3 Present address: Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229, USA.

*Correspondence: cori@rockefeller.edu
DOI 10.1016/j.cell.2007.02.052

SUMMARY

Gap junctions are widespread in immature neuronal circuits, but their functional significance is poorly understood. We show here that a transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of *Caenorhabditis elegans*. nsy-5 is required for the left and right AWC olfactory neurons to establish stochastic, asymmetric patterns of gene expression during embryogenesis. nsy-5-dependent gap junctions in the embryo transiently connect the AWC cell bodies with those of numerous other neurons. Both AWCs and several other classes of nsy-5-expressing neurons participate in signaling that coordinates left-right AWC asymmetry. The right AWC can respond to nsy-5 directly, but the left AWC requires nsy-5 function in multiple cells of the network.NSY-5 forms hemichannels and intercellular gap-junction channels in *Xenopus* oocytes, consistent with a combination of cell-intrinsic and network functions. These results provide insight into gap-junction activity in developing circuits.

INTRODUCTION

Developing neurons and other embryonic cell types are often connected by gap junctions, intercellular channels that allow the direct transfer of electrical signals and small molecules between coupled cells (Bennett and Zukin, 2004). A gap junction is formed by aligned homotypic or heterotypic half-junctions on two adjacent cells and can be composed of either connexins, which are present only in chordates, or innexins or pannexins, which are present in all metazoa. Developing neurons in the vertebrate spinal cord, retina, and cortex are interconnected by gap junctions that fade away later in life (Kandler and Katz, 1995). The connected neurons form functional domains with coordinated patterns of spontaneous activity and intracellular calcium flux (Yuste et al., 1995). Transient gap-junction networks have been proposed to regulate proliferation, migration, cell death, contact inhibition, and synapse formation and/or elimination, but there is little direct evidence of their function. Their best understood role is in developing motor neurons, where they potentiate the synaptic refinement that leads to the selection of a single input neuron per muscle fiber (Chang et al., 1999). In addition, mutations in gap-junction genes eliminate certain chemical synapses in the *Drosophila* optic lamina, suggesting that signals for synapse formation may pass through gap junctions (Curtin et al., 2002).

Gap junctions link the earliest born nonneuronal cells in embryos and are essential for *C. elegans*, *Drosophila*, and mammalian embryogenesis (Phelan, 2005; Wei et al., 2004). The first detectable left-right asymmetry of the body axis in frog and chick embryos is generated by gap junctions (Levin and Mercola, 1999). This asymmetry predicts the laterality of the Shh and BMP signaling pathways that generate asymmetry in internal organs.

Both invariant and random left-right asymmetries are present in the nervous system of the nematode *Caenorhabditis elegans* (Hobert et al., 2002). Most left-right asymmetries are tightly coupled to the body axis, but left-right differences between the AWC olfactory neurons, which are distinguished as AWC\(\text{ON}\) or AWC\(\text{OFF}\) based on whether or not they express the reporter *str-2::GFP*, are stochastic. Each animal generates one AWC\(\text{ON}\) neuron and one AWC\(\text{OFF}\) neuron, but half of the animals express *str-2* in the right AWC neuron while the other half express *str-2* in the left AWC (Troemel et al., 1999). Cell-killing experiments suggest that AWC\(\text{OFF}\) is the default state and that induction of AWC\(\text{ON}\) requires an interaction between the AWC neurons. Genetic studies of symmetric mutants with two AWC\(\text{ON}\) or two AWC\(\text{OFF}\) neurons have defined a calcium-dependent kinase cascade that regulates AWC asymmetry near the time of synapse formation, including...
a voltage-activated calcium channel, the calcium-dependent kinase CaMKII, and a MAP kinase cassette (Chuang and Bargmann, 2005; Sagasti et al., 2001; Tanaka-Hino et al., 2002; Troemel et al., 1999). The earliest signaling molecule in this cascade is NSY-4, a transmembrane protein related to vertebrate claudin adhesion proteins and regulatory G subunits of voltage-activated calcium channels (VanHoven et al., 2006). Axon guidance mutants disrupt AWC asymmetry, but classical synaptic communication is not essential, suggesting that a different kind of cell communication is involved (Troemel et al., 1999).

Here we analyze the signaling between AWC neurons by characterizing an AWC asymmetry gene, nsy-5, that encodes a member of the innexin/pannexin family of gap-junction proteins. We show that AWC neurons belong to a transient neuronal network connected by nsy-5-dependent junctions and that this network coordinates communication between AWC OFF, AWC ON, and other neurons to generate left-right asymmetry.

RESULTS

nsy-5 Encodes an Innexin Homolog Required for AWC Asymmetry

nsy-5(ky634) was identified in a genetic screen for mutants that do not express str-2::GFP in either AWC cell (Figures 1A and 1B; Figure 2A). This 2 AWC OFF phenotype can be caused by mutations that affect general AWC fate, axon guidance, signaling between AWC neurons, or activity-dependent maintenance of the str-2::GFP reporter (Troemel et al., 1999). AWC fate appeared to be normal in nsy-5(ky634) mutants based on the bilateral expression of the AWC marker odr-1::DsRed, and the same marker revealed apparently normal AWC axons, dendrites, and cilia (Figure 1D). The str-2::GFP expression defect was observed at all developmental stages, unlike the late-onset defect in the maintenance mutants (Troemel et al., 1999). These results suggest that nsy-5 affects the establishment of left-right asymmetry of AWC neurons.

nsy-5 animals did not chemotax to the odorant 2-butanone, which is sensed by AWCON, but responded normally to the odorant 2,3-pentanedione, which is sensed by AWCOFF (Wes and Bargmann, 2001) (Figure 1E). These results suggest that nsy-5 affects the establishment of left-right asymmetry of AWC neurons.

nsy-5(ky634) was mapped to a small interval on the first chromosome, and the mutant phenotype was rescued with an 18 kb PCR product of genomic DNA containing only one full-length open reading frame, T16H5.1/inx-19 (Figure 3, row 1). T16H5.1 encodes two innexin-related
proteins with alternative N termini derived from alternative promoters (www.wormbase.org) (Figures 1F and 1G). Like other innexin proteins, NSY-5 is predicted to have four transmembrane domains and intracellular N and C termini (Figure 1F). There are 25 predicted innexin/pannexin-coding genes in C. elegans, in Drosophila melanogaster, and 3 in the human genome (Phelan, 2005; Starich et al., 2001; Stebbings et al., 2002). In C. elegans, innexins have physiological roles as gap junctions in neurons, pharyngeal muscles, and body-wall muscles (Li et al., 2003; Liu et al., 2006; Starich et al., 1999). Innexins affect the formation of neuronal and nonneuronal gap junctions in C. elegans and Drosophila and can form gap junctions when expressed in heterologous cells (Bauer et al., 2004; Curtin et al., 2002; Starich et al., 1996; Landesman et al., 1999; Phelan et al., 1998; Stebbings et al., 2000). Although most vertebrate gap junctions are formed by the unrelated connexin family, the human pannexin (innexin-like) proteins also form gap junctions (Bruzzone et al., 2003).

The nsy-5(ky634) allele was associated with a G → A point mutation, resulting in a predicted glutamic-acid-to-lysine change in the second exon of both T16H5.1 isoforms (Figures 1F and 1G). nsy-5(tm1896) overexpresses nsy-5 from the odr-3 promoter. For unc-76, unc-2, unc-36, and unc-43, strong alleles that appear to be molecular null alleles were used. For nsy-4 and tir-1, the strongest available reduction-of-function alleles were used. (B) Number of colocalized UNC-43::GFP and TIR-1::DsRed puncta in wild-type and nsy-5(ky634) AWC axons. Error bars indicate standard error of the mean. (C and D) odr-3::tir-1::DsRed expression in wild-type and nsy-5(ky634) animals showing synaptic puncta in AWC axons. Asterisks indicate cell body. (E) One possible model for relationships between nsy mutants. nsy-5 may act together with nsy-4, upstream of or parallel to unc-2/unc-36.
opposite to the *nsy-5* loss-of-function phenotype (Figure 2A; Figure 3, row 17). Transgenes expressing either alternative transcript of T16H5.1 as a cDNA also rescued *nsy-5* mutants and caused a gain-of-function phenotype (Figure 2A; Figure 3, rows 2–4 and 18). These results indicate that the level of *nsy-5* activity can specify AWC asymmetry in an instructive manner, with a low level of *nsy-5* activity defining the AWCOFF state and a high level of activity defining the AWCON state.

nsy-5 Antagonizes unc-2/unc-36 Calcium Signaling

The relationship between *nsy-5* and other genes affecting AWC asymmetry was characterized by analyzing double mutants (Figure 2A). The 2 AWC OFF phenotype of *nsy-5* mutants was suppressed by mutations in the calcium-channel genes *unc-2* (*a1* subunit) and *unc-36* (*a2d* subunit) and by mutations in the downstream kinase pathway: *unc-43* (CaMKII), *tir-1* (SARM/adaptor protein), and *nsy-1* (ASK1/MAPKK). These results suggest that *nsy-5* acts upstream of the calcium-channel pathway. The 2 AWCON phenotype of the axon guidance mutant *unc-76* was suppressed in *unc-76(lf);nsy-5(OE)* double mutants, suggesting that *nsy-5* activity does not require the signal provided by axon guidance.

Like *nsy-5*, the claudin/calcium channel γ subunit *nsy-4* antagonizes *unc-2/unc-36* calcium channel activity by acting either upstream of or parallel to the calcium-channel pathway (VanHoven et al., 2006). Both *nsy-5(OE)* and *nsy-5(lf)* double mutants had a mixed phenotype compared to single mutants, suggesting that *nsy-4* and *nsy-5* act in parallel, with each having some activity in the absence of the other. This interpretation is tentative because the strongest *nsy-4* mutation causes substantial lethality and may not be a null allele, and null alleles might in principle be fully epistatic to *nsy-5*. With that qualification, one possible model is that both *nsy-4* and *nsy-5* inhibit the calcium-channel pathway during AWC signaling (Figure 2E).

The downstream AWC signaling proteins UNC-43 (CaMKII) and TIR-1 reside together at postsynaptic regions of AWC axons (Chuang and Bargmann, 2005; Rongo and Kaplan, 1999). Although both wild-type and *nsy-5(lf)* animals had UNC-43*^TIR-1* puncta in their AWC axons, the numbers of puncta were significantly different. Wild-type animals had an average of 4.7 UNC-43*^TIR-1* puncta per animal (*n* = 16), whereas *nsy-5(lf)* animals had 6.5 puncta per animal (*n* = 11) (Figures 2B–2D). These results are consistent with an inhibitory relationship between *nsy-5* and the UNC-43/MAPK pathway. No molecular interaction was evident between *nsy-4* and *nsy-5*: the expression and localization of tagged NSY-4::GFP were unaltered in *nsy-5* mutants, and the expression and localization of NSY-5::GFP were unaltered in *nsy-4* mutants (data not shown).
NSY-5 Is Localized to Cell Bodies in AWC and Adjacent Neurons

A GFP reporter transgene with 5.8 kb of the nsy-5 promoter was expressed exclusively in sensory neurons and interneurons in the head and tail (Figures 4A and 4B). The neurons that expressed nsy-5::GFP included AWC, ASH, AFD, ASI, ADL, ASK, BAG, AWB, and ADF (head sensory neurons); ADA, AIZ, RIC, AIY, and AIM (head interneurons); PHA and PHB (tail sensory neurons); and PVC and PVQ (tail interneurons). Expression began about halfway through embryogenesis, was strongest in late embryogenesis and the L1 larval stage, and faded thereafter. Adults maintained weak expression in several neurons, including ASH but not AWC (Figure 4C).

Tagged NSY-5::GFP and NSY-5::DsRed fusion proteins that rescued nsy-5 mutants were first detected in embryos in a punctate pattern surrounding the sensory neurons and interneurons that expressed nsy-5::GFP (Figure 3; Figures 4D–4F; data not shown). Individual NSY-5 puncta appeared to reside at the borders between neuronal cell bodies (Figure 4F) and were largely excluded from axons and dendrites.

The subcellular localization of NSY-5 was examined in COS cells expressing a heterologous NSY-5::EGFP fusion protein. In isolated COS cells, NSY-5::EGFP was observed mainly in intracellular vesicles (Figure 4G). In pairs of COS cells that contacted each other, NSY-5::EGFP clustered at points of cell-cell contact, but only when both cells expressed NSY-5 (Figure 4H). These results suggest that NSY-5 forms homophilic complexes at the plasma membranes of adjacent cells, like other gap-junction proteins.

NSY-5 Forms a Gap-Junction Network Linking Embryonic Neurons

The expression of an innexin gene in AWC was surprising since AWC gap junctions do not appear in the anatomical reconstruction of the adult C. elegans nervous system (White et al., 1986). The early expression of nsy-5 reporter genes presented a possible resolution for this discrepancy. To search for gap junctions associated with immature AWC neurons, we performed serial-section electron microscopy and examined the AWC neurons of wild-type embryos between 7 and 12 hr after fertilization, the time at which nsy-5 reporter genes are most highly expressed, and from an L1 larva. We found that embryonic AWC neurons and many other nerve-ring neurons had extensive junctions connecting their cell bodies (Figure 5A).

High-resolution analysis of these junctions in the nsy-5 expressing cells AWC, ASH, and AFD revealed that the AWC-ASH and ASH-AFD junctions had the pentalamellar structure, ~2 nm electron-dense extracellular gap, and 15–16 nm junctional width characteristic of gap junctions in C. elegans and other animals (Figures 5B and 5D; see also Table S1 in the Supplemental Data available with this article online) (Starich et al., 2003; Zampighi et al., 1980). Their ultrastructural features were distinct from those of adherens junctions and desmosomes in the same embryos (Figure S1). These results suggest that AWC and neighboring neurons are linked by gap junctions in wild-type embryos.

In the wild-type L1 animal, junctions between AWC, ASH, and AFD lacked the pentalamellar electron-dense structure, and the cells became less tightly associated, with an 18–20 nm junctional width (Figure 5C; Table
S1A). These observations suggest that AWC junctions are dissolved or remodeled in the L1 stage. Gap junctions were not observed at the cell bodies of the AWC neurons in adult sections from the White series (White et al., 1986 and data not shown).

To ask whether the AWC junctions were formed by NSY-5 innexins, we fixed and sectioned two nsy-5(ky634) embryos at the 3-fold-to-pretzel stage and a nsy-5(ky634) L1 larva. In nsy-5 embryos, no pentalamellar electron-dense structure was observed between AWC-ASH or ASH-AFD (Figure 5E), and the distance between these cells was increased to 17.8–18.8 nm (Table S1A). In the same nsy-5(ky634) embryos, the gap junctions between excretory cells and hypodermal cells were intact, indicating that gap junctions were not destroyed by poor fixation (Figure 5G; Table S1B). The nsy-5 L1 animal also lacked AWC gap junctions (Figure 5F; Table S1A). These results suggest that NSY-5 functions as a gap-junction protein to establish transient embryonic connections between the cell bodies of AWC and adjacent neurons.

The nsy-5-expressing neurons ASK and ADL belong to left-right pairs that are close to each other at the dorsal midline (White et al., 1986), raising the possibility that the nsy-5-dependent junctions might directly link left and right clusters of neuronal cell bodies. We examined the entire contact regions for ASK and ADL neurons in two wild-type

Figure 5. nsy-5 Forms Embryonic Junctions, Hemichannels, and Gap-Junction Channels
(A–G) Electron micrographs of intercellular junctions.
(A) Cell bodies of neurons in wild-type embryos. Linear regions between two arrowheads are potential gap junctions. Scale bar = 1 μm.
(B, C, E, and F) Intercellular junctions between the AWC cell body and adjacent neuron in wild-type embryo (B), wild-type L1 (C), nsy-5(ky634) embryo (E), and nsy-5(ky634) L1 (F). Scale bar = 50 nm in (B–G).
(D and G) Gap junctions between hypodermal cells and excretory cells in wild-type (D) and nsy-5(ky634) embryos (G), which resemble the intercellular junction shown in (B). Measurements of intercellular junctions are provided in Table S1.

(H) Recordings of membrane currents in single Xenopus oocytes expressing nsy-5. From a holding potential of –70 mV, voltage steps from –100 to +50 mV were applied in increments of +10 mV. Slowly activating outward currents were observed upon depolarization to positive voltages.
(I) Recordings of NSY-5 hemichannel currents in response to repeated voltage steps to +40 mV applied from a holding potential of –70 mV. Lowering external Ca²⁺ from 1.8 mM to 0.2 mM (boxed region) resulted in a reversible increase in current magnitude.
(J) Junctional currents (ij) between a pair of Xenopus oocytes in response to a series of transjunctional voltage (Vj) steps were recorded using a dual two-electrode voltage-clamp configuration. Cells were clamped to a common holding potential of –30 mV, and hyperpolarizing and depolarizing voltages from –120 to +120 mV were applied to one cell in 10 mV increments. Currents showed little decline with voltage. Uninjected oocyte controls are shown in Figure S3.
embryos. In all sections, the cell bodies of the left and right neuron were clearly separated by an extracellular matrix layer at least 15 nm thick, and no gap junctions were observed between the left and right sides (Figure S2).

NSY-5 Forms Functional Hemichannels and Gap-Junction Channels

To determine directly whether NSY-5 can form gap-junction channels, we expressed it in *Xenopus* oocytes. In single oocytes injected with NSY-5 mRNA, slowly activating outward currents were induced by depolarizing steps to positive voltages (Figure 5H; Figure S3). This result suggests that NSY-5 forms functional hemichannels.

As seen for connexin hemichannels (Ebihara and Steiner, 1993; Saez et al., 2005), reduction of extracellular calcium promoted opening of NSY-5 hemichannels (Figure 5i).

To determine whether NSY-5 can induce the formation of intercellular channels, two RNA-injected oocytes with their vitelline membrane removed were brought into contact. After 24 hr, electrical coupling was detected using the dual two-electrode voltage-clamp technique (Figure 5J; Figure S3). NSY-5 expression resulted in electrical coupling and currents that showed little decline with trans-junctional voltage steps, suggesting that they are voltage independent or only weakly voltage dependent. (Endogenous oocyte currents, which were suppressed by injecting antisense oligonucleotides to *XenCx38*, are strongly voltage dependent.) These results suggest that NSY-5 can function both as intercellular channels and as hemichannels.

nsy-5 Acts in a Network of Cells to Promote or Inhibit AWC Signaling

The site of *nsy-5* action was examined using three different types of experiments. First, we expressed *nsy-5* cDNAs under different promoters in *nsy-5* mutant and wild-type backgrounds (Figure 3). Second, we performed genetic mosaic analysis on animals expressing a genomic *nsy-5* fragment that should mimic the endogenous *nsy-5* expression pattern (Figure 6). Third, combining directed expression and mosaic analysis, we examined the effect of expressing *nsy-5* only in a single AWC neuron (Figure 6G).

For targeted expression of *nsy-5*, we used promoters that overlapped with the *nsy-5* expression pattern in AWC and AWB (*odr-3*; AWB (str-1); AFD (*gcy-8*); ASH, ASI, and PVQ (sra-6; due to its proximity to AWC, ASH is likely to be the relevant cell); and AWC, AWB, AFD, ASK, and ASI (tax-4)). Only transgenes expressed in AWC neurons were able to rescue *nsy-5* mutants, suggesting that one important site of *nsy-5* action is AWC (Figure 3, rows 4–9). However, expression of *nsy-5* in other neurons modified the rescue in AWC neurons. Simultaneous *nsy-5* expression from *odr-3* (AWC) and sra-6 (ASH) promoters led to a strong gain-of-function 2 AWC ON phenotype not observed with either promoter alone (Figure 3, row 13). This enhancement was suppressed when *nsy-5* was simultaneously expressed from *odr-3* (AWC), sra-6 (ASH), and *gcy-8* (AFD) promoters (Figure 3, row 16). These results suggest that the ultrastructural AWC-ASH and AFD-AWC gap junctions are functionally significant and that AFD and AWC neurons have opposite effects on AWC: *nsy-5* in ASH favors the AWC ON state, whereas *nsy-5* in AFD favors the AWC OFF state (see below).

The AWC-ASH-AFD interaction was also observed when *nsy-5* transgenes were expressed in a wild-type background. At the low DNA concentrations used to make these transgenic lines, no appreciable gain-of-function phenotypes were generated by introducing individual transgenes into wild-type strains (Figure 3, rows 19–23). However, expression of *nsy-5* in both AWC and ASH generated a strong 2 AWC ON gain-of-function phenotype (Figure 3, row 27) that was suppressed by coexpression of *nsy-5* in AFD or AWB (Figure 3, rows 30 and 31). These results suggest that AFD and AWB antagonize a cooperative interaction between AWC and ASH even when the complete normal complement of *nsy-5*-expressing cells is present.

nsy-5 Acts Cell Autonomously in the Future AWC ON Neuron and in Other Cells

To further refine the site of *nsy-5* action, mosaic animals in which *nsy-5* activity differed between the two AWC neurons were used to ask whether *nsy-5* acts in the future AWC ON cell, the future AWC OFF cell, or both. Mosaic animals were generated by random loss of an unstable transgene with the *nsy-5* genomic clone and an *odr-1::*DsRed marker (expressed in AWC and AWB) that showed which cells retained the transgenic array.

Transgenes expressing the *odr-1::*DsRed marker in both AWC neurons rescued *nsy-5(0f)* mutants, resulting in a mixture of 1 AWC ON and 2 AWC OFF animals (Figure 3, row 1; Figure 6A). Spontaneous loss of the extrachromosomal array resulted in mosaic animals in which one of the two AWC neurons expressed DsRed fluorescence and *nsy-5* activity. In the majority of these mosaic animals, the *nsy-5* AWC neuron expressed *str-2::*GFP and the *nsy-5* AWC neuron did not (Figures 6A, 6B, and 6E). These results are consistent with a significant cell-autonomous requirement for *nsy-5* within the future AWC ON neuron. Mosaic analysis was also conducted in transgenic lines in which *nsy-5* was overexpressed in a wild-type background, resulting in a 2 AWC ON phenotype (Figure 3, row 17; Figure 6C). When the transgene was retained in only one of the AWC neurons, the *nsy-5(0e)* neuron expressed *str-2::*GFP over 80% of the time (Figures 6C and 6D), suggesting that *nsy-5* has a cell-autonomous ability to promote the AWC ON receptor choice. The DsRed-negative AWC neuron in these mosaic animals, which should have a wild-type genotype, nearly always became AWC OFF. This result suggests that the decision of one AWC neuron to become AWC OFF due to *nsy-5* overexpression was sensed by the wild-type AWC neuron, which then became AWC OFF.

The invariant cell lineage of *C. elegans* can be used to infer the genotype of cells in mosaic animals (Figure 6F), providing an additional route to identify cells that affect
AWC signaling. The ASH neurons are very closely related to the ipsilateral AWC neuron by lineage, but many other neurons that express nsy-5 are closely related to the ipsilateral AWB, allowing their genotypes to be inferred by following the odr-1::DsRed marker in AWB (Figure 6F). For the most part, mosaic analysis following both AWB and AWC lineages suggested that the important site of nsy-5 expression was the lineage that produced ASH and AWC, a result consistent with the targeted expression experiments (Figure 3; Table S2). However, several classes of mosaic animals indicated that nsy-5 rescue is not entirely cell autonomous to AWCON. First, in a minor but significant class of mosaic animals, a nsy-5 mutant AWC neuron became AWCON, suggesting nonautonomous rescue of AWC (Figure 6G, rows b–d and f–i). Second, mosaic animals that lost the array in the AWBR lineage (ABpra) but retained it in both AWC neurons had a significant bias in left-right asymmetry, such that 71% of the AWCR neurons became AWCON (Figure 6G, row e). This result suggests that nsy-5-expressing cells in the ABpra lineage affect communication between the two AWC neurons.

Figure 6. nsy-5 Functions in Multiple Lineages to Affect AWC Asymmetry

(A and C) Confocal projections of nsy-5(ky634) (A) and wild-type (C) animals with an integrated str-2::GFP transgene and an unstable transgenic array bearing nsy-5 genomic sequence and odr-1::DsRed. AWC neurons that express both GFP and DsRed appear yellow. Arrows, AWC cell body; arrowhead, AWB cell body. Anterior is at left; ventral is down.

(B and D) Phenotypes of nsy-5(ky634) (B) and wild-type (D) mosaic animals expressing [nsy-5(genomic), odr-1::DsRed] transgenes in one AWC neuron.

(E) Color codes for AWC neurons in (B) and (D).

(F) Simplified cell lineage of C. elegans starting at the second cell division, with origin of nsy-5::GFP-expressing cells. Cells traced by odr-1::DsRed expression in mosaic analysis are indicated in red. Additional cells tested for rescue using cell-specific transgenes (Figure 3) are indicated in blue.

(G) Genetic mosaic analysis of animals expressing a nsy-5 genomic clone under its own promoter, odr-3::nsy-5, or odr-3::nsy-4. The percentage of animals with each phenotype is indicated; n = number of mosaic animals characterized. Red data in rows a–m indicate mosaic classes inconsistent with a pure model in which nsy-5 acts only in AWC cell autonomously (positively) and nonautonomously (negatively). Values in red are different from the pure model at p < 0.05. Asterisks in rows n–v indicate comparisons that are different at p < 0.01. Statistical comparisons were made by chi-square test or Fisher’s exact test as appropriate.
The effect of the nsy-5-overexpressing transgene in the wild-type background was largely dependent on the genotype of the AWC neurons (Figure 6G, rows j–l; Table S2). However, a rare class of mosaics in which nsy-5 was overexpressed in both AWB lineages but not in either AWC had an unexpected 2 AWCON loss-of-function phenotype (Figure 6G, row m). These mosaics indicate that overexpression of nsy-5 in cells related to AWB can cause a dominant disruptive effect on AWC signaling. In total, the mosaic results strengthen the conclusion that a network of cells communicates with AWC in nsy-5-dependent signaling.

\textbf{nsy-4 and nsy-5 Have Opposite Side Biases in AWC}

NSY-5 can form either intracellular hemichannels or intercellular gap-junction channels in oocytes (Figure 5). To determine whether hemichannels could contribute to nsy-5 activity, we wished to express nsy-5 only in a single AWC neuron. As the endogenous nsy-5 promoter is expressed in many cells, we achieved restricted expression by performing nsy-5 mosaic analysis with odr-3::nsy-5 transgenes, which are consistently expressed only in AWC and AWB neurons (Figure 6G). When odr-3::nsy-5 was retained only in AWCR and in neither AWB, over 90% of AWCR neurons became AWCON (Figure 6G, row p), a result suggesting that AWCR might respond to NSY-5 on its own. However, when odr-3::nsy-5 was retained only in AWCL, only 14% of the AWCL neurons became AWCON (Figure 6G, row o). Expression of odr-3::nsy-5 in AWCL, AWBL, and AWBR allowed AWCL neurons to become AWCON (Figure 6G, row q). These experiments reveal an unexpected asymmetry between AWCL and AWCR in their response to nsy-5.

Like nsy-5, the claudin-like gene nsy-4 has both autonomous and nonautonomous effects on AWC asymmetry (VanHoven et al., 2006). To determine whether nsy-4 activity in AWC has a bias for rescue like nsy-5, we analyzed odr-3::nsy-4::odr-1::DsRed mosaics analogous to those examined for nsy-5. A significant bias was observed, but unlike nsy-5, nsy-4 in a single cell rescued AWCL more efficiently than AWCR (Figure 6G, rows s and t).

\textbf{DISCUSSION}

The innexin gap-junction protein NSY-5, a component of the AWC signaling pathway, is localized to the cell bodies of a subset of neurons including AWC. These neighboring neurons form transient, nsy-5-dependent junctions in embryos that are required for the asymmetric differentiation of the two AWC neurons. Although we have not demonstrated electrical communication through nsy-5 junctions in vivo, electrical recordings from Xenopus oocytes injected with nsy-5 RNA indicate that NSY-5 can form both hemichannels and intercellular gap-junction channels.

The analysis of nsy-5 uncovered an unanticipated network of neurons that regulates left-right asymmetry of AWC. A model for nsy-5 function in this network is presented in Figure 7. We propose that NSY-5 gap junctions and NSY-4 claudins represent parallel signaling systems that act together to induce the AWCON state. Based on an intrinsic bias, AWCR is preferentially sensitive to nsy-5 activity and AWCL is more sensitive to nsy-4. These two subthreshold signals can cooperate when the left and right axons meet in the nerve ring, pushing the interacting cells above a threshold for AWCON induction. After induction, feedback from the most strongly induced AWC neuron drives the contralateral AWC neuron to become AWCOFF. The evidence for this model is discussed below.

\textbf{Parallel Functions}

Both nsy-4 and nsy-5 are required for AWCON induction in wild-type animals, but overexpression of either gene allows AWCON induction when the other gene is mutant. These results are consistent with parallel activity in which either gene can promote AWCON induction, although not definitive because the strongest nsy-4 allele is nonnull. However, a parallel model is also favored by the dissimilar expression of nsy-4 and nsy-5. Reporter genes to nsy-4 and nsy-5 are largely nonoverlapping outside AWC: nsy-4 is expressed in epithelial cells and excretory cells, whereas nsy-5 is exclusively neuronal. Within AWC, NSY-4 is ubiquitous at the plasma membrane, while NSY-5 resides in puncta at cell junctions. The only apparent overlap between these genes occurs in AWCON induction.

\textbf{Intrinsic Bias}

Despite the random left-right differentiation of AWCON, the detailed analysis of mosaic animals suggests that the left and right AWC neurons are different in their potential to respond to nsy-5. AWCR can respond to nsy-5 efficiently even when it is predicted to be the only nsy-5-expressing cell in the animal, but AWCL cannot. AWCR may be preferentially sensitive to the hemichannel activity of NSY-5 due to intrinsic properties or signals from nearby cells. Alternatively, NSY-5 in AWCR may be capable of interacting with other innexins expressed on the right side of the animal (Starich et al., 2001) (http://elegans.bcgsc.ca/home/sage.html).

In contrast with nsy-5, nsy-4 appears to rescue AWCL more efficiently than AWCR. The nsy-4 and nsy-5 experiments were designed to be parallel controls for one another: both sets of transgenes were generated with the same odr-3 promoter and coinjection markers and similar DNA concentrations. In addition, control plasmids with frameshift mutations in the coding regions of either nsy-4 and nsy-5 cDNAs did not have biological activity, and parallel mosaic experiments with other genes such as unc-43, tir-1, and nsy-1 did not show these effects (Chuang and Bargmann, 2005; Sagasti et al., 2001; VanHoven et al., 2006). Therefore, these results are best explained by an underlying difference between AWCL and AWCR.
Network Formation
The state of nsy-5 activity in non-AWC neurons can promote either the AWCON or the AWCOFF state; together with the ultrastructural data, these results support the proposal that nsy-5-expressing cells form a gap-junction network. Genetic mosaic analysis suggests contributions from cell lineages related to AWB, and targeted expression suggests contributions from ASH, AFD, and AWB. AWC and ASH are linked by morphological gap junctions, and targeted expression suggests that these two cells can cooperate to promote the AWCON state. ASH and AFD are linked by gap junctions, but AWC and AFD are not, and AFD appears to inhibit the AWCON state indirectly—it only affects AWC when AWC, ASH, and AFD all express nsy-5.

Communication across the Midline
An intriguing aspect of AWC asymmetry is the coordination between left and right AWC neurons that are distant from each other. Since axon guidance mutants are defective in AWC signaling, we propose that left-right communication occurs when axons from the left and right sides meet, allowing them to propagate the subthreshold nsy-4 and nsy-5 signals across the midline. Under normal circumstances, the cooperation of these two signals results in sufficient signaling to induce the AWCON state in either neuron.

In the mature nervous system, many neuron pairs including ASH, AFD, and AWB are connected by axonal gap junctions at the midline, but AWC neurons are not (White et al., 1986). It is possible that the subthreshold nsy-5 signal from AWCR is directionally propagated to AWCL through the axonal gap junctions that connect contralateral AWB or ASH neurons. These gap junctions could be nsy-5 independent or nsy-5 dependent (although NSY-5 puncta were not observed in axons). Genetic mosaic analysis suggests that AWCON induction in AWCL is stimulated by AWBR-related neurons, which are all on the right side of the animal. Similarly, odr-3::nsy-5 can rescue AWCL if AWCL and both AWB neurons express nsy-5. These results are consistent with a propagation of nsy-5 information from the right side to the left.

The subthreshold nsy-4 signal could be propagated from AWCL to AWCR through claudin-like adhesion or other axonal adhesion systems, through midline gap junctions, or through an interaction between NSY-4 and NSY-5 on adjacent cells. The expression pattern of nsy-4 suggests nonneuronal cells as another possible conduit for cell communication.

The Left-Right Decision
When nsy-5 activity differs between the two AWC neurons, the cell with more nsy-5 preferentially becomes AWCON, and the contralateral cell preferentially becomes AWCOFF. This result indicates that the level of nsy-5 activity in AWC can bias the left-right decision. In this respect, nsy-5 is similar to nsy-4, a claudin-like protein that has
both autonomous and nonautonomous effects on AWC asymmetry (VanHoven et al., 2006). Unlike nsy-5 and nsy-4, the target genes unc-43, tir-1, and nsy-1 affect only the AWC cell that was genetically altered and therefore are implicated in execution of the decision rather than signaling itself (Chuang and Bargmann, 2005; Sagasti et al., 2001).

The two-signal model and the intrinsic bias of nsy-4 and nsy-5 suggest that the stochastic event driving random asymmetry may be the relative strengths of the nsy-5 signal and the nsy-4 signal when the left and right sides come into contact. The stronger side then generates a feedback signal to the contralateral AWC.

Feedback
Once the two AWC neurons have risen above a signaling threshold, negative feedback is required to suppress the AWCON state in one cell. We suggest that this feedback is propagated back to the AWC neurons with the cooperation of the other nsy-5-expressing cells, perhaps via the nsy-5 gap junctions.

Overexpression of nsy-5 in both AWB-related lineages has an unexpected ability to inhibit AWCON induction in a wild-type background, an effect consistent with a feedback function of AWB-related lineages. A similar feedback function is supported by the targeted rescue of nsy-5 mutants. Several transgenes rescued AWCON in nsy-5 mutants without showing good coordination between the left and right neurons, leading to a large class of 2 AWCOFF animals even when there were still many nonrescued 2 AWCON animals. This phenotype is expected if signaling can cross the threshold in both AWC neurons but feedback is inefficient. More effective coordination between the two AWCs should be reflected in a dominant 1 AWCON class at the expense of 2 AWCOFF animals, an effect observed when more cells in the AWBR-related lineages were rescued by the tax-4::nsy-5 transgenes.

Innexin Function in the Developing Nervous System
These results show that immature C. elegans neurons are connected in transient gap-junction networks, like many other nascent neural circuits. The nsy-5 network coordinates sensory specificity, gene expression patterns, and synaptic protein distribution in the left and right AWC neurons by interacting with a calcium channel-CaMKII kinase pathway. In the vertebrate nervous system, conserved calcium bursts or coupled calcium waves are present at the same time as gap junctions, and some calcium waves require gap junctions to propagate (Kandler and Katz, 1998; Lee et al., 1994; Singer et al., 2001; Yuste et al., 1995). Both gap-junction coupling and hemichannel release of ATP or glutamate can promote calcium wave propagation (Weissman et al., 2004). Since nsy-5 acts in a well-characterized signaling pathway with conserved molecular targets, the nsy-5 network could provide insight into other gap-junction networks.

Many of the neurons that express nsy-5 are synaptically connected in adults (White et al., 1986). Some nsy-5-expressing neurons are stably connected by interclass gap junctions (ASH, ADF, ASK, AIZ, ADA, PVO, and RIC), but most are later linked to each other by chemical synapses. nsy-5 mutations alter the distribution of AWC synapses in adults, and similarly, innexin mutations can affect chemical synapse formation in Drosophila (Curtin et al., 2002). We suggest that the NSY-5 network could extend left-right asymmetry to many neurons by affecting stable patterns of chemical synapses.

EXPERIMENTAL PROCEDURES
Genetics and Molecular Biology
Wild-type strains were C. elegans variety Bristol, strain N2. Strains were generated and maintained by standard methods (Brenner, 1974). Complete strain genotypes are listed in Supplemental Experimental Procedures. Standard methods were used for plasmid construction and germline transformation (details in Supplemental Experimental Procedures). For all heterologous expression experiments, DNAs were injected at the same relatively low concentrations (25 ng/μl) and at least three independent transgenic lines were analyzed.

Chemotaxis Assay
Chemotaxis assays were performed as described (Bargmann et al., 1999). Odors were diluted in ethanol and tested at standard concentrations (1:1,000 butane and 1:10,000 2,3-pentanedione). Three independent assays of each strain were conducted for each odor.

Isolation and Mapping of nsy-5
nsy-5(ky634) was isolated from a genetic screen for 2 AWCOFF mutants as described (VanHoven et al., 2006). nsy-5(ky634) was mapped on linkage group I between single-nucleotide polymorphisms in the cosmids F23C8 at nucleotide 27234 and Y23H5B at nucleotide 8849 in the CB4856 strain (Washington University School of Medicine, Department of Genetics, Genome Sequencing Center; http://genome.wustl.edu/genome/celegans/chrom1_layout.html). The cDNA clones yk1175f08 and yk383e1, corresponding to nsy-5a and nsy-5b, respectively, were gifts from Y. Kohara.

NSY-5 Localization in Cultured Mammalian Cells
nsy-5-EGFP was generated by subcloning nsy-5a cDNA into the pEGFP-N1 vector (Clontech). COS cells were transfected with nsy-5-EGFP using FuGENE transfection reagent (Roche). Fluorescence of NSY-5-EGFP was imaged 36–48 hr after transfection.

Electron Microscopy
N2 and nsy-5(ky634) 3-fold embryos and L1 worms were prepared for electron microscopy by high-pressure freezing (HPF) with a Bal-Tec HPM 010 device followed by freeze-substitution (FS) with a Leica AFS. The substitution cocktail contained 1% OsO	extsubscript{4} with 0.2% uranyl acetate in 98% acetone/2% methanol. Samples were substituted for 72 hr at ~90 °C, warmed to room temperature, and embedded in Epone 12 resin. Serial sections were examined with a Tecnai T12 microscope and photographed using a Gatan 895 4k x 4k camera and DigitalMicrograph. Membrane orientation was optimized by specimen tilt prior to photography. Measurements were made in DigitalMicrograph, and figures were composed in Adobe Photoshop. Cell IDs were made based on direct tracing of cells and other anatomical features in EM sections and based on 3D models generated from the serial sections using Reconstruct (Fiala, 2005). Three wild-type embryos, two nsy-5(ky634) embryos, one wild-type L1, and one nsy-5(ky634) L1 were examined.
Expression of nsy-5 in Xenopus Oocytes and Electrophysiological Recordings

nsy-5b was subcloned into the pcDNA3.1 vector (Invitrogen) with a T7 promoter. In vitro transcription, RNA purification, and oocyte injection were performed as described previously (Trexler et al., 2000). To assess the ability of NSY-5 to form hemichannels, single oocytes were recorded in Ringer solution containing 1.8 mM Ca²⁺ ~4 days after RNA injection using a two-electrode voltage clamp (Srivivas et al., 2006; Trexler et al., 2000). To ask whether NSY-5 forms intercellular channels, oocytes were devitellinized 1 day after RNA injection and paired for 1 day before measuring junctional currents with a dual two-electrode voltage clamp (Verselis et al., 1994).

Genetic Mosaic Analysis

The str-2::GFP-integrated line klys1401 in wild-type or nsy-5(ky634) animals was injected with DNA for nsy-5(gennomic), odr-1::DsRed, and ofm-1::GFP or odr-3::nsy-5, odr-1::dsRed, and ofm-1::GFP. Mosaic analysis and statistical analysis were performed as previously described (Sagasti et al., 2001; VanHoven et al., 2006). Transgenic lines were passed for six generations to allow the transgenes to stabilize before screening for mosaics. The presence of the extrachromosomal array was visible in the AWC and AWB neurons, which expressed the co-injection marker odr-1::DsRed. Expected numbers of mosaic animals were generated from internal control animals, which retained the nsy-5 transgene in both AWC neurons, from the same transgenic line. Expected and observed numbers of mosaic animals in each class were compared using the chi-square test with three degrees of freedom. Statistical analysis supports a lateral interaction model in which the cell with higher nsy-5 activity becomes AWC_ON and the cell with lower nsy-5 activity becomes AWC_OFF. p = 0.10–0.25 (rescue line 1), 0.25–0.5 (rescue line 2), 0.1–0.25 (rescue line 3), 0.02–0.05 (gain-of-function line 1), and 0.10–0.25 (gain-of-function line 4). Statistical analysis was also used to test an execution model in which nsy-5 acts strictly cell autonomously in a permissive fashion (i.e., a wild-type cell becomes AWC ON). In all cases, p < 0.001, excluding the model.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, Supplemental References, two tables, and three figures and can be found with this article online at http://www.cell.com/cgi/content/full/129/4/787/DC1/.

ACKNOWLEDGMENTS

We are grateful to K. McDonald of the University of California, Berkeley and K.D. Derr at the New York Structural Biology Center for assistance in the freezing of embryos. We thank C. Woods and H. Jaramillo for excellent technical support and S. Bauer Huang, C. Chang, B. Lesch, M. Tsunozaki, M. Zimmer, N. Pokala, G. Lee, and A. Chang for comments, discussions, and reagents. We also thank A. North and the Rockefeller University Bio-Imaging Resource Center for advice on confocal imaging, S. Mccarroll for the pSM and pSM-GFP vectors, S. Kennedy and G. Ruvkun for the nri–lin–is8 strain, Y. Kohara for EST clones, A. Fire for C. elegans vectors, T. Stierle and the Caenorhabditis Genetic Center for strains, S. Mitani for nsy-5(tm1896), and WormBase. This work was supported by NIH grant RO1 DC04089. C.I.B. is an Investigator of the Howard Hughes Medical Institute.

Received: September 28, 2006
Revised: January 27, 2007
Accepted: February 26, 2007
Published: May 17, 2007

REFERENCES

